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PAR-3 Oligomerization May Provide an Actin-Independent Mechanism
to Maintain Distinct Par Protein Domains in the Early Caenorhabditis
elegans Embryo
Adriana T. Dawes†‡* and Edwin M. Munro†§
†Department of Mathematical and Statistical Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada; ‡Center for Cell
Dynamics, University of Washington, Friday Harbor, Washington; and §Department of Molecular Genetics and Cell Biology,
University of Chicago, Chicago, Illinois
ABSTRACT Par proteins establish discrete intracellular spatial domains to polarize many different cell types. In the single-cell
embryo of the nematode worm Caenorhabditis elegans, the segregation of Par proteins is crucial for proper division and cell fate
specification. Actomyosin-based cortical flows drive the initial formation of anterior and posterior Par domains, but cortical actin
is not required for the maintenance of these domains. Here we develop a model of interactions between the Par proteins that
includes both mutual inhibition and PAR-3 oligomerization. We show that this model gives rise to a bistable switch mechanism,
allowing the Par proteins to occupy distinct anterior and posterior domains seen in the early C. elegans embryo, independent of
dynamics or asymmetries in the actin cortex. The model predicts a sharp loss of cortical Par protein asymmetries during gradual
depletion of the Par protein PAR-6, and we confirm this prediction experimentally. Together, these results suggest both mutual
inhibition and PAR-3 oligomerization are sufficient to maintain distinct Par protein domains in the early C. elegans embryo.
INTRODUCTION
Polarization of single cells involves the spatial segregation
of proteins, lipids, and other molecules. Cell polarization is
crucial for a range of biological processes including embry-
onic development, directed motility, and epithelial cell func-
tion, and is observed in a wide variety of organisms (1–3).
Many instances of cell polarization rely on a core module
of conserved proteins consisting of the Par proteins PAR-1,
PAR-2, PAR-3, and PAR-6, the atypical protein kinase
aPKC, and the tumor-suppressor protein LGL (4). A key
feature of this module is that its members become asymmet-
rically distributed during cell polarization, and these asym-
metries are essential for the elaboration of a polarized state.
Thus, a key challenge is to understand how Par protein asym-
metries are established and maintained during polarization.

The one-cell embryo (zygote) of the nematode worm
Caenorhabditis elegans has emerged as an important model
system for studying Par protein dynamics during intracellular
polarization (5). Polarization of the zygote occurs ~20 min
after fertilization and involves two distinct phases: establish-
ment andmaintenance (6). Just before polarity establishment,
the proteins PAR-1, PAR-2, and LGL (which segregate to the
posterior pole in the polarized embryo) are cytoplasmic,
while the proteins PAR-3, PAR-6, and aPKC (which segre-
gate to the anterior pole) are enriched at the interface between
the plasma membrane (PM) and the cell cortex (a thin layer
just beneath the membrane that is enriched in filamentous
actin and the contractile protein nonmuscle-myosin II) (7,8).

During polarity establishment, a transient sperm-derived
cue triggers actomyosin-based cortical flows that transport
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the anterior Par proteins toward the future anterior pole,
while the posterior Par proteins and LGL become enriched
in a complementary posterior domain (5,9,10). These com-
plementary distributions are then maintained, in the absence
of the sperm cue, for ~10 min as the cell prepares for first
division (6).

Photokinetic studies suggest that both anterior and poste-
rior Par proteins exchange freely between cortex and cyto-
plasm and can diffuse within the plane of the membrane
(1,11). The anterior Par proteins PAR-3, PAR-6, and aPKC
can bind one another to form a trimeric complex (12–18).
Structure/localization studies in worms (19), flies (20), and
mammalian cells (reviewed in Goldstein and Macara (3))
suggest that recruitment of PAR-3 to the cortex/PM involves
multiple domains that bind to distinct targets including
phosphoinositide lipids, other proteins and possibly F-actin
(19,20). In addition, recruitment requires an N-terminal olig-
omerization domain that mediates self-association of PAR-3
and can assemble filaments when expressed as a purified
fragment in vitro (19,21–23). Together, these data suggest
that PAR-3 binds the cortex/PM as a multivalent oligomer.
PAR-1, PAR-2, and LGL likewise associate reversibly with
the cortex/PM, although the details of this association are
less well understood.

