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ABSTRACT Circadian rhythms with a period of ~24 h, are natural timing machines. They are broadly distributed in living organ-
isms, such as Neurospora, Drosophila, and mammals. The underlying natures of the rhythmic behavior have been explored by
experimental and theoretical approaches. However, the global and physical natures of the oscillation under fluctuations are still
not very clear. We developed a landscape and flux framework to explore the global stability and robustness of a circadian oscil-
lation system. The potential landscape of the network is uncovered and has a global Mexican-hat shape. The height of the
Mexican-hat provides a quantitative measure to evaluate the robustness and coherence of the oscillation. We found that in
nonequilibrium dynamic systems, not only the potential landscape but also the probability flux are important to the dynamics
of the system under intrinsic noise. Landscape attracts the systems down to the oscillation ring while flux drives the coherent
oscillation on the ring. We also investigated the phase coherence and the entropy production rate of the system at different fluc-
tuations and found that dissipations are less and the coherence is higher for larger number of molecules. We also found that the
power spectrum of autocorrelation functions show resonance peak at the frequency of coherent oscillations. The peak is less
prominent for smaller number of molecules and less barrier height and therefore can be used as another measure of stability
of oscillations. As a consequence of nonzero probability flux, we show that the three-point correlations from the time traces
show irreversibility, providing a possible way to explore the flux from the observations. Furthermore, we explored the escape
time from the oscillation ring to outside at different molecular number. We found that when barrier height is higher, escape
time is longer and phase coherence of oscillation is higher. Finally, we performed the global sensitivity analysis of the underlying
parameters to find the key network wirings responsible for the stability of the oscillation system.
INTRODUCTION
Biological oscillations widely exist in living organisms.
They have been extensively explored, including cell cycles,
circadian clocks, calcium oscillations, and glycolytic oscil-
lations. In the cell, there are intrinsic statistical fluctuations
from finite numbers of molecules and the external fluctua-
tions from highly dynamical and inhomogeneous environ-
ments (1–8). It is therefore important to investigate
robustness and stability of the oscillation under the
stochastic fluctuations. The dynamics under extrinsic fluctu-
ations can be studied by the stochastic Langevin dynamics
(8). For intrinsic statistical fluctuations, one can explore
the probabilistic master equation formalism (9), giving the
probability of different states of the system.

Circadian rhythms, with a period of ~24 h, are natural
timing machines, broadly distributed in living organisms.
They accommodate to the day-and-night alterations of
the earth, adapting to the fluctuating environment. In
Neurospora, Drosophila, and mammals, oscillations origi-
nated from the negative feedback regulation of the clock
genes are developed from the transcription to translation
process, which have been modeled at the molecular level.
The underlying natures of the rhythmic behavior have
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been explored by experimental studies and theoretical
methods (10–12). However, in exploring the protein
networks in a stochastic way, many models can only give
local properties of the system. The global and physical
natures of the oscillation are still a challenge to see.

Here, we develop a landscape and flux framework (13–
15) to explore the global stability and robustness of a circa-
dian oscillation system under intrinsic fluctuations. We
directly explore the probabilistic distribution in the whole
protein concentration-state space, so that the oscillation
system can be investigated globally. Fig. 1 shows a core
molecule mechanism of circadian oscillations in Drosophila
based on a negative feedback regulation. In this system, Per
gene is transcribed to mRNA (Mp) in nucleus, and then
transported to cytosol. Next, mRNA is translated into PER
protein, which can be reversibly phosphorylated from the
form P0 into the forms P1 and P2, successively. The latter
form is degraded or transported into the nucleus (PN), which
will provide a negative feedback regulation on the expres-
sion of its gene (10,11). Therefore, the existence of the nega-
tive feedback loop with a delay for this network gives the
origin of the oscillations. By means of stochastic simulation
method, we obtain the steady-state probability distribution
of the system, and further study the underlying global prop-
erties of the potential by the relation: U(x) ¼ �lnPss(x)
(13–20), where Pss is the steady-state probability in concen-
tration x.
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FIGURE 1 Core wiring diagram for the circadian rhythms network.
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The landscape concept has been introduced to ligand
binding protein dynamics (21) to explain the existence of
the substates. Another success for the landscape concept
was from protein folding and the interaction funnel
(22,23). These ideas are all based on a gradient dynamics
with the equilibrium potentials or energy function known
a priori. In the equilibrium systems, only the equilibrium
potential or energy function is needed to characterize the
global equilibrium properties (equilibrium probability) and
local dynamics (gradient) of the whole system. However,
in the nonequilibrium systems, both the potential landscape
and the associated probabilistic flux are essential to charac-
terize the global steady-state properties (steady-state proba-
bility) and the dynamics of the network.

