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Abstract

Development of a computational decision aid for a new medical imaging modality typically is a
long and complicated process. It consists of collecting data in the form of images and annotations,
development of image processing and pattern recognition algorithms for analysis of the new
images and finally testing of the resulting system. Since new imaging modalities are developed
more rapidly than ever before, any effort for decreasing the time and cost of this development
process could result in maximizing the benefit of the new imaging modality to patients by making
the computer aids quickly available to radiologists that interpret the images. In this paper, we
make a step in this direction and investigate the possibility of translating the knowledge about the
detection problem from one imaging modality to another. Specifically, we present a computer-
aided detection (CAD) system for mammaographic masses that uses a mutual information-based
template matching scheme with intelligently selected templates. We presented principles of
template matching with mutual information for mammography before. In this paper, we present an
implementation of those principles in a complete computer-aided detection system. The proposed
system, through an automatic optimization process, chooses the most useful templates
(mammaographic regions of interest) using a large database of previously collected and annotated
mammograms. Through this process, the knowledge about the task of detecting masses in
mammograms is incorporated in the system. Then we evaluate whether our system developed for
screen-film mammograms can be successfully applied not only to other mammograms but also to
digital breast tomosynthesis (DBT) reconstructed slices without adding any DBT cases for
training. Our rationale is that since mutual information is known to be a robust intermodality
image similarity measure, it has high potential of transferring knowledge between modalities in
the context of the mass detection task. Experimental evaluation of the system on mammograms
showed competitive performance compared to other mammography CAD systems recently
published in the literature. When the system was applied “as-is” to DBT, its performance was
notably worse than that for mammograms. However, with a simple additional preprocessing step,
the performance of the system reached levels similar to that obtained for mammograms. In
conclusion, the presented CAD system not only performed competitively on screen-film
mammograms but it also performed robustly on DBT showing that direct transfer of knowledge
across breast imaging modalities for mass detection is in fact possible.
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1. Introduction

Breast cancer is the most common non-skin cancer in women in the United States. The
current screening standard for breast cancer is mammography, with some new modalities
such as digital breast tomosynthesis (DBT) recently approved for clinical use. One of the
ways to improve the overall benefit of breast cancer screening is with the support of
computer-aided detection (CAD) systems designed to offer second opinions to the
radiologists interpreting breast images. In the last two decades there has been great progress
in the investigation, development and clinical deployment of such systems in screening
mammography. However, there is still room for improvement, particularly with respect to
the detection of breast masses, further reduction of false positives, and ideally direct
translation across imaging platforms (from screen-film to digital mammography to DBT).

Multiple approaches have been proposed for the computer-aided detection of breast masses
involving a variety of image processing and machine learning algorithms [1]. A recently
published review paper [2] provides a good overview of the available approaches with some
discussion on their advantages and disadvantages. One such approach for breast masses is
template matching [3, 4, 5, 6, 7, 8, 9] where the similarity of a region of interest to a
template or a set of templates is assessed. Then, based on the similarity score, the suspicion
level of each region in the entire image is evaluated.

CAD systems that are based on the template matching approach vary in the measures used to
assess image similarity and the generation or selection of appropriate templates. With
respect to similarity criteria, the two most popular ones are correlation and mutual
information. With respect to appropriate mass templates, researchers have applied artificial
templates, probabilistic templates, as well as libraries of actual masses as templates. As
pointed out in [2], the template matching approach appears to be a competitive alternative to
other approaches but its success depends on the generation of effective templates that cover
the diverse appearance range of breast masses.

Our group has been developing a template matching approach for mass detection in
screening mammograms [7, 8, 10, 11, 12, 13] that capitalizes on a library of real mass and
normal (i.e. not containing abnormalities) templates with mutual information as the
similarity measure. Although the approach has been shown to be quite effective for region-
based analysis [7], its implementation on full mammograms becomes computationally
expensive as more templates are deposited in the library. Therefore, in subsequent studies,
we proposed several improvements to our technique including case selection [10, 12] and
ensemble classification [13], all applied for specific chosen locations, not entire
mammograms. In a recent study [14] we showed preliminary results regarding the extension
of our system to full mammograms as a base of a context-sensitive mammography CAD
system. However, the focus of that study was on the context-sensitive (eye tracking-based)
aspect and only limited details of the system and limited system evaluation were presented.
The current study focuses on the possibility of translation of the results between
mammography and digital breast tomosynthesis. It also contains the full description and
performance evaluation of the system.