The likely basis for complementarity of Par protein distri-
butions lies in mutually antagonistic interactions between
anterior and posterior Par proteins (24). aPKC phosphory-
lates and promotes the dissociation of PAR-1 (25–27),
PAR-2 (28), andLGL (29,30); inDrosophila andmammalian
cells, PAR-1 phosphorylates and promotes PAR-5-dependent
dissociation of PAR-3 at residues that are conserved in
C. elegans (31,32). Recent studies in C. elegans suggest
that PAR-2 and LGL can also act redundantly to prevent
doi: 10.1016/j.bpj.2011.07.030
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association of PAR-6/aPKC, although the molecular mecha-
nisms remain poorly understood (18,30). An emerging view
is that actin-independent maintenance of Par asymmetries
involves a continuous balance of local exchange among cyto-
plasmic and cortex/PM pools, diffusion and local protein/
protein interactions (1), but how globally stable asymmetries
emerge from these local kinetics is unclear.

Reaction-diffusion models have provided a useful tool for
studying the dynamics of intracellular polarization, mainly in
the context of cell motility. These models have revealed
a number of potential mechanisms, including spatial bistabil-
ity driven by nonlinearities in the underlying biochemical
kinetics (33–35), and Turing instabilities that do not require
such nonlinearities for pattern formation (36,37). See Suzuki
et al. (17) and Iglesias and Devreotes (38) for some excellent
reviews. To date, one previous theoretical study has specifi-
cally addressed Par protein segregation in the earlyC. elegans
embryo (39). By coupling reaction-diffusion models to
simple representations of actomyosin contractility and cor-
tical flow, Tostevin and Howard (39) showed that mutual
phosphorylation, plus enhanced anterior Par protein binding
to a polarized actomyosin cortex and feedback control of
cortical contractility and elasticity by anterior Par proteins,
would be sufficient to form stable complementary Par protein
domains. Interestingly, while asymmetrical contractility and
cortical flow are essential for polarity establishment, inhibit-
ing myosin activity (40) or disrupting cortical actin (1,41)
during the maintenance phase does not abolish comple-
mentarity, but results only in small effects on the boundary
position between the Par domains. This suggests that actin-
independent mechanisms are sufficient to dynamically stabi-
lize complementary Par domains once they have formed.

Here we use an approach analogous to that of Tostevin
and Howard (39) to investigate under what conditions Par
proteins can maintain distinct domains in the absence of
polarized actomyosin, as observed in previous experimental
studies (1,41). We show that the simplest form of mutual
inhibition in which anterior and posterior Par proteins mutu-
ally promote one another’s dissociation through mass action
kinetics is insufficient to stabilize complementary Par
domains in the absence of actomyosin, but that initial asym-
metries can be maintained when PAR-3 oligomerization is
included. We show that PAR-3 oligomerization endows
the system with bistability; accordingly, our model predicts
a sharp threshold for the loss of spatial asymmetries as the
levels of anterior (or posterior) Par proteins are reduced,
and we verify this prediction experimentally using RNA
interference.
THE MATHEMATICAL MODEL

Model assumptions

Based on the discussion above, we make the following
assumptions about the Par proteins and how they interact:
Assumption 1. The Par proteins can be grouped into two
modules based on their localization in the polarized
embryo: the anterior Par module (denoted ParA), consist-
ing of PAR-3, PAR-6, and aPKC; and the posterior Par
module (denoted ParP), consisting of PAR-1, PAR-2,
and LGL.

Assumption 2. ParA can homodimerize.
Assumption 3. The cytoplasmic concentrations of ParA and

ParP are at quasi-steady state (we relax this assumption
below).

Assumption 4. All interactions (dimerization, cortical asso-
ciation, and dissociation) follow first-order or mass-
action kinetics.

Assumption 5. All cortical forms of ParA are capable of
catalyzing cortical dissociation of ParP, and vice versa.

Assumption 6. ParA and ParP each modify the other to
produce a rapidly dissociating form.

Assumptions 1–3 simplify the structure of the mathematical
model. This is not an arbitrary grouping; in many cell types,
PAR-3/PAR-6/aPKC and PAR-1/LGL localize to comple-
mentary spatial domains (PAR-2 is unique to C. elegans).
By making these assumptions, we are ignoring the under-
lying dynamics of the individual Par proteins and their
complex formation but render the model more general.
We assume ParA can, at most, dimerize, although higher-
order structures are likely.

Assumption 4, that all interactions use mass-action and
linear kinetics, represents the simplest model formulation
consistent with currently available experimental data. Data
available as of this writing suggests that the Par proteins
interact directly with one another and do not form interme-
diate complexes or act indirectly through diffusible signals.
Thus, there is no empirical justification for using sigmoidal
functions or other nonlinear functions to describe Par pro-
tein interactions. Assumptions 5 and 6 are derived from
the earlier discussion. A simplified schematic summarizing
the interactions incorporated into the mathematical model is
shown in Fig. 1.
Variables

The model keeps track of the following quantities:

A1, cortical monomeric ParA;
A10, cortical dimeric ParA (singly bound);
A11, cortical dimeric ParA (doubly bound);
P, cortical ParP.