The underlying nature of the rhythmic behavior has been
explored by experimental and theoretical approaches.
However, the global and physical natures of the oscillation
under intrinsic and extrinsic fluctuations are still not very
clear. Here we developed a landscape and flux framework
to explore the global stability and robustness of a circadian
oscillation system. The potential landscape of the network
was found to have a global Mexican-hat shape. The height
of Mexican hat provides a quantitative measure to evaluate
the robustness of the oscillation. We found that in a nonequi-
librium open system, both landscape and probability flux are
important for the dynamics of the system under intrinsic
fluctuations. Landscape attracts the systems down to the
oscillation ring while flux drives the coherent oscillations
on the ring. We also investigated the phase coherence and
entropy production rate of the system at different molecular
numbers (leading to different magnitudes of intrinsic
fluctuations).

We performed analysis with the two-point autocorrelation
function of protein concentration variables. We obtained the
corresponding power spectrum and explored the influence
of intrinsic statistical fluctuations on the resonance peak
for oscillations. The height of the power spectrum of the
autocorrelation function measuring the prominence of the
resonance peak may provide another way to quantify
the stability and coherence of the oscillation system. As
a consequence of nonzero probability flux, we show that
the three-point correlations from the oscillation time traces
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show irreversibility, providing an experimental way to
explore the flux from time traces of the observations.

Additionally, we investigated the relation of escape time
for the system to jump outside with 1), the barrier height;
2), the phase coherence; and 3), the height of the power
spectrum of the autocorrelation function. Finally, we per-
formed the global sensitivity analysis of the parameters to
find the key network wirings responsible for the stability
of the oscillation system.
MATERIALS AND METHODS

We use the stochastic simulation method (24,25) to solve the dynamics

trajectories separately with different initial conditions. We explore the

long time steady-state properties and collect the statistics to obtain the

steady-state distribution P0(x) for the state variable x (representing

the protein concentrations or numbers of molecule). In the equilibrium

systems, the force is a gradient of potential U, and P0(x) is exponentially

related to potential energy function U(x). Therefore, we can obtain the

information of potential U by computing equilibrium probability. For the

nonequilibrium system, in analogy with the equilibrium system, we can

define the generalized potential U for the nonequilibrium case from the

steady-state probability (13–20),

P0ðxÞ ¼ 1

Z
exp f�UðxÞg; (1)

with the partition function Z ¼ R
dx expf�UðxÞg. After acquiring the

steady-state distribution function, we can thus identify U as the generalized

potential energy function of the network system. Accordingly, we map out

the potential energy landscape, and we can further discuss the global

stability of the protein cellular networks.

Intrinsic fluctuations from limited molecule numbers are usually concen-

tration-dependent. The Langevin equation describing the motion of system

is written

dx

dt
¼ FðxÞ þG$G: (2)

Here, G is a tensor representing the spatial (concentration)-dependent

part of the intrinsic noise, and G is a vector representing Gaussian white

noise corresponding to the time-dependent part of the noise defined as

hGj (t)i ¼ 0 and hGi(t)Gj(t
0)i ¼ 2Didijd(t – t0) (dij ¼ 1 for i ¼ j, and dij ¼

0 for i s j).

The Fokker-Planck diffusion equation emerges from the continuous

description of the intrinsic fluctuations with second-order truncations of

Taylor series (26) as

vPðx; tÞ
vt

¼ �
XN
i¼ 1

v

vxi
FiðxÞPðx; tÞ

þ 1

2

XN
i¼ 1;i0 ¼ 1

v2

vxivxi0
Dii0 ðxÞPðx; tÞ: (3)

In this equation, x stands for the set {xi}(i ¼ 1, 2, 3, . N), where N is the

number of protein species, andM is the number of chemical reactions. The

values F, D, and G are separately defined as

FiðxÞ ¼
XM
j¼ 1

vjiajðxÞði ¼ 1; 2;.;NÞ;