Despite the computational challenge, the general mutual information-based template
matching approach has several advantages. The leading one is its simplicity. As it is based
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on template matching, it does not require segmentation of structures in the breast and
extraction of features. Even though feature-based CAD systems have been shown to be quite
efficient, image features can be sensitive to image acquisition parameters including digitizer
characteristics for screen-film mammograms or vendor-specific pre-processing and post-
processing algorithms for digital mammography. Consequently, feature-based CAD systems
developed for certain acquisition parameters require at the very minimum careful
recalibration in order to be successfully applied across platforms. In contrast, our mutual
information-based template matching approach has the potential for direct translation across
platforms. It does not depend on the numerical values of computer-extracted features but on
the notion of mutual information that captures the statistical relationship of two pixel
intensity probability distributions. Mutual information gained interest in the related task of
image registration [15] where it has been shown that it is particularly effective for assessing
similarity between images from different modalities depicting the same anatomical structure
(multi-modality image matching). This property can be particularly useful when translating
a CAD system developed using a set of images coming from one imaging device to images
coming from other devices or even other imaging modalities. Our pilot investigation of this
potential for location specific mass detection was presented in [16].

Developing a fully automated CAD system that can easily adapt across imaging platforms
could be a very efficient decision support strategy as emerging breast imaging modalities
continue to rapidly evolve and advance. It could significantly facilitate the development of
CAD systems as the new modalities appear and make the decision aids available on time for
the radiologists interpreting the images.

The purpose of this paper is (1) to present in detail a computationally efficient
implementation of a computer-aided system for detection of masses in mammograms that is
based on previously proposed principles of mutual information-based template matching as
well as (2) to evaluate whether the proposed detection scheme has the desired flexibility for
robust translation across modalities, from screen-film mammography to DBT.

2. Methods

In this section we describe the methodology used in our experiments. The databases used in
our study are described in Section 2.1. Section 2.2 describes the framework of the CAD
system, including pre-processing (Section 2.2.1), template matching (Section 2.2.2) and
post-processing (Section 2.2.3). Training of the system is described in Section 2.3. Training,
in this context means incorporating the domain knowledge (about mass detection in
mammography) into the framework described in Section 2.2. Finally, section 2.4 describes
how the proposed system was tested on mammograms and on digital breast tomosynthesis
reconstructed slices. Therefore, in Section 2.4 we describe how we evaluated whether the
domain knowledge incorporated in our CAD system using mammography transfers to
another modality.

2.1. Databases

In our experiments we used a publicly available database of screening mammograms as well
as a digital breast tomosynthesis database collected at Duke University Medical Center.

2.1.1. Database 1: Screening mammography—Database 1 was based entirely on the
Digital Database of Screening Mammography [17] (DDSM). We used all cases digitized
with the Lumisys scanner (there are 944 such cases) with a few exceptions. Specifically, we
excluded 141 cases classified as benign without call-back (i.e.,
BENIGN_WITHOUT_CALLBACK folder in DDSM) since these cases are usually
considered not challenging. To minimize the evaluation bias, we excluded 100 cases that
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were used as an internal validation set to optimize some of the system parameters during the
initial system development stages. We also excluded 201 cases that contained only
calcifications as well as 39 cases for which the masses were not included in our breast
segmentation mask (e.g., masses within the pectoral muscle region of a mammogram). This
resulted in 463 cases which we call Database 1. Since each case contains 4 images (two
views of each breast), Database 1 consisted of 1852 mammographic images that contained
401 masses in total (239 malignant and 162 benign). This database was used to train and test
the CAD system.

