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Abstract
Purpose—The variable regions of Ig (idiotype, Id) expressed by malignant B cells can be used
as tumor-specific antigens that induce humoral and cellular immunity. However, epitopes derived
from Id that stimulate human CD8+ T-cell immunity are incompletely characterized.

Experimental design—The clonal Ig VL of human myeloma cell line U266 and five primary
B-cell tumors were sequenced and peptides corresponding to the Ig VL region were tested for their
ability to stimulate cytotoxic T lymphocytes (CTLs) from ten HLA-A* 0201 positive normal
donors. The CTLs thus generated were tested against peptide-pulsed T2 cells and autologous
tumor cells.

Results—14 peptides derived from Ig light chain (VL) of U266 and primary B-cell tumors were
used to generate 68 Cytotoxic T lymphocytes (CTLs) lines that specifically produced IFN-γ when
co-cultured with peptide-pulsed T2 cells. These CTLs lysed peptide-pulsed T2 cell as well as
U266 or autologous tumor targets in an HLA class I-dependent manner. Sequence analysis
revealed shared VL T-cell epitopes in U266 and primary B-cell tumors, not previously reported
within Ig heavy chain (VH) sequences.

Conclusion—This study thus identifies novel immunogenic CTLs epitopes from Id VL, suggests
that they are naturally presented on the surface of B-cell malignancies, and supports their inclusion
in next generation Id vaccines. The ability to prime T cells derived from normal HLA-matched
donors, rather than patients, also may have direct application to current strategies, designed to
generate allogeneic tumor-specific T cells for adoptive transfer.
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Introduction
B-cell malignancies express unique variable region determinants in their surface Ig receptor
(Id) that can serve as tumor-specific antigens. Studies in mice and humans showed that
humoral and cellular immune responses were induced following Id vaccination (1–4). We
have previously demonstrated that autologous Id protein can be formulated into an
immunogenic antigen in lymphoma patients, by conjugation with a carrier protein, keyhole
limpet hemocyanin (KLH), and administration with GM-CSF as adjuvant. Lymphoma-
specific CD8+ T-cell responses were associated with achievement of molecular remissions
(3). In human myeloma patients, T-cell responses specific for Id protein have generally been
demonstrated, suggesting immunogenicity of this tumor antigen (5). Finally, a randomized
Phase III clinical trial of an Id protein vaccine recently demonstrated prolonged remission
duration in follicular lymphoma (FL) patients in first remission(6). However, the
immunogenic epitopes derived from Id that stimulate CD8+ T-cell responses have been
incompletely characterized, especially Id light chain (VL) determinants.

Despite the availability of new proteosome inhibitors and other targeted agents, disease
relapse still remains a major problem for myeloma patients, and even high dose therapy
followed by autologous stem cell transplantation (SCT) in tandem does not appear to be
curative for this disease (7). In contrast, allogeneic SCT following either myeloablative or
reduced-intensity conditioning has been shown to induce prolonged disease-free survival in
a small percentage of patients suggesting a possible graft versus myeloma (GVM) effect(8).
Attempts to enhance the GVM effect by donor lymphocyte infusions (DLI) have resulted in
an increased incidence of graft versus host disease (GVHD)(9). Therefore, strategies to
enhance the specific antitumor effect of the graft without increasing the risk of GVHD are
needed to improve outcome in allotransplant recipients.

One novel strategy is to transfer highly-enriched populations of tumor antigen-specific T
cells from donor to recipient (i.e., educated donor lymphocyte infusions, DLI) to enhance
the antitumor effect of the allograft without exacerbating GVHD. The approach of
allogeneic marrow donor immunization in myeloma has been tested clinically in a small
number of HLA-matched donor-recipient pairs and donor immunization with Id protein has
proved safe (10, 11). As an alternative to vaccinating donors in vivo in future clinical
studies, we develop here a method to prime and expand donor idiotype light chain-specific T
cells in vitro with the goal of using Id-specific DLI as the transfer element against B-cell
malignancies in future clinical studies.

Materials and Methods
Human tumors

U266 myeloma cell line (HLA-A*0201/A3+) was obtained from ATCC. HLA-A*0201
primary FL or chronic lymphocyte leukemia (CLL) tumors were purified from patient’s
blood or spleen with HISTOPAQUE-1077 (Sigma) and B-cell isolation kit (Miltenyi
Biotec). HLA-A*0201 primary plasma cell leukemia cells (PL) were isolated with CD138+
cell isolation kit (Miltenyi Biotec). All patients’ samples were collected before the
administration of high does therapy or idiotype vaccination. This study was approved by the
Institutional Review Board Committee and informed consent was obtained in accordance
with the Declaration of Helsinki.