TABLE 1 Thirty elementary reaction steps
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XM

Reaction No. Reaction step Probability of reaction

1 G þ PN / [a1] GPN w1 ¼ a1 þ G � PN

2 GPN / [d1] G þ PN w2 ¼ d1 � GPN

3 GPN þ PN / [a1] GPN2 w3 ¼ a2 � GPN � PN
Dii0ðxÞ ¼
j¼ 1

vjivji0ajðxÞði; i0 ¼ 1; 2;.;NÞ;

GijðxÞ ¼ vji

ffiffiffiffiffiffiffiffiffiffi
ajðxÞ

q
ði ¼ 1; 2;.N; j ¼ 1; 2;.;MÞ:
4 GPN2 / [d2] GPN þ PN w4 ¼ d2 � GPN2

5 GPN2 þ PN / [a3] GPN3 w5 ¼ a3 � GPN2 � PN

6 GPN3 / [d3] GPN2 þ PN w6 ¼ d3 � GPN3

7 GPN3 þ PN / [a4] GPN4 w7 ¼ a4 � GPN3 � PN

8 GPN4 / [d4] GPN3 þ PN w8 ¼ d4 � GPN4

9 [G, GPN, GPN2, GPN3] /
[vs] Mp

w9 ¼ vs � (G þ GPN þ
GPN2 þGPN3)

10 Mp þ Em / [km1] Cm w10 ¼ km1 � Mp � Em

11 Cm / [km2] Mp þ Em w11 ¼ km2 � Cm

12 Cm / [km3] Em w12 ¼ km3 � Mp

13 Mp / [ks] Mp þ P0 w13 ¼ ks � C1

14 P0 þ E1 / [k11] C1 w14 ¼ k11 � P0 � E1

15 C1 / [k12] P0 þ E1 w15 ¼ k12 � C1

16 C1 / [k13] P1 þ E1 w16 ¼ k13 � C1

17 P1 þ E2 / [k21] C2 w17 ¼ k21 � P1 � E2

18 C2 / [k22] P1 þ E2 w18 ¼ k22 � C2

19 C2 / [k32] P0 þ E2 w19 ¼ k23 � C2

20 P1 þ E3 / [k31] C3 w20 ¼ k31 � P1 � E3

21 C3 / [k32] P1 þ E3 w21 ¼ k32 � C3

22 C3 / [k33] P2 þ E3 w22 ¼ k33 � C3

23 P2 þ E4 / [k41] C4 w23 ¼ k41 � P2 � E4

24 C4 / [k43] P1 þ E4 w24 ¼ k42 � C4

25 C4 / [k43] P1 þ E4 w25 ¼ k43 � C4

26 P2 þ Ed / [kd1] Cd w26 ¼ kd1 � P2 � Ed

27 Cd / [kd2] P2 þ Ed w27 ¼ kd2 � Cd

28 Cd / [kd3] Ed w28 ¼ kd3 � Cd

29 P2/ [k1] PN w29 ¼ k1 � P2

30 PN / [k2] P2 w30 ¼ k2 � PN
The Fokker-Planck diffusion equation can be rewritten into the proba-

bility conservation equation as local probability change equal to the in and

out flux, vP=vt ¼ �PN
i vJi=vxi, where Ji (x,t) is the probability flux in the

N-dimensional space (9): Ji ¼ FiðxÞPðxÞ � 1
2

XN

i0¼1
v=vxi0Dii0 ðxÞPðxÞ.

The corresponding form in vector is vP=vt þ V$Jðx; tÞ ¼ 0, where

Jðx; tÞ ¼ F$P� 1=2V$ðG$GPÞ. Here we will first use the Ito convention.

In steady state, vP=vt ¼ 0, then V $ J(x,t) ¼ 0. The divergent free flux

implies the rotational nature of the steady-state flux field Jss. From

the definition, Jss ¼ F$Pss� 1
2
V$ðG$GPssÞ. Hence, the force can be

decomposed as

F ¼ �1

2
D$

v

vx
ð�ln PssÞ þ Jss

Pss

þG$ðV$GÞ

¼ �1

2
D$

v

vx
U þ Jss

Pss

þG$ðV$GÞ
:

Here D is the diffusion coefficient tensor defined as D ¼ G $ GT and Pss is

the steady-state probability distribution. The value U is the generalized

potential related to the steady-state probability by U ¼ �lnPss. Therefore,

in general, the driving force for the dynamical system under intrinsic statis-

tical fluctuations can be decomposed into three terms—the gradient of the

potential landscape, the curl flux, and the derivatives of diffusion with

respect to concentration mimicking the inhomogeneity of the diffusion.

