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Abstract
A method is introduced to monitor cardiac ablative therapy by examining slope changes in the thermal
strain curve caused by speed of sound variations with temperature. The sound speed of water-bearing
tissue such as cardiac muscle increases with temperature. However, at temperatures above about 50°
C, there is no further increase in the sound speed and the temperature coefficient may become slightly
negative. For ablation therapy, an irreversible injury to tissue and a complete heart block occurs in
the range of 48 to 50°C for a short period in accordance with the well-known Arrhenius equation.
Using these two properties, we propose a potential tool to detect the moment when tissue damage
occurs by using the reduced slope in the thermal strain curve as a function of heating time. We have
illustrated the feasibility of this method initially using porcine myocardium in vitro. The method was
further demonstrated in vivo, using a specially equipped ablation tip and an 11-MHz microlinear
intracardiac echocardiography (ICE) array mounted on the tip of a catheter. The thermal strain curves
showed a plateau, strongly suggesting that the temperature reached at least 50°C.

I. Introduction
Catheter ablation has become a significant modality to manage cardiac arrhythmias [1]–[5]. It
has transformed the field of cardiac electrophysiology from a diagnostic tool to a potent
prophylactic and curative method. An exciting recent development is the increasing adoption
of catheter ablation for atrial fibrillation [6]. Atrial fibrillation is the most frequent arrhythmia
in clinical practice and its incidence is increasing as the population ages [7].

Radio-frequency ablation (RFA) is used in electrophysiology (EP) procedures to permanently
alter the myocardium in locations which support aberrant electrical conduction pathways,
contributing to irregular heart rhythm. Regulating power to maximize safety and efficacy of
energy application is critical for successful outcomes. Currently, the tissue effects of RF
delivery can be monitored indirectly by real-time analysis of impedance [8], electrogram
amplitude [9], the electrophysiologic behavior of the tissue being ablated [10], and temperature
at the tip of the electrode [11], [12], but none provide an accurate indication of tissue
temperature during ablation.

Tissue temperature is critically related to the success or failure of catheter ablation procedures
[13], [14]. To ensure irreversible injury, a tissue temperature of approximately 50°C must be
achieved [13], [14]. The minimum temperature needed to create a complete heart block has
been observed to be 48°C [11], [15]. Raising tissue temperature significantly beyond this point
can be unnecessary and cause complications during the procedure. High temperature at the
tissue site may result in coagulum formation on the electrode, endocardial disruption, steam
popping, or perforation. This would lead to an abrupt rise in impedance which would result in
a marked decrease in tissue heating [16], [17]. Furthermore, if a coagulum develops, the
ablation catheter must be removed, cleaned, and repositioned, necessitating additional catheter
manipulation and additional fluoroscopy time.

Because of the importance of temperature monitoring, a standalone thermocouple or a
thermistor embedded in the electrode is used during catheter RFA procedures [11], [14]. During
energy delivery, a portion of the electrode should be typically in contact with the tissue and
the remainder in contact with surrounding blood. The electrode temperature recorded by the
thermocouple reflects a complex interaction between the production of heat in nearby tissue
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by the radio-frequency field and convective heat loss to surrounding blood and tissue [14],
[18]–[20]. Because of convective heat losses, the temperature recorded by the thermocouple
could be consistently less than that at the hottest point in the tissue, misleading the operator to
increase the energy delivered. An optical fluorometric temperature probe [11], [21], for
example, could be used for more sensitive measurement at increased cost and lower speed. In
general, temperature sensors are additional devices to be handled and installed in an already
crowded catheter tip volume.

Temperature imaging using ultrasound techniques is more attractive because of the potential
to provide 2-D real-time temperature information at low cost. However, standard B-mode
images are less than optimal for visualizing the response to heating because the targeted region
and surrounding tissue usually have similar scattering characteristics. Bright echoes from
bubble formation at high temperature are not desirable for ablation monitoring because bubbles
imply the tissue temperature has exceeded 50°C, causing coagulum and charring [22].