RT-PCR of idiotype light chain cDNA
3µg RNA extracted from U266, primary tumors was reverse- transcripted into cDNA with
Superscript III kit from Invitrogen (cat# 11745100). The highly variable region of idiotype
light chain region was PCR amplified with primers from published paper (12). The PCR
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conditions are: 94°C 5min, followed by 94°C, 30sec, 58°C, 30sec, 72°C, 45sec for 35
cycles, 72°C, 9 minute. The PCR product was cloned into PCR2.1 TOPO vector (Invitrogen,
cat #K2000-01) and sequenced in the DNA core facility of MD.Anderson Cancer Center.

Peptide synthesis and T2 binding
Peptides predicted to bind to HLA-A*0201 were synthesized to greater than 70% purity,
dissolved in 100% dimethyl sulfoxide (Sigma), and the binding affinity to HLA-A*0201
molecules was measured with T2 cells according to published methods (13). In brief, T2
cells were incubated with 50µg/ml peptides and 3 µg/ml of β2-microglobulin (Sigma, cat #
M4890) for overnight. The cells were then washed and incubated with PE-labeled anti–
HLA-A0201 mAb (clone BB7.2, BD Biosciences) for 30 minutes at 4°C. After washes and
fixation, cells were analyzed for the levels of HLA-A2 expression by flow cytometer. The
binding affinity of peptide was quantified according to the formula [(mean fluorescence with
peptide − mean fluorescence without peptide)/mean fluorescence without peptide] × 100%.
Influenza A virus M1 58–66 (GILGFVFTL) peptide was used as a positive control.

Generation of peptide-specific CTLs
CTLs were generated from HLA-A*0201 normal donor PBMCs using reported methods
(14). Briefly, PBMCs (1 × 105 cells/well) were incubated with 10 µg/ml peptide in
quadruplicate in 96-well U-bottom-microculture plates in 200 µl culture medium (50%
AIM-V, 50% RPMI-1640, 10% human AB serum, 100 IU/ml of IL-2) and restimulated with
peptide every 3 days. After 5 stimulations, T cells were stimulated with peptide-pulsed T2
cells and interferon (IFN)-γ production was determined in supernatants by ELISA. CD8+ T
cells were isolated from IFN-γ-producing cultures by MACS and expanded by rapid
expansion protocol(15). Influenza A virus M1 58–66 (GILGFVFTL) peptide was used as a
positive control.

Cytotoxicity
U266 and primary tumor cells were labeled with 51Cr and standard 4-hour cytotoxicity assay
was performed. Anti-human HLA-ABC (clone W6/32, eBiosciences), anti- HLA-DR, DP,
DQ (clone TÜ39, BD Biosciences), and Mouse IgG2a Isotype Control (eBiosciences, cat#
16-4724-81) were used to determine HLA restriction. All assays were performed in triplicate
and repeated three times.

Intracellular cytokine staining assay
Effector T cells were mixed with T2 or antigen presenting cells (APCs) loaded with 10µg/ml
peptide at 1: 1 ratio. 2 hour later, 5µg/ml Brefeldin A (Sigma) was added to block the
transfer of Gogi part. The staining of intracellular cytokine was performed with BD Cytofix/
Cytoperm™ Plus Fixation/Permeabilization kit 12 hour later. 10µl mouse anti-human IFN-γ
(clone 25723.11, BD Biosciences), mouse anti-human TNF-a (clone MAb11 BD
Biosciences), mouse anti-human GM-CSF(clone 4H1, eBiosciences), mouse anti-human
IL-4 (clone 8D4,BD Biosciences), mouse anti-human IL-10 (clone: JES3-9D7,
eBiosciences), mouse anti-human IL-17 (clone eBio64DEC17, eBiosciences), mouse anti-
human CD8 (clone HIT8a, BD Biosciences) were added to the 100µl effector T cells and
stained for 30minutes at 4°C in the dark. After 2 times washes in 1×Perm buffer, the
samples were analyzed by flow cytometer and the data was analyzed with cell Quest
software or Flowjo.