For the Stratonovich convention (27,28), the diffusion equation with

concentration-dependent diffusion can be written as

vP

vt
þ V$Jðx; tÞ ¼ 0;

�
1

�
1

TABLE 2 Parameter values used for stochastic simulations

for circadian oscillations

Reaction steps Parameter values

Steps 1–8 For n ¼ 4:

a1 ¼ (1/V) mol�1 h�1, d1 ¼ 160 h�1

a2 ¼ (10/V) mol�1 h�1, d2 ¼ 100 h�1

a3 ¼ (100/V) mol�1 h�1, d3 ¼ 10 h�1

a4 ¼ (100/V) mol�1 h�1, d4 ¼ 10 h�1

Step 9 vs ¼ 0.5 mol h�1

Steps 10–12 km1 ¼ (165/V) mol�1 h�1, km2 ¼ 30 h�1, km3 ¼ 3 h�1,

Emtot ¼ Em þ Cm ¼ (0.1 � V) mol

Step 13 ks ¼ 2.0 h�1

�1 �1 �1 �1
Jðx; tÞ ¼ Fþ
2
ðG$VÞ$G P�

2
V$ðG$GPÞ: (4)

Now the force can be decomposed as F ¼ �1
2
D$v=vx U þ Jss=Pssþ

1
2
G$ðV$GÞ. We can see that Stratonovich formulism and Ito form have

similar results for the decomposition of force. We noticed that when the

diffusion is homogeneous (diffusion coefficient is constant in concentration

x space), the definition of flux is the same as for the external noise (specified

as follows) (13,14).

For external noise, flux vector of the system could be defined as (13,14)

Jðx; tÞ ¼ F � P� D � v

vx
P: (5)

Therefore, by projecting multidimensional force F vector into two dimen-

sions, we can obtain the associated flux vector components in two-dimen-
 Steps 14–16 k11¼ (146.6/V) mol h , k12¼ 200 h , k13¼ 20 h ,

E1tot ¼ E1 þ C1 ¼ (0.3 � V) mol

Steps 17–19 k21 ¼ (82.5/V) mol�1 h�1, k22 ¼ 150 h�1, k23 ¼ 15 h�1,

E2tot ¼ E2 þ C2 ¼ (0.2 � V) mol
sional (Mp and PN) protein concentration space. Here, for two-dimensional

projection of force F, we approximate the results by computing the mean of

vxMp=vt and vxPN=vt using trajectories.
Steps 20–22 k31¼ (146.6/V) mol�1 h�1, k32¼ 200 h�1, k33¼ 20 h�1,

E3tot ¼ E3 þ C3 ¼ (0.3 � V) mol

Steps 23–25 k41 ¼ (82.5/V) mol�1 h�1, k42 ¼ 150 h�1, k43 ¼ 15 h�1,

E4tot ¼ E4 þ C4 ¼ (0.2 � V) mol

Steps 26–28 kd1 ¼ (1650/V) mol�1 h�1, kd2 ¼ 150 h�1, kd3 ¼ 15 h�1,

Edtot ¼ Ed þ Cd ¼ (0.1 � V) mol

Steps 29 and 30 k1 ¼ 2.0 h�1, k2 ¼ 1.0 h�1
RESULTS AND DISCUSSION

Landscape and probabilistic curl flux

Table 1 and Table 2 give the reaction steps and parameter
values of the circadian network separately, which are
decomposed from five deterministic ordinary differential
equations (10). With the parameters in Table 2, the corre-
sponding deterministic equations produce a stable limit
Biophysical Journal 101(6) 1335–1344
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cycle solution. We used the kinetic Monte Carlo method
(24,25) to simulate the reactions and obtain the steady-state
probability distribution in terms of the number of different
kinds of protein molecules.