Even though conventional B-mode images cannot clearly identify regions being treated by
RFA, ultrasound signals can provide useful information. For example, several ultrasonic
methods have been proposed to estimate temperature changes in tissue. All are related to
different temperature-induced changes in the ultrasonic properties of tissue, including
frequency-dependent attenuation [23], backscattered power [24], speed of sound [25], thermal
expansion [26], or a combination of the last two effects [27], [28]. A tissue differentiation
technique, thermal strain imaging (TSI), also has been developed recently, building on this
early work in ultrasonic temperature estimation [29]. It uses phase-sensitive speckle tracking
to create thermal strain images based on the temperature dependence of sound speed. TSI has
already been successfully used in atherosclerosis detection and tissue characterization [29]–
[32].

However, ultrasound-based temperature measurement over large ranges is limited because the
sensitivity to sound speed changes beyond 50°C is low [33]. If a very high temperature is
considered (tissue temperature of 50°C or higher), as in the case of high-intensity focused
ultrasound (HIFU), the effect is two-fold: speed-of-sound variations with temperature are not
as sensitive and the tissue undergoes state changes that could fundamentally change the
ultrasound backscatter signal character. Also, limited data are available for the relationship
between temperature and the sound speed of tissues in vivo, especially at temperatures above
50°C [22], [24], [26], [33]–[36].

Speed of sound variations with temperature introduce apparent shifts in scatterer position and
thermal expansion of the medium introduces a physical shift in scatterer position. Beyond 50°
C, thermal expansion is no longer negligible and contributes to the total echo shift or delay in
strain calculations [22], [24], [26], [33]–[36]. Thus, thermal strain imaging may not be practical
for ablation monitoring based on precise temperature measurements because it is most sensitive
and unambiguous for small temperature changes in the temperature range below 50°C. For
ablation treatment of arrhythmia, however, a robust, reproducible indicator of tissue necrosis
rather than absolute temperature monitoring is required. In particular, it is most important to
know when tissue temperature has reached or exceeded 50°C so ablation can be terminated.

It is our hypothesis that by measuring thermally-induced strain as a function of time during the
ablation procedure, there will be a point when the slope of the thermally-induced strain
approaches zero. That is, by continuously tracking from a reference frame just before the start
of ablation, the thermal strain will eventually plateau because the sound speed has reached its
maximum value as a function of temperature.

The signal-processing methods proposed in this paper were developed to investigate the
feasibility of monitoring ablative therapy by identifying the point at which the magnitude of
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the slope of the thermal strain curve decreases significantly, caused primarily by speed of sound
variations with temperature. We first test this idea in a dynamic heating experiment using
excised porcine myocardium in vitro. The feasibility of this method for ablation monitoring is
also tested in vivo.

II. Methods
A. Dynamic Heating Experiment In Vitro

To ensure that sufficient heat could be delivered for lesion formation, excised porcine heart
was prepared in a saline solution. While submerged, the sample was fixed on a holder to
minimize any motion. It was then allowed to reach 37°C (taking about 2 h) in a heated saline
bath before the experiment began.

RF data were collected using a prototype integrated ablation catheter array interfaced with a
GE Vivid 7 imaging system (GE Healthcare, Horten, Norway). The ultrasound transmit
frequency was 11 MHz with a transmit focus at 1 to 2 mm. Temperatures in the tissue were
measured using an implanted fine-wire thermocouple. Thermocouple, ablation catheter, and
sample were positioned as shown in Fig. 1. A digital thermocouple reader was used to record
the temperature at 1-s intervals. Table I summarizes relevant ultrasound system parameters
used for these in vitro experiments, and for subsequent in vivo tests described later.