That is, A10 is a ParA dimer with only one molecule bound
to the cortex while A11 is a ParA dimer with both molecules
bound to the cortex. Fig. 1 (top) shows A11, a ParA dimer
with both molecules bound. We assume neither part of the
dimer is modified in A10 and A11.

Weassume the followingquantities are at quasi-steady state
and so are included in the model but do not vary over time:
Biophysical Journal 101(6) 1412–1422



FIGURE 1 (Upper) Schematic of experimentally determined interactions

between the anterior Par proteins (PAR-3, PAR-6, and aPKC) and the poste-

rior Par proteins (PAR-1, PAR-2, and LGL) and (lower) simplified interac-

tions used in the mathematical model. The anterior Par proteins form

a complex (12–17) that can dimerize (22,23) and bind to the cortex (7).

aPKC phosphorylates and promotes dissociation of PAR-1, PAR-2, and

LGL (25–29). PAR-1 can phosphorylate PAR-3 to promote dissociation

of anterior Par proteins (30–32). PAR-2 and LGL promote dissociation of

anterior Par proteins through mechanisms that are not well understood.

For the mathematical model, we consider the anterior and posterior Par

proteins as modules, and allow the anterior Par proteins to dimerize. (Solid

arrowheads) Cortical loss by regulated dissociation. (Open arrowheads)

Cortical loss by conversion. We assume the cytoplasmic Par proteins do

not interact with each other. (Lighter color) Phosphorylated forms.
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Ay, cytoplasmic ParA monomers;
A2y, cytoplasmic ParA dimers;
Py, cytoplasmic ParP.

Model equations

According to Assumption 3, the cytoplasmic Par proteins
are at quasi-steady state, and modified Par proteins that
dissociate from the cortex are absorbed into the cytoplasmic
pool. Consequently, we neglect the dynamics of the modi-
fied and cytoplasmic Par proteins. In addition, we assume
the cytoplasmic forms of the Par proteins do not interact
with each other, and focus on interactions and dynamics
of the cortical Par proteins. The dynamics of the cortically
bound unmodified Par proteins can be described as

vA1

vt
¼ kAonAy � kAoff A1 � 2kþd A

2
1 þ 2k�d A11 � kþd AyA1

þ k�d A10 � rAP$A1 þ Da

v2A1

vx2
;

(1a)

vA10 A A A11 A �

vt

¼ konA2y � koff A10 � kon A10 þ koff A11 � kd A10

þ kþd AyA1 � rAP$A10 þ Da

v2A10

vx2
;

(1b)
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vA11

vt
¼kþd A

2
1�k�d A11�kAoff A11þkA11on A10�2rAP$A11þDa

v2A11

vx2
;

(1c)
vP v2P
vt
¼ kPonPy � kPoff P� rpðA1 þ A10 þ 2A11Þ$Pþ Dp

vx2
:

(1d)

Equation parameters and their meaning are listed in
Table S1 in the Supporting Material.
Parameter values and nondimensional equations

Previous experimental studies of thePar network have focused
on identifying keymolecular activities and functional interac-
tions. Although recent photokinetic studies have measured
diffusivities and exchange rates for a subset of the Par proteins
(1,11), many of the kinetic parameters in our model remain
unknown. Thus, we focus here on asking whether qualita-
tive-systems-level features relevant to cell polarization, such
as bistability and dynamic stabilization of complementary
domains, are possible, given empirically constrained assump-
tions about the underlying molecular interactions. Accord-
ingly, we began our analysis with a random search of model
parameter space, seeking parameter values for which the
model yields stable complementarity of Par domains in the
absence of diffusion and a quasistable anterior/posterior
(AP) boundary in the presence of diffusion (see Fig. S1 in
the Supporting Material).