In the cell, a small number of molecules provides the
origin of intrinsic stochastic fluctuations. There is only
a finite number of molecules, typically ~103 or less, and
fluctuations are proportional to 1=

ffiffiffiffi
N

p
(10,29). Therefore,

the smaller the total number of molecules is in a system
of chemical reactions, the more intrinsic the fluctuations
are around the state predicted by the deterministic evolution
of this chemical system. Therefore, we define Vas the effec-
tive dimensionless volume that scales the total molecule
number, which characterizes the intrinsic noise of system
(10). When V is given, the parameters should be rescaled ac-
cording to Table 2. After getting the steady-state probability
distribution, we can obtain the potential landscape of the
network according to U ¼ �lnPss, and then explore the
global stability and robustness of the system.

For this circadian system, there are 22 different species of
molecules. It is hard to visualize the 22-dimensional proba-
bility distribution. Therefore, we project the 22-dimensional
probability P (G, GPN.PN,t/N) to only two dimensions
(Mp for mRNA in nucleus and PN for Per protein in nucleus)
to describe the results, becauseMp and PN are two backbone
variables in the original five-variable model and extended
22-variable system (10), and they are directly observable in
the experiments. From Fig. 2, we can see the shape of the
potential landscape is a Mexican hat with an irregular inho-
mogeneous ring. Inside and outside of the ring, the potential
is higher, corresponding to lower probability. Along the ring
the potential is lower, and the probability is higher. There-
fore, system is attracted to the oscillation ring, and the
Mexican-hat-like shape of the landscape guarantees the
stability and robustness of the oscillation system.

Circadian oscillation system is an open system, which
often reaches a nonequilibrium steady state (NESS) by
exchanging energy and materials with its environment.
Nonzero fluxes and dissipation is one of the distinct features
of an NESS (30). Therefore, we not only need the under-
Biophysical Journal 101(6) 1335–1344
lying potential landscape, but also the probability flux J,
to explore the global properties of the system (13,14). The
probability flux of the system in concentration space is given

as Jðx; tÞ ¼ FP� D$
v

vx
P. Potential landscape and probabi-

listic flux determine the dynamics and global properties
together, and the dynamics of a nonequilibrium network
can be described as a spiral curl, unlike the equilibrium
case where states only follow the gradient (13,14).

Fig. 2 A shows the three-dimensional landscape for vari-
able Mp and PN, and Fig. 2 B shows the curl flux vector on
the two-dimensional landscape of the circadian system. We
can see that the direction of the flux is along the oscillation
trajectory of the limit cycle. Both the landscape and curl flux
are crucial for the dynamics of the oscillation. The land-
scape attracts the system to the ring valley, and curl flux
drives coherent oscillation of the system along the ring.
Barrier height, phase coherence, and entropy
production rate for global stability and robust
oscillations

In addition, we defined the height of the barrier asUfixminus
Umin, where Ufix is the potential local maximum inside the
close ring (top of the Mexican hat), and Umin is the potential
minimum along the ring. Here, the value of the barrier
reflects the difficulty for the system to escape from the oscil-
lation attractor to outside.

Fig. 3 A shows the barrier versus the molecular number V.
We can see the barrier becomes higher when the molecular
number V increases and the fluctuations decrease. It shows
that it is harder for the system to go from the ring of attraction
to outside because of less fluctuation. The system is thus
more stable at large number of molecules (leading to small
fluctuations). Therefore, the barrier heights give a quantita-
tive measure to evaluate the robustness and stability of the
system.

The robustness of the oscillation with respect to the
molecular number V can be quantified further by the phase
coherence x, which measures the degree of periodicity of
FIGURE 2 Landscape and flux for V ¼ 200. (A)

Three-dimensional landscape for variable Mp

(mRNA in nucleus) and PN (per protein in

nucleus). (B) Two-dimensional landscape and cor-

responding probabilistic flux. (Arrows) Curl flux

vector.
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the time evolution of the given concentration variables ((31),
and see details in the SupportingMaterial). The phase coher-
ence x quantitatively measures the degree of persistence of
the oscillatory phase. In the presence of the fluctuations,
the more periodic the time evolution is, the larger the value
of x. In Fig. 3B, x decreases when V decreases(intrinsic noise
increases). This means a small number of molecules or
a larger intrinsic fluctuation tends to destroy the coherence
of the oscillations, and therefore also destroy its robustness.