B. Catheter Ablation Experiment In Vivo
For the in vivo study, juvenile Yorkshire pigs were used as the animal model. All surgical
methods and animal treatment procedures were approved by the Animal Care and Use
Committees of the Oregon Health and Science University. All animals were given general
anesthesia and maintained with 2% isoflurane and oxygen ventilation. Femoral arteries and
veins as well as jugular veins were exposed by surgical incision ready for catheter access.
Electrocardiograms, body temperature, and oxygen saturation were continuously monitored.
Electrocardiography (ECG) electrodes were connected to the body of the pig for standard three-
point recording. The output of the ECG served as the trigger for the Irvine Biomedical Inc.
(IBI) generator (St. Jude Medical, Inc., St. Paul, MN). The generator was active for 250 ms
beginning at the peak of the ECG R wave, then inactive until the next trigger (Fig. 2). The
respirator was stopped during data acquisition (20 s) to reduce undesired motion, such that the
dominant physiological motion would be heart motion.

We used a specially designed ultrasound compatible RFA tip integrated into a prototype 9F
forward-looking microlinear (ML) ICE catheter array to simultaneously image and ablate the
right atrial wall [37], [38]. Additionally, a thermocouple normally residing inside the electrode
was pulled out to touch the tissue for thermal strain comparisons. Fig. 3 shows the approximate
geometry for this configuration. The transmit frequency was 11 MHz with a transmit focus at
2 mm. Ablation was performed while the integrated imaging and ablation catheter was localized
and guided by fluoroscopy.

The electrical impedance during the ablation stayed in the range of 75 to 90 Ω, and the generator
indicated that approximately 10 to 40 W were delivered over the 20-s time period. Ablation
started after about 5 s of baseline data acquisition.

Continuous ultrasound data were acquired during ablation. Noise from the RF generator did
not diminish B-mode image quality.
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C. Finite Element Modeling
We have preformed finite element (FE) modeling to visualize the temperature rise and thermal
diffusion effects. Temperature rise from RF ablation as a function of time was estimated using
an FE representation (COMSOL Multiphysics, v3.2, Comsol, Inc., Burlington, MA) of the
bioheat equation [39], [40]

(1)

where k is the thermal conductivity of the tissue (0.533 W/m/K), T is the tissue temperature
(K), Wb is the blood perfusion rate (0.013 kg/L/s), Cb is the specific heat of the blood (4180 J/
kg/K), C is the specific heat of the tissue (3720 J/kg/K), Tb is the blood temperature (310K),
Q is the local power density deposition rate, ρ is the density of the tissue (1060 kg/m3), and t
is time (s) [41]. The accuracy of the power and temperature calculations obtained using the
bioheat transfer equation was previously verified elsewhere [42]. A schematic diagram of the
modeled region is shown in Fig. 4. The model assumed that the boundary temperature remained
at 37°C during the entire procedure. The initial temperature throughout the tissue was 37°C.
A portion of the gold electrode was in contact with the blood pool, limiting the extent of the
heat delivered to tissue. The RF pulse sequence and exposure duration followed the
experimental setup. A 2-D, axially symmetric model was used to reduce computation time.
The model consisted of 827 mesh points and 1584 triangular elements.

D. TSI Signal Processing
Because ultrasound data acquisition was not triggered by the ECG, we assumed that the heart
returns to its initial state before ablation [43]–[45].

Four frames of data with the least motion were selected by examining B-mode images from
the first cardiac cycle before ablation. Using these as reference frames, 2-D cross-correlation
was performed to find the best matched frame with the highest cross-correlation (≥0.85) within
a cycle for all subsequent cardiac phases. Then, using each frame from the first cardiac cycle
as a reference, 2-D speckle tracking was performed with all corresponding frames throughout
the experiment. These four displacement sets were averaged to produce the measured axial
displacement (Fig. 5).

Two-dimensional phase-sensitive correlation-based speckle tracking [46] was applied to RF
data from every frame in the sequence to estimate temporal strain along the axial direction.
The tracking algorithm involves calculating complex cross-correlation coefficients between
small windowed blocks from two consecutive frames, reducing the probability of peak hopping
by filtering the correlation coefficient functions, and estimating the shift from the phase zero-
crossing around the peak correlation coefficient. The correlation kernel size was approximately
the full-width at half-maximum (FWHM) of a speckle autocorrelation function for optimal
strain estimation. Reduced kernel size and correlation filtering significantly decreases peak
hopping probability and increases the accuracy of displacement estimation [46].