2.1.2. Database 2: Digital breast tomosynthesis—We collected the DBT data at
Duke University Medical Center using a prototype DBT system Mammomat NovationTOMO
(Siemens Healthcare, Erlangen Germany)1. System parameters including the acquisition and
reconstruction process have been reported previously[18]. The study was approved by the
institutional review board and it was compliant with the Health Insurance Portability and
Accountability Act. We used a total number of 134 cases. Each case contained up to four
volumes, each corresponding to one view of one breast. The total number of volumes used
in this study was 346. Out of all cases 15 contained lesions that were classified as masses or
architectural distortions based on their radiological presentation. Three cases contained
biopsy-proven malignant masses. In the remaining 12 cases, the lesions were considered
benign based on further examination or their radiological appearance. Given that for many
cases we had two views of a breast available (CC and MLO), there were 27 occurrences of a
lesion in these cases (the same lesion visible in two views is counted as two appearances).
Five of them corresponded to malignant masses. The remaining cases (119) were considered
normal.

Since the focus is on the applicability of our CAD system developed using the
mammography dataset to DBT reconstructed slices, we extracted single (1 mm) slices from
each volume. For abnormal volumes, we extracted the central slice for each lesion. For
normal volumes, we extracted one, randomly selected slice. These slices (total of 348 out of
which 28 were abnormal) constituted Database 2.

2.2. Description of the CAD system

A diagram of the proposed CAD system is presented in Fig. 1. The system proceeds in three
steps. These steps are identical when the system is tested on mammograms and when it is
tested on DBT reconstructed slices except for the breast segmentation algorithm (Step 1b).

2.2.1. Step 1: Preprocessing—This step consists of three parts. It starts with reducing
the spatial resolution of the original images (mammograms and DBT slices) to 0.4 mm per
pixel. This reduced resolution was found sufficient in our preliminary experiments with
mammograms. Please note that the original resolution of mammograms and DBT slices are
different (50 um per pixel and 85 um per pixel respectively) and therefore the scaling factor
differed as well: it was 8 for mammograms and approximately 4.7 for DBT slices. It is
important that the images presented to the CAD system have the same resolution so that a
similarity between structures (e.g., masses) of approximately the same size in two different
modalities can be successfully captured. The spatial resolution reduction was performed
simply by sampling values of pixels in the original image distanced by the scaling factor
(i.e., no averaging was done). In addition to ensuring the same resolution of images in the
two modalities, this step drastically increases the computational efficiency of the system.

caution: Investigational Device. Limited by U.S. Federal law to investigational use. The information about this product is
preliminary. The product is under development and is not commercially available in the U.S.; and its future availability cannot be

ensured.
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The next part (Step 1b) differs when the system is tested on mammograms and DBT
reconstructed slices. When the system is tested on mammograms, a simple breast
segmentation algorithm is utilized based on global thresholding of the images. The global
threshold is established separately for each mammographic image via peak detection in the
image histogram. Additionally for mammograms, a pectoral muscle segmentation was
applied (a simple straight line-fitting approach was used). When the system is tested on DBT
reconstructed slices, the segmentation algorithm was applied directly to each of the
reconstructed slices and consisted of several steps. First, the noise was removed from the
images through median filtering (only for the purpose of segmentation). Then, for each line
of pixels in the image a point of transition from the background to the breast tissue was
identified by detecting the point when the smoothed gradient reached an empirically
determined threshold. Then, after removing outliers among the detected transition points, a
spline was fitted to the points. Finally, the mask was slightly smoothed and trimmed. This
algorithm can result in visually aggressive segmentation in cases when only very low
gradients are observed in some parts of the breast. However, this is particularly the case in
the areas of fatty tissue (low pixel values) in the breast which are of less interest when
looking for masses (usually higher pixel values). Such aggressive segmentation was in fact
often observed in our database. However, none of the abnormalities in DBT slices was
excluded due to the segmentation error.

Please note, that different segmentation algorithms could be used in our experiments and a
breast CAD researcher that will decide to use our template matching approach can simply
apply the algorithm that he/she has at hand. Since the focus of our paper is on the template
matching and inter-modality translation of the CAD system rather than the preprocessing
issues, we used the basic segmentation algorithms described above.