The circadian clock is a nonequilibrium open system that
can exchange information and energies with outside. In the
NESS, the system dissipates energy and entropy that can be
determined with the landscape and the flux, and the entropy
production rate at the steady state is balanced by the dissipa-
tion (32). Thus, by calculating the entropy production rate,
and the dissipation, we can obtain a global physical charac-
terization of the nonequilibrium system. The entropy produc-
tion rate for the whole network (S) includes the contribution
from the system (Ssys) (equal to zero in steady state) and the
dissipation from the environments (Sdis) (20,29,32),

S ¼ Ssys þ Sdis ¼
X
ij

TjiPj ln

�
TjiPj

TijPi

�
; (6)

where Tij is the transition probability from state i to state j. In
Fig. 3 C, we can see the dissipation per molecule (entropy

production rate per molecule) decreases when the molecular
number V increases, corresponding to fewer intrinsic fluctu-
ations. It shows that a larger number of molecules, or fewer
intrinsic fluctuations, produces less dissipation of energy,
and the system becomes more stable. Therefore, minimiza-
tion of the dissipation cost might serve as a design principle
for evolution of the network as the entropy production is
a global characterization. It is intimately related to the
robustness of the network.
Autocorrelation coefficients and resonance peak
of the power spectrum and coherence of the
oscillation

We computed the autocorrelation function of the variables
PN and Mp. Fig. 4 A1 shows the trajectories of PN and
Mp for V ¼ 100, and Fig. 4 A2 shows the autocorrelation
function versus time interval Dt for these two variables.
We can see that autocorrelation functions change periodi-
cally with the increase of interval time Dt, and the autocor-
relation functions slowly decrease to zero with the time.
This shows that the system is oscillatory, and that the corre-
lations between observations in time gradually decay.

We also computed the power spectrum by performing the
Fourier transform of the autocorrelation function as shown in
Fig. 4 A3. There exists a peak in the power spectrum at the
frequency of the oscillation. Therefore, the peak can be
termed ‘‘resonance peak’’ (33). Changing the molecular
number V, we obtained the autocorrelation function and the
corresponding power spectrum for V ¼ 200 (Fig. 4, B1–B3)
and V ¼ 300 (Fig. 4, C1–C3). Similarly the power spectrum
has a peak for both V ¼ 200 and V ¼ 300. Comparing the
power spectrum for V ¼ 100, V ¼ 200, and V ¼ 300, we
can see that the heights of the peak of the power spectrum
are different. This shows how prominent the resonance
peak is. In Fig. 4, A4, B4, and C4, we show separately the
height of power spectrum versus barrier height, the oscilla-
tion coherence, and the entropy production rate.
We can see that the barrier height and coherence increase

and the entropy production rate (dissipations) decreases as
the resonance peak in the power spectrum becomes more
prominent. This is because the large molecular numbers
lead to fewer fluctuations and more robust and coherent oscil-
lations, as we discussed. The more prominent the peak, the
more likely the system will have only one single frequency
Biophysical Journal 101(6) 1335–1344
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trum of the autocorrelation function in panel A2. (Solid line)Mp (mRNA), (dashed line) PN (nuclear protein). (B1–B3) Trajectories, autocorrelation function,

and the corresponding power spectrum for V ¼ 200, respectively. (C1–C3) Trajectories, autocorrelation function, and the corresponding power spectrum for

V ¼ 300, respectively. (A4, B4, and C4) Height of peak of power spectrum of autocorrelation function versus barrier height, coherence, and entropy produc-

tion rate, respectively.
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dominating the possible oscillations. The system is likely to be
more stable with a higher barrier, more coherent oscillations,
and fewer dissipations. Therefore, the height of the peak of the
power spectrum may provide another way to measure the
oscillation robustness. The more stable and coherent oscilla-
tion system leads to more prominent peak of the power spec-
trum and more distinct localized frequency to oscillate.
Three-point correlation functions, their time
reversal, and suggested exploration of the
nonzero curl flux from the observation
of time traces