Statistical analysis
The Student t test was used to compare various experimental groups. Unless otherwise
indicated, the mean average and standard deviations (SD) of triplicate wells are shown.
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Results
Generation of Id VL-specific T-cell lines from normal donors

As a model, we used peptides derived from the VL of human U266 myeloma cell line to
generate CTLs. Eighteen peptides from lambda VL of U266 were selected based on the
predicted binding affinity to HLA-A*0201
(http://www-bimas.cit.nih.gov/molbio/hla_bind/). Most peptides showed modest binding
capacity to HLA-A*0201 molecules (T2 binding index: 0.15–1.29) (Supplementary Table
1). As peptides of low affinity are capable of inducing CTLs (16), all were used to generate
CTLs from HLA-A* 0201 normal donors (14). Nine U266 peptides (P19, P20, P21, P23,
P25, P26, P27, P28, and P29) induced CTLs that specifically secreted IFN-γ when co-
cultured with peptide-pulsed T2 cells (Figure 1A). These peptides induced 54 CTLs in ten
HLA-A* 0201 donors (Table.2), confirming their immunogenicity in general normal donors.
Using intracellular cytokine assay, we demonstrated that CTLs produced IFN-γ, TNF-α, and
GM-CSF but not IL-4, IL-10, or IL-17 cytokines (Figure.1C). Next, we used 105 candidate
peptides from VL of CLL (n=1), FL (n=3), and PL (n=1) tumor cells and demonstrated that
five primary Id VL-derived peptides are also immunogenic to generate 14 CTLs from ten
normal donors (Figure 1B and Table.2).

Cytotoxicity of VL peptide-specific donor T cells
We expanded peptide-specific CTLs and assayed for cytotoxicity against peptide-pulsed T2
cells and primary tumors. Both U266 peptide-specific CTLs (Figure 2A) and CTLs
generated against VL peptides from primary tumors (Figure 2B) efficiently lysed Id, but not
control peptide-pulsed, T2 targets.

Peptide-specific CTLs raised against multiple U266 peptides also lysed U266 as target
efficiently. CTLs did not lyse myeloma targets expressing irrelevant Id (ARP-1, HLA-A2−/
Id-; XG1, HLA-A2+/Id-), indicating their specificity (Figure 3A). Donor-derived CTLs
raised against primary tumor-derived VL peptides also specifically lysed primary tumors but
not tumors expressing irrelevant Ids, or the respective patients’ PBMC (Figure 3B) or K562
cells (not shown).

To further characterize effector T cells, we assayed for inhibition of tumor cell lysis by
HLA-blocking antibodies. We observed that HLA class I, but not class II or isotype control
antibodies inhibited cytolysis by U266 peptide-specific CTL lines (Figure 4A). HLA class I
antibodies also inhibited the lysis of primary tumor cells by CTL raised against their
respective VL peptides, suggesting that VL peptides were processed and presented on HLA
class I molecules by both U266 and primary B-cell tumors (Figure 4B).

Candidate VL epitopes shared by human FL
A current limitation of Id vaccines is the requirement for individualized manufacture which
could be partially overcome by identification of universal T-cell epitopes shared by multiple
patients. To determine whether the immunogenic U266 and primary tumor VL peptides were
shared by other human B-cell tumors, we compared them to 90 lambda and 123 kappa L-
chain sequences from a panel of FL tumors (D. Gold, unpublished data). Interestingly, we
observed that 12 FL tumors shared the P21 sequence while one FL each shared P19 and P25
epitopes. Seven FL shared the L50 epitope, two FL each shared the L53, L54 and L61
epitopes, and K18 and L10 epitope were shared by one other primary FL each (Table 1).
The two most frequently shared peptides (P21 and L50) localized to the framework regions
of VL and consisted of germ line sequences, without somatic mutation. Overall, 27 out of 90
(30%) FL tumors expressing lambda L-chain shared at least one of the 13 epitopes we
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identified. Analysis of shared kappa epitopes will require additional studies, as only a single
immunogenic kappa epitope was identified here.

To determine whether CTLs generated against a U266 peptide could lyse primary tumor
cells expressing a shared epitope, we incubated donor-derived, P21-specific CTLs with
HLA-A*0201 FL that expressed the P21 epitope (FL4, HLA-A2+/P21+). We observed
significant lysis of FL target cells, but not PBMC from this patient or FL that did not express
P21 (FL5,HLA-A2+/P21−), suggesting specificity for Id (Figure 4C).