Finally, in the last part of this step (Step 1c) a mask is created that includes the 30% highest
intensity pixels within the breast. Only pixels within the mask are considered as suspicious
enough in the further steps. The underlying assumption of this step is that masses correspond
to high intensity regions of the breast. In our experiments through varying this threshold
from 20% to 100% we observed that this step not only allows for substantial improvement in
the time complexity of our algorithm but also for slight improvement in its overall
performance. The threshold of 30% was chosen as providing a good balance between
sensitivity and specificity for out test set of 100 cases. Before identifying the 30% highest
intensity pixels, a 3x3 median filter was applied to the original images to reduce the noise in
the image that could result in creating small (even single pixel) islands throughout the
image. Even though we believe that such preprocessing assures better quality masks,
according to our preliminary experiments it had only minimal impact on the overall system
performance. The median filter was applied for the purpose of this step only. In the further
steps, the original images were used.

2.2.2. Step 2: Template matching—This is the main step of the proposed CAD system.
For each pixel within the mask generated in step 1, a likelihood score is calculated of that
pixel corresponding to an abnormality. This likelihood calculation is based on the template
matching scheme using mutual information originally presented in [7]. It proceeds as
follows: For each pixel p, a region of interest (ROI) is extracted centered on p. The ROl is
64%64 pixels in size (i.e. 25.6%26.5 mm). This size of ROI has been previously determined
optimal for our application [19]. Then, the mutual information (1) between the query ROI
and each template ROI stored in the database of the CAD system is calculated as:

Das (@, b)

I(A, B):ZZP‘“’ (a,b) log, p. (@ p, (b) (1)

a b
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The joint probability density function pag (a, b) and the marginal probability density
functions pp (a) and pg (b) are estimated using the histogram approach [20] with 8 bins [7].
The bins are uniformly distributed between the minimum and maximum pixel values in the
image with 0.5% of the pixels with the highest intensity and 0.5% pixels with the lowest
intensity being ignored in calculating such minimum and maximum values to reduce the
impact of noise. The ignored pixels are then included in the marginal (first and last) bins.
Calculating mutual information between two images from the same modality and two
images from different modalities are illustrated in Fig. 2.

Background correction is applied to each query ROI and each template ROI before
calculating their mutual information. It proceeds as follows. Given the image in the form f(x,
y), where x and y are pixel coordinates, initially, a first order polynomial g(x, y) = ¢1x + coy
is fitted into the image. Then the background corrected image is obtained by subtracting the
fitted plane from the original image: f(x, y) — g(X, y). The background correction for an
example ROIs is presented in Fig. 3. Similar background correction has been previously
adapted to mammograms [21] and chest radiographs [22]. Our preliminary experiments
showed that background correction is an important step that contributes to better overall
CAD performance.

After the mutual information is calculated between the query ROI and each template ROI,
the likelihood score is calculated as

1 m 1 n
LQ)=— > 1(Q. My) =~ > I(Q.N))
= = @)

where Q is a query ROI, M are mass templates, N;j are normal templates, m is the number of
mass templates and n is the number of normal templates. This entire step results in a
likelihood map with each candidate pixel assigned a likelihood value L of belonging to a
mass.

2.2.3. Step 3: Postprocessing—To extract CAD marks from likelihood maps calculated
in Step 2, an iterative multi-level thresholding algorithm is applied similar to the one in [23,
24]. Specifically, at each threshold regions of pixels are created that have been assigned
likelihood values higher than the threshold L. The threshold Lt is varied from the
maximum value of likelihood present in the likelihood map (Lmayx) to the value that is
established as Liin+0.4(Lmax — Lmin) Where Liin is the minimum value of likelihood present
in the entire likelihood map. Decreasing Lt results in growing regions with high likelihood.
When two such regions are about to merge they are saved separately indicating two separate
suspicious areas. If a suspicious region does not merge with another by the end of all
iterations, it is also saved. After the entire process, a mark is created corresponding to each
saved region placed at the pixel with the highest likelihood score within the region. The
value of the maximum likelihood score in the region is assigned to the mark to indicate the
predicted overall likelihood that the marked location corresponds to a true mass (L;).