We also calculated the three-point autocorrelation function
in forward and backward time evolution directions: x (t0),
x (t0 þ t1), and x (t0 þ t1 þ t2); and x (t0), x (t0 þ t2),
and x (t0 þ t1 þ t2). We use f (t1,t2) to denote the former,
and g (t1,t2) to denote the latter.
Biophysical Journal 101(6) 1335–1344
According to the correlation definition,

f ðt1; t2Þ ¼ hxð0Þxðt1Þxðt1þ t2Þi
¼

X
ijk

PixiPijðt1ÞxjPjkðt2Þxk; (7)

where Pi is the probability of state i and Pij is the transition
or jumping probability from state i to state j. If detailed

balance is satisfied, the system is in equilibrium. We have
PiPij ¼ PjPji, and PjPjk ¼ PkPkj, then

f ðt1; t2Þ ¼ hxð0Þxðt1Þxðt1þ t2Þi
¼ P

ijk

PjxiPjiðt1ÞxjPjkðt2Þxk
¼ P

ijk

PkxiPjiðt1ÞxjPkjðt2Þxk
¼ P

ijk

PkxkPkjðt2ÞxjPjiðt1Þxi
¼ hxð0Þxðt2Þxðt1þ t2Þi
¼ hxðtÞxðt � t1Þxðt � t1� t2Þi ¼ gðt1; t2Þ;
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where t ¼ t1 þ t2, and g (t1,t2) is the time reversal of f
(t1,t2). Therefore, in detailed balance for equilibrium
system, f (t1,t2)is equal to its time reversal g (t1,t2). While
in nonequilibrium steady state, this relationship will not be
satisfied (34).

Fig. 5, A and B, shows the results of f (t1,t2) and g (t1,t2)
separately. We can see that Fig. 5 A and Fig. 5 B are obvi-
ously different, which can also be found in Fig. 5 C showing
the difference of the results of f (t1,t2) and g (t1,t2). This
shows that the autocorrelation function is unsymmetrical
after the time inversion. This is characteristic of a nonequi-
librium steady state. It shows that for nonequilibrium
systems, flux is not zero and it is the origin for the asymme-
try of the three-point autocorrelation functions. Because the
time traces can be measured from experiments, we can infer
the nature of the probability flux from the experimental
observation. Therefore, high-order correlation analysis
may provide a way to directly quantify and validate the
concepts of the curl flux introduced (13,14).
Escape time for measuring global stability
and link to landscape topography and coherence
of oscillation

Additionally, we computed the escape time for jumping
from the ring valley to outside. Fig. 6 A shows the distribu-
tion of escape time for different molecular numbers V. We
can see from Fig. 6 A that with the increase of molecular
number V, the probability distribution of escape time moves
upwards, implying the increase of escape time on average.
This is because when the number of molecules increases,
the oscillation system becomes more stable accompanied
by a deeper ring valley. Therefore, it becomes harder and
takes a longer time for the system to jump to the outside
from the oscillation ring. Fig. 6, B–D, show separately the
barrier height, the phase coherence, and the height of the
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FIGURE 5 (A and B) Three-point autocorrelation function: x(t0), x(t0 þ t1), a

variable Mp (mRNA) when V ¼ 200. From the contour map, it can be seen that

which can also be found in panel C. (C) Difference between panels A and B. It s

�0.1 and 0.1, which approximate the scales of these two correlation functions
resonance peak of the power spectrum of autocorrelation
function versus the average of escape time. We can see
that the average of the escape time increases as the barrier,
coherence, and the height of the resonance peak of the
power spectrum increase. We can draw the consistent
conclusion that larger barrier height corresponding to
a more coherent oscillation and a higher peak height of
the power spectrum will lead to a longer escape time for
the system to jump to the outside from the oscillation ring
valley.

Because the escape time is a measure of the capability of
communicating from one state to another in the system, it
provides a global measure of the stability of the system.
The faster the escape time, the easier it is to go from one
place to another and the less stable the system is. Escape
time is a kinetic measure. Because it is correlated with the
barrier height, the topography of the underlying landscape
can also be used to measure the global stability. Further-
more, the coherence and height of the peak in the power
spectrum, which give the quality of the oscillation, all corre-
late with the escape time monotonically. Therefore, they can
also be used as quantitative measures of the global stability
and coherence of the oscillations.
Global sensitivity analysis to uncover crucial
network wirings for stability and robustness

We also performed a global sensitivity analysis to uncover
the key connections or wirings of the circadian network
responsible for stability of oscillation as shown in Fig. 7.
This is through the changes of the chemical reaction rate
constants and explorations of the corresponding effects on
barrier heights of oscillation.