Discussion
Increasing data suggest that human T-cell immunity plays an important role in anti-tumor
effects induced by Id vaccination with whole protein (17–19). Studies have identified T-cell
epitopes harbored by Ig VH of human and Ig VL of murine B-cell tumors (20–29), but
whether human Id VL harbor important T cell epitope remains unclear(25, 26). Two
previous publications reported that Ig light chains contained few T cell epitopes. In
Dabadghao’s study, PBMC from five myeloma patients were incubated with fragment
F(ab)2, Fab, HC (heavy chain) or LC (light chain) of autologous idiotype protein to
determine idiotype specific T cell proliferation. They found idiotype fragments of F(ab)2,
Fab, HC can stimulate PBMC proliferation. However, none of the patients’ PBMC
proliferated to LC of idiotype protein (25). In the study by Fagerberg et al., peptides
corresponding to the heavy chain and light chain of one myeloma idiotype protein were
synthesized and incubated with one myeloma patient’s PBMC. Using ELISPOT assay, they
found only peptides derived from HC but none from LC of idiotype protein could stimulate
T cells to secret IFN-γ (26). In our study, we have identified 14 peptides from Ig light chain
(VL) of U266 and primary B-cell tumors that can be used to generate 68 CTLs lines in vitro.
These VL CTLs lysed the peptide pulsed-T2 cell as well as tumor cells, indicating that VL
immunogenic epitopes are processed and presented by tumor cells. The differences between
our results and previous studies may have resulted from several reasons. First, the patient’s
PBMC is not ideal to study protective T cell immunity, as the immune balance is skewed
towards immune suppression (30). Second, the whole idiotype protein, may harbor immune
regulatory, as well as stimulatory sequences, thus the identification of immunogenic epitope
may be hampered by regulatory epitopes on the whole idiotype protein(31) Lastly,
significantly more peptides from patients were synthesized and tested in our study. Overall,
our study suggests that immunogenic epitopes are present in VL CDR and FWR regions, are
processed and presented by primary tumor cells, and supports strategies for targeting VL
epitopes on B-cell tumors. CTLs targeting Id VL may also have specific clinical usage
against L-chain-only secreting plasma cell dyscrasias (27).

Id vaccination significantly extended the disease-free survival of follicular lymphoma
patients as demonstrated in a recent controlled Phase III trial, consistent with suggestions
from prior pilot clinical trials (6, 32). The ability to prime HLA-A2 + donor CD8+ T cells
against Ig VL epitopes may provide a strategy for improving adoptive therapy against B-cell
malignancies. Previous work in human SCT, demonstrating that the transfer of humoral, and
to a lesser extent cellular, antigen-specific immunity to clinically important viral antigens
from immune donors to recipients can occur, provides a rationale for transferring tumor
antigen-specific immunity induced in donors(33–35). Vaccination of HLA-matched sibling
donors with myeloma Id protein, with subsequent transfer of Id-specific immunity by stem
cell transplantation, has been shown to be feasible in a limited number of patients with
myeloma (10, 11). Six donors were vaccinated with Id proteins (conjugated to KLH)
isolated from the plasma of the myeloma patients prior to marrow harvest, and respective
recipients were administered booster Id immunizations following transplantation. The
vaccine was well-tolerated by all donors and recipients. With median follow-up of eight

Weng et al. Page 5

Clin Cancer Res. Author manuscript; available in PMC 2012 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



years, no long-term toxicity has been observed in any immunized donor. Vaccination
induced specific cellular and/or humoral immune responses against Id and the vaccine
carrier, KLH, in all donors. Two patients died within 30 days of SCT due to transplant-
related complications, but Id-specific and KLH-specific T-cell responses were detected in all
four remaining patients post-, but not pre-BMT. All four surviving patients converted from
partial to complete responses following SCT. Taken together, these preliminary results
suggest that 1) idiotype protein can elicit a specific immune response in a healthy donor, 2)
direct transfer of idiotype specific T-cell immunity can occur from donor to recipient, and 3)
donor-derived T-cell responses may not be blocked by circulating idiotype protein present in
the patients during and after SCT, or by iatrogenic immunosuppression for GVHD
prophylaxis. Our current data suggest that as an alternative to donor vaccination,
immunogenic peptides may be used to selectively expand Id-specific T cells ex vivo to
generate “educated” donor lymphocyte infusions (DLI). Such primed T cells might enhance
tumor specificity and limit graft-vs.-host disease complications of current DLI strategies.