Then, threshold T is applied such that all marks in the image with likelihood L; less than T
are removed. The value of T determines the operating point of the system and sets a balance
between its sensitivity and specificity. Finally, for any marks within a distance of 20 pixels
(8 mm) or less from each other, the mark with the lower L; value was removed. This final
step is repeated until there were no such pairs left. The resulting marks were the final output
of the CAD system.
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2.3. System training

The only part of our CAD system that requires machine learning-based optimization is the
selection of the ROI templates stored in the systems database. Note that this step is different
from classifier training used in typical CAD systems (e.g. [25]) that involve classifiers such
as linear discriminant analysis, artificial neural networks, support vector machines etc.
However, we still use the term “training” as it involves machine learning-based system
optimization using previously collected data.

We include this template selection step since we previously discovered [12] that it allows for
dramatic reduction of time complexity of the template matching algorithm while improving
its overall performance. The time complexity is crucial in our CAD system since calculation
of the mutual information measure is time consuming when template matching is performed
scrolling across the full mammogram.

The selection of the template ROIs proceeds as follows. First, two sets of ROIs (64x64
pixels in size), S and V, are generated from the available mammograms. These two sets are
extracted in the following way. For all mammograms available for training, ROIs are
extracted around each mass present in those mammograms. Five ROIs are extracted for each
mass: one ROI centered on the radiologist annotation and 4 additional ROIs centered 5
pixels (2mm) from the center of the radiologist annotation in each direction (up, down, left
and right). Then, from each mammogram, 6 normal ROIs are extracted. An ROl is
considered normal if it is at least 40 pixels (16mm) from the centroid of the closest DDSM
mass annotation. Then, from all extracted ROIs, 500 normal and 500 mass ROIs are selected
randomly to constitute the set S. This set is used as the pool of ROIs from which the
template ROIs are selected. Set V consists of all remaining mass ROIs and a nhumber of
normal ROIs so that the total number of ROIs in V is 10000. Set V is used to evaluate the
performance of the system that is based on a subset of ROIs selected from S. Specifically,
each ROI from V is assigned a decision value by the system using the subset of S as the
database and the decision rule from equation (2). Then the area under the receiver operator
characteristic for all ROIs in V is calculated as the performance measure.

Given the two sets, the random mutation hill climbing (RMHC) [26] algorithm is applied to
select ROIs to store in the system's database of templates. In our previous studies [12], we
determined RMHC to be a superior selection algorithm among multiple available alternative
choices. In short, RMHC is an iterative algorithm that proceeds as follows. First a number k
of ROIs is randomly drawn from the set S. Then, at each iteration, one randomly drawn ROI
from the selected set is swapped with one randomly drawn ROI from the remainder of S. If
the swapping increases system performance (evaluated using V) then the change is kept.
Otherwise it is reversed. This operation is repeated for 2000 iterations. This number was
previously found [12] to provide a good balance between system performance and
computational complexity. At every iteration, the system performance is measured using the
area under the ROC curve on the validation set V. In our experiments the number of selected
ROIls was 30. This number was optimized with use of the 100 cases that were excluded for
the final validation experiments. The 30 ROIs selected in this step constitute the knowledge
database of the CAD system to be used as templates for the calculation of likelihood maps
(i.e., in step 2 described Section 2.2.2).

2.4. Experimental design

We conducted two experiments. In Experiment 1, we developed and tested our CAD system
for screening mammograms using 10-fold crossvalidation with Database 1. In Experiment 2
the performance of mammography CAD system was further tested on DBT reconstructed
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slices from Database 2. When evaluating performance, we took the following measures into
account:

* Image-based sensitivity: the ratio of detected occurrences of lesions to the total
number of occurrences of lesions (lesion that appears in two views counts as two
occurrences)

»  Case-based sensitivity: the ratio of detected lesions (in at least one of two views of
the breast) to the total number of lesions (lesion that appears in two views counts as
one)

*  Number of false positives per image (FPs/I: the average number of false positive
marks (FP) in an image (i.e. marks that do not correspond to an annotated lesion).

To evaluate the overall performance of the systems, we used free response operating
characteristic (FROC) analysis [27]. FROC curves show how sensitivity (image-based or
case-based) and the number of false positives per image change as the threshold T (see
Section 2.2.3) change. FROC curves are a common choice when evaluating the performance
of computer-aided detection systems.