Fig. 7 A shows the influence of the changes in rate
constants on barrier height. From such global sensitivity
analysis, we found some top rate constants, which influence
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barrier height more sensitively. These rate constants include
a1, a2, a3, and a4, the increase of which makes the system
more stable, as shown by the increase of barrier height.
For some other rate constants, d1, d2, d3, and d4 vs, the
system becomes less stable after these constants are
increased.

From the wiring diagram in Fig. 1 and the reaction steps
of Table 1, we can see clearly that a1, a2, a3, and a4 are the
rate constants contributing to the repression of protein PN
on the promoter G. Therefore, the increase of these
constants will make transcription process more difficult
due to the decrease of promoter G. This shows that the
repression process of promoter by PN is the main process
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controlling the robustness of system, making the system
more stable. According to some recent studies (35), the
source of oscillations includes a delay and a negative feed-
back loop. Therefore, the power of negative feedback being
strengthened might be the reason why the oscillation system
becomes more robust: when the parameters a1, a2, a3, and a4
increase, the repression on the promoter G, the most impor-
tant step of the negative feedback loop, is strengthened.

For the same reason, d1, d2, d3, and d4 have the opposite
effects on the promoter G, therefore, their increases produce
the inverse effects to the robustness of the system, and make
the oscillation less stable. In Fig. 7 B, we randomly choose
one parameter a4 to see specifically its effect on the barrier
4 0.06 0.08
/ a4

FIGURE 7 Sensitivity analysis. (A) Effects of

parameters on the barrier height at the same pertur-

bation. The x axis represents: 1, vs; 2, a1; 3, a2, 4;

a3, 5, a41; 6, d1; 7, d2; 8, d3; 9, d4; 10, km1; 11,

km2; 12, km3; 13, ks; 14, k11; 15, k12; 16, k13; 17,

k21; 18, k22; 19, k23; 20, k31; 21, k32; 22, k33; 23,

k41; 24, k42; 25, k43; 26, kd1; 27, kd2; 28, kd3; 29,

k1; and 30, k2. (B) Effect of parameter a4 on barrier

height. Da4/a4 ¼ percent of parameter increased.
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height. We can see that the barrier height increases as the
parameter a4 is increased, which is consistent with the
results in Fig. 7 A. In the meantime, our method is general
and can be used to predict the effects of parameters on the
global stability and robustness of the system under intrinsic
fluctuations, and furthermore make predictions such as
which wirings are important for the experimentalists to
verify.
CONCLUSION

We developed a landscape and flux framework to explore
the global stability and robustness of a circadian oscillation
system. The potential landscape of the network has been re-
vealed to have a global Mexican-hat shape, and the height of
the Mexican hat provides a quantitative measure to evaluate
the robustness and coherence of the oscillation. We found
that in nonequilibrium dynamic systems, both landscape
and flux are important to the dynamics of the system under
intrinsic fluctuations. Landscape attracts the systems down
to the oscillation ring while flux drives the coherent oscilla-
tion on the ring. For dynamical nonequilibrium system, both
Yin (potential landscape) and Yang (curl probability flux)
duality is needed to describe the underlying global
dynamics. We also investigated the entropy production
rate of the system at different fluctuations and found that
dissipations are less for large number of molecules (with
smaller intrinsic fluctuations).

We also found that the power spectrums of autocorrelation
functions show a resonance peak at the frequency of coherent
oscillations. The peak is less prominent for larger fluctuations
and lower barrier height and therefore can be used as another
measure of the quality and coherence of oscillations, which is
linkedwith the landscape topography. In addition, as a conse-
quence of nonzero probability flux, we show that the three-
point correlations from the time traces show irreversibility,
providing a possible way to directly explore the nonzero
curl flux from the experimental time traces.

Furthermore, we explored the escape time from the oscil-
lation ring to outside at different molecular number V.
Because escape time measures the capability of communi-
cation from one state to another, the longer the escape
time, the more stable the system.We found that when barrier
height is higher, escape time is longer and phase coherence
of oscillation is higher. Therefore we can use landscape
topography to quantify the global stability.

We performed the global sensitivity analysis of parame-
ters to find the key network wirings responsible for the
stability of the oscillation system. This provides a global
way to pin down the critical wirings in the network for
stability and function, which is potentially useful for
synthetic biology and systems biology.

Our landscape and flux framework and the associated
analysis is general and can be applied to other complex
dynamical and biological systems.
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