For our parameter searches and further analysis of the
solutions, we nondimensionalized the model equations, al-
lowing us to analyze the dynamics in terms of ratios of
kinetic parameters and focus on relative rather than absolute
rates. We use the following scalings,

t ¼ 1

kAoff
; x ¼ L;A1 ¼ A10 ¼ A11 ¼ Ay;P ¼ Py;

and introduce the dimensionless parameters, ay and ry, that

represent the nondimensional cytoplasmic concentrations of
ParA and ParP, respectively. After nondimensionalizing, we
have

vA1

vt
¼ b1ay � A1 � 2b2A

2
1 þ 2b3A11 � b2ayA1 þ b3A10

� b4P$A1 þ D1

v2A1

vx2
;

(2a)

vA10 ¼ b5a
2
y � A10 þ b2ayA1 � b3A10 � b6A10 þ A11
vt

� b4P$A10 þ D1

v2A10

vx2
;

(2b)
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vA11

vt
¼b2A

2
1�b3A11þb6A10 � A11 þ 2b4P$A11 þ D1

v2A11

vx2
;

(2c)
vP v2P
vt
¼ b7ry � b8P� b9ðA1 þ A10 þ 2A11Þ$Pþ D2

vx2
:

(2d)

In addition, we exploited several factors to constrain values
of model parameters. First, by using simple kinetic reasoning,

we assumed that the rate of ParA dimer association (kA11on) is
higher than ParA monomer association (kAon). Second, we
used recently reported values for cortical exchange rates and
diffusivities of PAR-6 and PAR-2 to set the values for corre-
sponding model parameters, i.e., kAoff ¼ 5.4 � 10�3 s�1;
kPoff ¼ 7.3 � 10�3 s�1; DA ¼ 0.28 mm2/s; and DP 0.15 mm

2/s
(1,11). Thus we find the timescale is t z 185 s, the scaled
diffusivities are D1 z 0.008, D2 z 0.004, and the scaled
off-rates are 1 for ParA and b8z 1 for ParP. Finally, we chose
b7¼ 1 so that the level of ParP is roughly 1 in the absence of
ParA, and we require the maximal levels of total ParA to be
<3 (i.e., we required cortical levels of ParA and ParP to be
roughly similar). With these constraints on the parameter
values, ~1 in 384 parameter sets of the full model (expres-
sions in Eq. 2) yielded a bistable solution. This implies
that, on average, ~37% of the values chosen independently
for each of the six free parameters yields a bistable solution
(0.376z 1/384), suggesting that bistability is a robust prop-
erty of the model. All other parameters we allowed to range
over two orders of magnitude. A cam diagram summarizing
the random parameter search results is shown in Fig. S1. The
value-ranges used in the random searches and the values used
to analyze particular solutions in detail are given in Table S2.
Discretization and numerical implementation

The equations were discretized using the Forward Time
Centered Space (42) numerical analysis method and coded
using the C programming language. The time and space
step sizes used in the simulations were chosen sufficiently
small to ensure numerical stability. Parameter space searches
were performed using custom software written in Java
(http://www.java.com/en/).
EXPERIMENTAL MATERIALS AND METHODS

Strains

Worms were handled as previously described in Brenner (43). The trans-

genic strain JH1902 [Ppie�1:RFP:PAR-6; Ppie�1:GFP:PAR-2
C56S] (28)

was used in the experiments described here.
RNA-mediated interference

RNAi feeding experiments were performed as previously described in

Timmons et al. (44) using a feeding strain directed against par-6 (45).
For par-6(RNAi), early adult worms were placed on prepared plates and

kept at 25�C. Embryos were dissected from the adult worms and examined

at 30-min intervals after the beginning of RNAi feeding.
Microscopy

Gravid worms were dissected in egg salts on 22 mm2 coverslips which were

then inverted onto a 2% agarose pad and sealed with Vaseline (Unilever,

Rotterdam, The Netherlands) (45). A single midplane image was obtained

using an RT wide-field epifluorescence microscope (DeltaVision, www.

appliedprecision.com) at 20�C through a Plan Apo 60� 1.4 oil immersion

lens. A single image was acquired at the maintenance phase to prevent

photo bleaching. Each image was rotated to position the anterior pole to

the left. The fluorescence level around the circumference of the embryo

was found using the ImageJ plug-in ‘‘straighten’’ (http://rsb.info.nih.gov/

ij/). The circumference of the cell, including the eggshell, was traced by

hand, then the ‘‘straighten’’ plug-in transformed the chosen section into

a one-dimensional plot of the average fluorescence of the circumference.

The eggshell is included in the section of interest because it autofluoresces

in the red channel and in some regions is indistinguishable from the cortex

of the embryo. Embryos were deemed polarized if there was >20% differ-

ence in average fluorescence between the anterior and posterior poles. The

position of the Par protein boundary was determined qualitatively during

image acquisition using the SoftWorx (www.appliedprecision.com) soft-

ware’s built-in measurement tool.
RESULTS

Anterior Par protein oligomerization may help
maintain distinct Par domains independently
of asymmetries in the actomyosin cortex

We began by asking under what conditions the Par proteins
could maintain distinct domains, independently of any
asymmetries or dynamics of the actin cortex. We first con-
sidered the case in which ParA and ParP interact only by
promoting each other’s dissociation, and ParA is not capable
of dimerizing. As a result, we can write the expressions in
Eq. 2 as

vA1

vt
¼ b1ay � ð1þ b4PÞ A1 þ D1

v2A1

vx2
; (3a)

vP v2P
vt
¼ b7ry � ðb8 þ b9A1Þ Pþ D2

vx2
: (3b)

As shown in Fig. 2 (top row), this version of the model
cannot maintain an initially asymmetric distribution of ante-
rior and posterior Par proteins.