Furthermore, we provide a detailed analysis for specific sub-groups of cases that have higher
clinical significance: malignant masses and architectural distortions. Malignant masses are
masses that represent cancer and as such are of special interest. Even though our system
aims at detecting masses in general, it is important to know whether malignant masses are
detected as accurately as all suspicious lesions. Architectural distortions are distortions of
the breast parenchyma that do not have a focal abnormality. They are known to present a
challenging detection task for both mammographers as well as computer-aided detection
systems.

2.4.1. Experiment 1: evaluating performance for mammography—~Following the
10-fold crossvalidation data handling scheme, we randomly divided Database 1 into 10
approximately equal parts (folds). Each fold contained 46 or 47 cases. Each case was
included entirely in one fold to ensure that mammaographic views of the same case do not
appear in both training and testing at the same time. Then, we used 9 folds for system
training and the remaining fold for testing. We repeated this process 10 times, each time
with a different fold used for testing. We obtained ten free receiver operator characteristic
(FROC) [27] curves which relate the average number of false positive marks (FP) in an
image to which we combined by averaging the true positive fraction (TPF) for a given
number of false positive marks (FP) per image. The FROC curves were obtained empirically
by varying the threshold T in Step 3 of our system.

For each threshold T, the average number of FP marks per image (FPs/I) was calculated only
on images that did not contain any masses. To calculate TPF (sensitivity), we assumed that a
mass is detected if there was a CAD mark within the DDSM mass annotation.

2.4.2. Experiment 2: evaluating performance for digital breast tomosynthesis
—In Experiment 2 we evaluated whether the system trained using mammaographic cases
only (and therefore having knowledge of only such cases) can be successfully applied to
DBT reconstructed slices. Specifically, we used the entire Database 1 for system training
and Database 2 for testing. A lesion was considered detected if there was a CAD mark
within the rectangle outlining the lesion. The number of false positives per image was
assessed on slices from normal volumes. The performance was evaluated using FROC
analysis.
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This experiment consisted of two parts. In the first part (Experiment 2a), we applied the
system trained on mammographic cases (Database 1) “blindly” to DBT slices (Database 2).
In the second part (Experiment 2b), we applied the same system with an addition in the
preprocessing step. Specifically, upon completion of step 1c during preprocessing, the pixels
that were within 64 pixels (size of a single ROI) from the breast edge (based on the
segmentation mask) were automatically assigned a likelihood value of 0. If a lesion was not
detected because of this modification, it was counted as missed and it was reflected in the
overall sensitivity of the system. The rationale for this step is based on our discoveries in
Experiment 2a and is discussed below.

3.1. Experiment 1

Performance of our system for an example case is shown in Fig. 4. The complete FROC
curves for our system, when tested on mammograms are presented in Fig. 5. For malignant
masses, the average case-based sensitivity was 0.736+0.084 and 0.832+0.044 for 1 and 2
FPsl respectively. The image-based sensitivity for malignant masses was 0.607+0.077 and
0.732+0.052 for 1 and 2 FPs/I respectively. For all masses, the average case-based
sensitivity was 0.608+0.065 and 0.719+0.047 for 1 and 2 FPs/I respectively. The image-
based sensitivity for all masses was 0.492+0.064 and 0.615+0.063 for 1 and 2 FPs/I
respectively.

We also examined the system performance separately on architectural distortions (i.e.
lesions that in DDSM were described as masses with shape “ARCHITECTURAL
DISTORTION?). The average image-based sensitivity was 0.355+0.203 and 0.503+0.204
for 1 and 2 FPs/I respectively. Only slightly lower sensitivity for architectural distortions as
compared to sensitivity for all masses is an additional indicator of the robustness of our
system.