Using a recently described method (14), we completed multiple T-cell stimulations within 2
weeks, such that the T cells are not exhausted at that time. Instead, these T cells are at much
younger stage compared to T cells traditionally stimulated 3 to 4 times weekly. Even after
these multiple stimulations, we observed that the T cells retained effector function and were
able to lyse peptide-pulsed and tumor cell targets (Figures 2–3). Furthermore, as described,
using an established rapid expansion protocol, we demonstrated feasibility of expanding
such idiotype-specific T cells in large numbers. We are thus now in a position to perform
future in vivo experiments to determine whether adoptively transferred T cells recognizing
shared epitopes would persist and be active.

Finally, although outside of the scope of the current study, one of the important questions in
human tumor immunology is to determine whether autologous tumor-specific CTLs pre-
exist in patients. In light of the immunogenicity of idiotype light chain peptides found in this
study, specifically, it will be important to determine whether Ig light chain specific CTLs
pre-exist in the blood of patients with B cell tumors and whether such precursors can be
expanded by vaccination or adoptive transfer. Previous studies have suggested the existence
and function of such tumor specific T cells in B cell tumor patients (36, 37). Experiments
testing the ability of human tumor VL peptides to generate autologous Id-specific T cells are
under active investigation in our laboratory.

Translational Relevance
Despite improvements in high dose therapy followed by autologous stem cell
transplantation (SCT), disease relapse still remains a major problem for B cell
malignancy patients, and even tandem autografts do not appear to be curative for these
diseases. Allogeneic SCT following either myeloablative or reduced-intensity
conditioning has been shown to induce prolonged disease-free survival in a small
percentage of patients suggesting a possible graft versus myeloma (GVM) effect. The
ability to prime tumor-specific T cells derived from normal HLA-matched donors, rather
than autologous patients, may have direct application to current adoptive transfer
strategies, already in clinical testing.
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Figure 1.
Generation of Id VL peptide-specific T cells from 10 normal donors (ND1–10). (A) IFN-γ
secretion by U266 myeloma cell line VL peptide-specific CTLs after stimulation with
peptide-pulsed T2 cells or HIV-Gag77 peptide-pulsed T2 cells (negative control). Influenza
A virus M1(58–66) peptide was used as a positive control. Id VL peptide sequences and
characteristics are shown in Table.1 (B) IFN-γ secretion by primary B-cell tumor-derived
VL peptide specific CTLs against peptide pulsed or HIV-Gag77 peptide-pulsed T2 cells. (C)
Intracellular cytokine staining assay of peptide-specific CTLs in response to VL peptide or
HIV-Gag77 peptide-pulsed T2 cells. * indicates P<0.05.
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Figure 2.
The cytotoxic function of VL peptide-specific CTLs against Id peptide or control HIV
peptide pulsed T2 cells. (A)The cytotoxic function of U266 derived VL peptide-specific
CTLs was tested against T2 cells pulsed with U266 or control HIV peptide. (B) The
cytotoxic function of donor CTL raised against primary B-cell tumor-derived VL peptides
was tested against T2 cells pulsed with the respective human tumor-derived or control HIV
peptide. Results are representative of three independent experiments.
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Figure 3.
Cytotoxic function of VL peptide-specific normal donor CTLs against U266 and primary
human B-cell tumor targets. (A) U266 VL peptide-specific (P19, P20, P21, P23, P25, P26,
P27, P28, P29) CTLs generated from a normal donor (ND1) lysed U266 myeloma cells but
not ARP-1 (HLA A2−, irrelevant Id) or XG-1 (HLA A2+, irrelevant Id) myeloma cell lines.
(B) Human tumor-derived VL peptide-specific (L50 and K18) CTLs lysed the respective
primary tumor cells: Tumor (CLL1) and Tumor (PL1), but not tumors expressing irrelevant
Id: Tumor (control), or autologous patient’s tumor-free PBMC: PBMC(CLL1) and
PBMC(PL1).
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Figure 4.
HLA restriction of of VL peptide specific CTLs. (A) HLA class I but not HLA class II
specific antibody or isotype control antibody (10 µg/ml) blocked the cytolysis of U266
tumor cells by U266 VL peptide-specific CTLs. (B) HLA class I but not HLA class II
antibody or isotype control antibody (10 µg/ml) blocked the cytolysis of primary human
CLL and PL tumor cells, respectively by VL peptide-specific CTLs. (C) U266 P21 peptide-
specific CTLs specifically lysed HLA-A*0201+ primary FL cells that shared the P21
epitope: Tumor (FL4, P21+), but not the same patients’ PBMC: PBMC(FL4) or HLA-
A*0201 tumor cells that did not express P21(FL5,P21−).
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