We can understand why this is so by considering the
expressions in Eq. 3 without the spatial diffusion term,
which yields two coupled ordinary differential equations
with a single steady state, as shown in the phase plane
diagram (seen later in Fig. 4, left). Indeed, if we impose bio-
logically reasonable constraints that the parameter values
are strictly positive and that A1 and P are greater than or
equal to zero, then this steady state is always unique, regard-
less of the choice of parameter values. We conclude that
cross-inhibition in which anterior and posterior Par proteins
Biophysical Journal 101(6) 1412–1422
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FIGURE 2 Time course of Par protein dynamics

alone as determined by the expressions in Eq. 3

(top row) and Eq. 2 (bottom row), independent of

interactions with a polarized actin cortex. When

Par proteins interact only by mutual promotion of

dissociation, there is a loss of any initial asymme-

try (top row), while Par proteins are capable of

maintaining distinct domains when the anterior

Par proteins can also dimerize (bottom row). In

both cases, ParA (left) has an initial distribution

that is high at the anterior pole (0 egg length)

and low at the posterior pole (1 egg length). A

reciprocal initial distribution is assumed for ParP

(right). Note the timescale in this and all sub-

sequent figures is given in dimensional units.

FIGURE 3 The boundary between the Par protein domains can drift

toward either the anterior or posterior pole, depending on the relative

strength of inhibition (b4 and b9) or the relative speeds of diffusion (D1

and D2). The boundary drifts toward the posterior pole for D1 or b4 smaller

than their default values (left column) and toward the anterior pole for

values higher than their default (right column). The boundary is metastable

for intermediate values (middle column) and held for a large number of time

steps. The values for b4 shown here still give rise to bistability in the space-

free version of the expressions in Eq. 2. Similar results are found when

varying D2 and b9.
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promote one another’s dissociation through mass-action
kinetics is insufficient to explain dynamic stabilization of
complementary Par domains.

In contrast, when we allowed ParA to dimerize and sam-
pled kinetic parameters randomly (see above for details),
we could now find many parameter sets for which the model
equations (see expressions in Eq. 2) stabilize complementary
domains in the absence of diffusion (Fig. 2, bottom row).
When we allowed ParA and ParP to diffuse at rates compa-
rable to those measured by Goehring et al. (1), the boundary
between the anterior and posterior domains tended to drift
toward one or the other pole, ultimately leading to a loss of
polarity. The magnitude and direction of drift depended on
the relative strengths of mutual inhibition (b4 and b9) and
diffusivity (D1 and D2) (Fig. 3). However, for ~1 out of
622 parameter sets that yielded stable complementarity
without diffusion (roughly 1/239,000 of all parameters
sampled; 17% of each parameter’s independently sampled
values), the total drift over 600s was less than a few percent
egg length, which is comparable to the drift seen during the
maintenance phase in the absence of cortical actin (1).

Again, we can understand the behavior of the model by
considering the expressions in Eq. 2 in the absence of the
spatial diffusion term. As shown in Fig. 4 (right), the model
can exhibit bistability. That is, each patch of the model
cortex can stably assume one of two steady states: high
ParA/low ParP, or low ParA/high ParP. Together, these
results suggest that ParA dimerization plus cross-promoted
dissociation of ParA and ParP can give rise to bistable
dynamics. Bistability is sufficient to maintain complemen-
tarity of Par domains on short timescales, but maintenance
of a stable boundary position on longer timescales requires
balancing anterior and posterior Par protein dynamics or
including additional mechanisms to buffer against drift.
Biophysical Journal 101(6) 1412–1422
Par protein dynamics predict loss of distinct
domains as cytoplasmic Par proteins are depleted

Our results show that ParA dimerization plus cross-inhibi-
tion is sufficient to stabilize complementary Par domains,
but we cannot formally exclude other possibilities. For
example, Tostevin andHoward (39) showed that mutual inhi-
bition (with mass-action kinetics) plus enhanced recruitment
of ParA to anteriorly enriched actomyosin and a self-limiting
actomyosin contraction could also stabilize Par domains.
While recent work suggests that actomyosin asymmetries



FIGURE 4 Phase plane plots of temporal Par protein dynamics (neglecting diffusion). (Left) When the Par proteins interact only by mutual promotion of

dissociation (expressions in Eq. 3), the nullclines indicate a single steady state, suggesting that regardless of initial conditions, ParA and ParP will coexist at

levels determined by their mutual interaction strengths. (Right) When ParA can dimerize (expressions in Eq. 2), the phase plane indicates a bistable solution:

ParA and ParP can assume distinct stable steady states corresponding to the protein distributions seen at the anterior and posterior poles of the embryo.