3.2. Experiment 2

When the system trained using mammographic cases was applied to DBT reconstructed
slices “as is”, the system performance was poor (e.g. case-based sensitivity of 0.625 for 5
FPs/1). However, upon further investigation we observed that the poor system performance
was caused by highly a suboptimal system response for regions close to the breast edge. The
appearance of the breast edge region differs between mammograms and DBT reconstructed
slices. Specifically, artifacts are quite possible in the DBT reconstructed slices due to the
acquisition as well as the reconstruction process. Furthermore, DBT slices do not
demonstrate the fading effect present along the breast edge in mammograms. This fading
effect causes areas close to the breast edge to be often eliminated during step 1c. Such effect
does not take place in DBT. To account for the breast edge differences between the two
modalities, in the second part of Experiment 2 we simply excluded a 64 pixel wide stripe
(i.e., the size of an ROI) along the breast edge. This ad-hoc step allows us to evaluate
whether the CAD system performs robustly on the remaining breast region.

Experiment 2b showed that when this simple modification is applied, the performance of the
mammography-trained system tested on DBT reconstructed slices improved dramatically
and was in fact comparable to the performance of the same system when tested on
mammograms. Performance of the system for an example case is shown in Fig. 6. The
complete FROC curves of the system are presented in Fig. 7. For malignant masses, the
case-based sensitivity reached 1 (i.e. all malignant masses were detected) for 1 FP/I. The
image-based sensitivities for malignant masses were 0.6 and 1 for 1 and 2 FPs/I,
respectively. For all lesions, the case-based sensitivities were 0.563 and 0.813 for 1 and 2
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FPs/1, respectively. The image-based sensitivities for all lesions were 0.370 and 0.667 for 1
and 2 FPs/1, respectively.

4. Conclusions

In this study we proposed and evaluated a new system for detection of breast masses that is
based on template matching with mutual information. We also assessed if this system,
developed using mammograms only, can be successfully applied as-is (without retraining) to
DBT reconstructed slices. The conclusions of our study are the following:

»  The proposed CAD system performs well when tested on mammograms

e The sensitivity of our CAD system is better for malignant masses than for benign
masses.

*  When the system is trained using mammograms only and tested “blindly” on digital
breast tomosynthesis slices its performance is significantly lower than when it is
tested on mammograms

e The inferior performance is caused mostly by the radically different breast edge
characteristics between digital breast tomosynthesis reconstructed slices and
digitized mammograms

»  When a simple preprocessing step is applied to the system trained on mammograms
to account for that difference, the performance of our CAD system for digital breast
tomosynthesis reaches levels comparable to the performance for mammograms.
Therefore, we conclude that:

»  Application of mutual information-based template matching schemes developed for
mammography to digital breast tomosynthesis shows high promise.

5. Discussion

Regarding the performance of our system for mammograms, we found that it is comparable
and often better than the performance reported in the recent literature in the field. For
example Wei et al. [25] reports case-based sensitivity of 0.636 and 0.801 at 1 FP/I for their
single and dual CAD systems respectively for average masses. The performance for subtle
masses was notably lower. The evaluation was performed using digital mammograms.
Freixenet et al. [9] report sensitivities of around 0.48 and 0.8 for 1 and 2 FPs/I respectively.
In the recent review paper [2] the authors compared 7 previously proposed approaches to
mass detection using two databases: a relatively easy database of digitized mammograms
(MIAS) and a private full field digital mammography database. Comparison to our results
shows that our system outperforms 6 out of 7 methods evaluated by Oliver et al. [2].

However, direct comparison of the algorithms proposed by different groups is very difficult
since they often use different validation schemes and, even more importantly, different
databases that may drastically differ in difficulty. For our evaluation, we used a large variety
of mammograms including challenging cases such as pure architectural distortions. Cases
including masses with associated architectural distortion or associated calcifications were
also included in the analysis. Finally, to ensure robustness, the CAD testing performance
was based on a 10-fold crossvalidation scheme and not on a single split.

Regarding the performance of our system for DBT, please note that a CAD system for DBT
will operate on entire volumes rather than on single slices. The information from single
slices can be fused in order to take advantage of the information present in the entire
volume. In our study, rather than present the volume-based performance, we present the
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slice-based performance. Therefore comparison to previously published DBT CAD systems
(e.g. [28, 29, 30, 18]), is difficult. However, good slice-based performance is a clear
indication of a system’s high potential for competitive performance in the entire volume as
well, since reliable results in single slices can be effectively combined. Evaluating DBT
performance on the entire volumes would introduce another factor to our analysis, namely
an arbitrarily chosen method for fusing the CAD results from different slices. Our results
could change depending on which method is chosen. In our experiments we eliminate this
additional factor by reporting the performance on single slices only. The performance
evaluation on the entire volumes will be a subject of further investigation. Furthermore,
please note, that the performance of the system as evaluated on DBT slices could further
improve if DBT data were used in the training of the system. However, since the focus of
this paper was on translation of domain knowledge from one modality to another, we leave
such investigation for future research.

Our experiments demonstrated that a system developed using only mammograms can be
successfully applied to tomosynthesis reconstructed slices when a small modification in
preprocessing is applied. We believe that the simple modification used in this paper is
sufficient to show that the system in fact has a high potential for DBT, even though it does
not have direct knowledge of the DBT appearance of mass and normal parenchyma. Please
note, however, that although excluding a stripe along the breast edge allowed us to
demonstrate the potential of translating knowledge from mammography to DBT, it is only a
temporary solution since it is bound to miss all masses in these regions (the prevalence of
abnormalities in those regions in our DBT database was low). Therefore, the final solution
to the problem of inferior performance of the system in those regions will require further
algorithm development.

Finally, please note that the two modalities (mammography and DBT) approached in this
paper are inherently similar to each other since they are both based on x-ray attenuation
principles. However, the resulting images (i.e., mammograms and DBT slices) have many
differences with respect to image formation, image characteristics, and visual presentation.
Because of those differences, modality-specific CAD systems are typically developed to
address the unique challenges for each modality and acquisition protocol. The motivation for
our study was to evaluate whether a mutual information-based CAD framework can handle
such differences while preserving detection performance. Future studies could consider the
possibility of extending the idea to other breast imaging modalities such as ultrasound or
breast MRI.

In conclusion, we presented a CAD system that uses a mutual information template
matching scheme with an intelligently selected set of templates for automated screening of
full mammograms. The CAD system was quite effective in the detection of malignant
masses with performance comparable to that of previously published (and often more
elaborate) CAD systems. Furthermore, the system was able to perform robustly when
applied to breast tomosynthesis data without retraining of the system. A flexible CAD
system that can successfully transfer knowledge across modalities offers many advantages in
this era of rapid advancements in breast cancer screening.

e We propose a computer-aided diagnosis system for breast cancer detection.
e The proposed CAD system performs well when tested on mammograms.

e “Blind” application to digital breast tomosynthesis (DBT) results in poor
performance.

e After applying a pre-processing step to DBT slices the performance improves.
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e Translation of domain knowledge in CAD from mammaography to DBT is
promising.
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Diagram of the proposed CAD system
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Figure 2.
Calculating mutual information: (A) between two mammography ROIs and (B) between a
tomosynthesis and a mammography ROI
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Figure 3.

An example ROI before (A) and after (B) background correction
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Figure 4.

Illustration of the CAD steps in mammography for the system operating at approximately 1
FP/image: (a) original DDSM mammogram with the DDSM-provided annotation of a mass
present (b) the likelihood map output of the template matching CAD step (c) CAD mark
generated during the final step
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Figure 5.
Mammography: crossvalidation FROC performance
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Figure 6.

INlustration of the CAD steps when the system is applied in DBT while operating at 1 FP/
slice: (a) original DBT slice at reduced resolution with an annotated malignant mass (b) the
likelihood map output of the template matching CAD step (¢c) CAD mark generated during
the final step

J Biomed Inform. Author manuscript; available in PMC 2012 October 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Mazurowski et al.

True Positive Fraction

09

0.8 |

0.7 +

0.6

0.5F

0.4

03F

02r

0.1

(a) image-based FROC curves

- - =gl

malignant

Number of False Positives per Image

2 3

Figure 7.
DBT: FROC performance

4

True Positive Fraction

0.9+

0.8+

0.7}

0.6+

0.5+

0.4}

0.3}

0.24

0.1¢

Page 20

(b) case-based FROC curves

= malignant
- = =2ll

1 2 3 4 5
Number of False Positives per Image

J Biomed Inform. Author manuscript; available in PMC 2012 October 1.