Several sample trajectories that tend to the steady states are shown, with direction of evolution over time (arrows). (Solid circles) Stable steady states.

(Open circles) Unstable steady states.
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are not required for the stable maintenance of Par domains
(1,41), it is possible that other binding sites for ParA might
be enriched during maintenance, which could substitute for
the actomyosin used in the Tostevin and Howard model.

As a first step toward distinguishing these two models
experimentally, we examined their predicted responses
to gradual depletion of either anterior or posterior Par
proteins. The cross-inhibition plus ParA dimerization
model predicts a sharp threshold in the level of either
ParA or ParP, below which asymmetry is abruptly lost
(shown for ParA in Fig. 5, left). The model also predicts
that bistability is maintained when levels of ParA and
ParP are simultaneously decreased (Fig. 5, right). This is
consistent with the observation that reducing levels of
anterior Par proteins can rescue partial loss of function in
FIGURE 5 Bifurcation diagram (left) and two-parameter continuation diagram

capable of dimerizing (expressions in Eq. 2). The bifurcation diagram displays

cytoplasmic ParA—is varied. The hysteresis curve suggests the model will lose

continuation diagram indicates the steady-state behavior of the model as two pa

shaped region in this diagram demonstrates there is a region of bistability as eithe

that cause the system to exit the region of bistability will result in a loss of bistab

will maintain the capacity to adopt distinct steady states.
posterior Par proteins and vice versa (46). In contrast, the
cross-inhibition plus asymmetric recruitment model of Tos-
tevin and Howard predicts a gradual loss of asymmetry as
ParA is depleted, and no loss of asymmetry or change in
the size of the Par protein domains as ParP is depleted
(Fig. 6).
Anterior Par protein depletion in vivo leads to
loss of polarity

To test experimentally the prediction that polarity loss
occurs abruptly below a threshold level of ParA, we exam-
ined the response of maintenance phase C. elegans embryos
to decreasing levels of PAR-6 produced by RNA interfer-
ence (47,48). PAR-6 is required for cortical enrichment of
(right) for the full space-free (no diffusion) Par protein model when ParA is

the steady-state behavior of the model, as one parameter—here the level of

bistability as the level of cytoplasmic ParA is depleted. The two-parameter

rameters, the levels of cytoplasmic ParA and ParP, are varied. The wedge-

r or both cytoplasmic pools are depleted. Variations in the cytoplasmic levels

ility, while variations that allow the system to remain in the bistable region

Biophysical Journal 101(6) 1412–1422



FIGURE 6 Simulations of the model proposed by Tostevin and Howard (39). This model takes into account actomyosin dynamics, mutual inhibition of Par

proteins, and binding of ParA to (polarized) actomyosin but not dimerization of ParA. Depleting the total amount of anterior Par protein in the system by

lowering the initial condition results in a gradual loss of polarity rather than the sharp loss for the model with bistable dynamics. Shown here is the amount of

membrane-associated anterior Par proteins (Am, top row) and the membrane-associated posterior Par proteins (Pm, bottom row). Depleting the total amount of

posterior Par proteins produces the same profiles shown here for the corresponding amounts of total anterior Par proteins (not shown).
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aPKC (7), which mediates cortical dissociation of the
posterior Par proteins, so that depletion of PAR-6 mimics
loss of ParA in either model. We synchronized young adult
worms engineered to express mCHERRY-tagged PAR-6 and
GFP-tagged PAR-2, then placed these worms on plates con-
taining bacteria that synthesize double-stranded RNA that
targets PAR-6. We then examined maintenance-phase em-
bryos dissected from the treated worms at 30-min intervals
(Fig. 7). Significantly, we observed a sharp transition from
a polarized to unpolarized state at ~5 h of RNAi exposure.
This result was consistent across many embryos and mul-
tiple RNAi experiments (Fig. 8), supporting the hypothesis
that bistability underlies the maintenance of Par protein
asymmetries.

Our model shows that bistability can ensure quasistabil-
ity of complementary domains in the presence of diffusion
if interaction strengths and/or diffusivities are properly
balanced. However, additional mechanisms may be in-
volved in stabilizing the boundary against excess drift.
Coupling our Par protein model to Tostevin and Howard’s
(39) actomyosin model effectively stabilized the boundary
against drift without affecting bistability or its loss when
ParA is depleted (see Fig. S2, Fig. S3, and Fig. S4).
Another possibility is that depletion of a cytoplasmic pool
of ParA and/or ParP could reduce or even eliminate
boundary drift.

To test this idea, we assumed that the total pool of ParA
and ParP are constant, and introduced a scaling factor a

that relates the total effective volume of the cortex/PM
compartment to the cytoplasmic volume as
Biophysical Journal 101(6) 1412–1422
ParAtotal ¼ aVmem

Z
U

ðA1 þ A10 þ 2A11Þ þ VcytoParAcyto;
(4a)

ParPtotal ¼ aVmem

Z
ParPþ VcytoParPcyto; (4b)
U

where U denotes the total cross-sectional area of the cortex.
We set initial values for ParAcyto and ParPcyto to 1, then we
repeated the parameter space search for different values of
a (0.02, 0.05, and 0.1), expecting an increased frequency
of solutions if depletion buffers against drift (see Table
S3). For a ¼ 0.02, we observed minimal effects on solution
frequency (1/254,600 vs. 1/239,000 for nonlimiting pool)
and the boundary eventually drifted toward the anterior or
posterior pole in all cases. However, for a ¼ 0.1, we
observed a 57-fold increase in the frequency of successful
solutions. For 83% of these solutions, profiles of ParA and
ParP (and thus the AP boundary) were stably held for
a long simulation time. We conclude that cytoplasmic deple-
tion can buffer a boundary against drift if the coupling is
sufficiently strong.
DISCUSSION

Polarity establishment in the C. elegans zygote involves
dynamic segregation of Par proteins through active transport
by actomyosin-based cortical flows (45,49). Once the Par
domains are established, the zygote can maintain polarity
in the absence of cortical actin for many minutes, with



FIGURE 7 Time series showing embryos dis-

sected from adult worms treated by par-6 RNA

interference for progressively longer times to

produce gradual depletion of PAR-6, an anterior

Par protein. Midplane images of live embryos ex-

pressing PAR-2::GFP and PAR-6::mCHERRY

were taken during the maintenance phase, after

centration but before nuclear-envelope breakdown.

The bright cortical halo seen in the red channel

even after loss of polarity reflects autofluorescence

of the eggshell which is weak relative to the PAR-

6::mCHERRY signal in polarized embryos (see,

for instance, 1 and 2 h timepoints). Each image

has been rotated (so that the anterior pole is on

the left and the posterior pole is on the right). Plots

(right) show relative fluorescence intensities mea-

sured at the cortex as a function of position along

the perimeter. Differences in intensity from one

image to another reflect autoscaling and thus only

the relative intensities are relevant. The abrupt

loss of polarity seen ~5 h after the start of RNAi

treatment, in multiple experiments (see Fig. 8), is

consistent with model predictions.
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minimal drift in the boundary between the Par domains (1).
Here we explored conditions under which cross-inhibition
of anterior and posterior Par proteins could explain the
actin-independent maintenance of preestablished polarities.
We find that simple cross-promotion of dissociation via
mass-action kinetics cannot do so for any choice of kinetic
parameters. However, simple cross-inhibition plus PAR-3
dimerization can account for stable maintenance of comple-
mentary Par domains and for quasistability of AP boundary
position in the face of diffusion.

A key feature of our model is that dimerization of PAR-3
(plus cross-inhibition) yields bistable dynamics, which in a
spatially distributed system supports coexistence of comple-
mentary domains. Dimerization of PAR-3 replaces a mono-
valent linkage to the cortex with a divalent one, leading to
cooperative binding kinetics via a nonlinear dependence
of PAR-3 release on local density of PAR-3. Our model
suggests that this nonlinearity plus cross-inhibition is suffi-
cient to endow the Par system with intrinsic bistability.
Although we limited consideration to PAR-3 dimers to re-
duce model complexity, PAR-3 may actually form higher-
order structures such as filaments (21), which would yield
even sharper nonlinearities in binding kinetics and thus
increased potential for bistability. Studies in C. elegans,
Drosophila, and mammalian cells have shown that inhibit-
ing PAR-3 oligomerization abolishes or severely attenuates
Biophysical Journal 101(6) 1412–1422



FIGURE 8 The loss of polarization in early C. elegans embryos resulting

from PAR-6 depletion is consistently observed across repeated par-6 RNA

interference experiments (n ¼ 10–25 for each time point).
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cortical localization of PAR-3 (19,21,23). These results are
consistent with a loss of bistability, but could also be
explained solely by a drop in PAR-3 affinity. Distinguishing
these possibilities is an important goal for future
experiments.

In the presence of diffusion, the boundary between Par
protein domains in the model is unstable and tends to drift.
This is not necessarily a failure of the model; Indeed, the AP
boundary exhibits slow drift toward the posterior pole in
embryos lacking functional myosin or treated with actin de-
polymerizing drugs (1,40). Such minor drift may be of little
consequence because Par protein asymmetries need only be
maintained until cleavage (i.e., for 5 min). Moreover, addi-
tional mechanisms operate during cell division to correct
potential mismatch between the Par boundary and the
cleavage plane (50). Our random sampling of parameter
space shows that this drift can be readily minimized by
tuning Par diffusivities and/or cross-interaction strengths
and C. elegans embryos may rely in part on a similar tuning.
However, additional mechanisms likely buffer the system
against excess drift.

One potential mechanism to prevent drift in the Par protein
boundary is that of wave-pinning—previously studied in the
context ofmotile cells (51). In thewave-pinningmodel, rapid
exchange between slow-diffusing active and fast-diffusing
inactive proteins, whose total numbers are conserved in
a one-dimensional geometry, results in stable boundary posi-
tioning. When we assume a weakly-limiting, well-mixed
cytoplasmic pool (i.e., no turnover of Par protein; total
cortical Par pool ~10% of total cytoplasmic pool), we find
a substantial increase in the number of randomly chosen
parameters that yield acceptable drift rates, and many of
these (83%) yield absolute boundary stability—suggesting
Biophysical Journal 101(6) 1412–1422
that a variant of the wave-pinning mechanism could supply
a significant buffer against boundary drift in this system.

Additional mechanisms may involve coupling of Par
protein dynamics to polarized actomyosin. For example,
Tostevin and Howard (39) proposed one such mechanism
that involves enhanced recruitment of ParA to an anterior
actomyosin-rich domain, which is stabilized by contracting
against an elastic resistance. Incorporating that mechanism
into our model can stabilize the boundary against drift
(see Fig. S2). Another potential mechanism could involve
active transport of Par proteins as occurs during polarity
establishment. Indeed, there is a pronounced flow toward
the AP boundary during maintenance in wild-type embryos
(45), and we have recently identified a system of feedback
interactions, involving Cdc42 and downstream effectors,
that contributes to stabilizing the AP boundary through
a balance of chemical flux, active contractility, and passive
resistance to cortical deformation (C. Schoff, H. Clark, and
E. Munro. unpublished).

A key prediction of our model is that there should be an
abrupt loss of polarity as the levels of ParA (or ParP) are grad-
ually decreased, and we confirmed this prediction experi-
mentally using RNAi-based depletion of PAR-6. These
results strongly support a role for bistable dynamics in
polarity maintenance; whether Par-3 oligomerization is es-
sential for bistability remains to be seen. Our model also
reproduces spatial shifts in the Par boundary observed
when anterior or posterior Par proteins are depleted and/or
overexpressed (see Zonies et al. (46) and references therein);
furthermore, it qualitatively accounts for the observation
(46,52) that partial loss of function in anterior (or respec-
tively, posterior) Par proteins can be rescued by reducing
levels and/or activity of opposing posterior (or respectively,
anterior) proteins. On the other hand, our model cannot
account for certain mutant phenotypes, such as the retraction
of the anterior Par domain when PAR-2 is depleted (45)—
which is perhaps not surprising, as this retraction is accompa-
nied, and likely caused by, ectopic actomyosin-based cortical
flows (45).

Clearly a full account of polarization in C. elegans must
integrate Par protein dynamics with actomyosin contrac-
tility. For example, the bistable switch mechanism we
describe here likely synergizes with actomyosin-based
cortical flows to break symmetry during polarity establish-
ment (5): The anterior enrichment of ParA proteins by acto-
myosin-based flows could ensure that the switch remains in
its initial high ParA/low ParP state at the anterior, while
depletion of ParA at the posterior pole would throw the
same switch toward a low ParA/high ParP state. An actin-
independent, bistable switch mechanism may be sufficient
to maintain quasistable Par protein domains, but as men-
tioned above, actomyosin dynamics and cortical flow almost
certainly play a role in stabilizing the boundary.

Future work will incorporate spatial aspects of Par protein
interactions, including possible mechanisms for initiation of
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cortical flow and mechanisms for spatial positioning of the
Par protein boundary at the end of the establishment phase.
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