Axial displacement was estimated from the position of the maximum correlation coefficient,
and was further refined using the phase zero-crossing of the complex correlation function. The
kernel size used for tracking in vivo was slightly larger than the speckle size, approximately
0.3 mm × 6.6° (axial × lateral) and the filter size was 0.75 mm × 7.3° (axial × lateral). Spatial
derivatives of the displacements were computed to estimate temporal strain caused by the sound
speed change and thermal expansion from axial displacement using a simple 1-D difference
filter along the axial direction for correlation windows separated by 0.9 mm.
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Finally, thermal strain (∂/∂t)[δt(z)] is related to sound speed changes and thermal expansion
according to

(2)

where β is the thermal expansion coefficient, λ is the linear coefficient of sound speed versus
temperature, and δθ is the temperature change [27]. Thermal expansion can be ignored over a
wide range of operating temperatures. λ has a positive value and overwhelms β for water-
bearing tissue by at least an order of magnitude until about 50°. At temperatures approaching
50°, thermal expansion cannot be ignored.

III. Results
A. Dynamic Heating Experiment In Vitro

Fig. 6 presents a B-mode overlaid with thermal strain images from the in vitro dynamic heating
experiment using a prototype PZT ML array for a rapid heating case. For B-mode images, the
colorbar represents a standard decibel scale and for strain images, it represents actual (i.e.,
fractional) strain values. The image presents the thermal strain at approximately 52°C. Several
representative pixels in the focal region were averaged to plot the thermal strain as a function
of heating time in Fig. 7. The slope changes are noted with gray arrows. Similar results are
presented in Figs. 8 and 9 for a slow heating case. For both cases, there is an obvious change
in the slope of the thermal strain curve in the region of 50°C.

B. Catheter Ablation Experiment In Vivo
Fig. 10 shows cardiac motion from the four reference frames with no respiratory motion before
ablation. The average of a small region about 0.25 mm × 0.1 mm (axial × lateral) used to
generate the plots is also highlighted. As expected, motion is minimal because the heart’s
periodicity enabled the averaging scheme mentioned in the methods section. Figs. 11, 13, and
15 show B-mode and B-mode overlaid with thermal strain images when the thermal strain has
reached its maximum magnitude. Figs. 12, 14, and 16 plot the thermal strain versus time.
Several representative pixels in the focal region were averaged to plot the thermal strains.
Similar to the in vitro case, there was a significant slope change around 50°C. Using thermal
strain, it was clear when the temperature reaches at least 50°C for the experimental conditions
used here. In particular, this method appears promising for the case in which heating is
sufficiently fast to minimize the effects of thermal diffusion, as discussed in the next section.

C. Thermal Diffusion Effect
The temperature distribution during RF ablation is affected by two processes: resistive heating
from the tip of the electrode and spatial redistribution of heat caused by thermal diffusion. We
have compared the temperature rise from one of the in vivo data sets to our finite element
modeling. Fig. 17 shows that our heating protocol operates in a region where thermal diffusion
has not taken over. In particular, the pulse duration for the heating scheme presented in Fig. 2
was sufficiently short that we could assume instantaneous heating of the medium with minimal
thermal diffusion. In a clinical environment, rapid heating is required to reduce the effects of
thermal diffusion and motion.

IV. Discussion and Future Work
The feasibility of monitoring the progression of RF ablation in the myocardium using a slope
change in the thermal strain curve has been demonstrated using both in vitro and in vivo
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measurements in a porcine model. The speed of sound for most water-bearing tissue increases
with temperature. However, at temperatures above about 50°C, there is no further increase in
the sound speed and the temperature coefficient may become slightly negative. For ablation
therapy, irreversible injury to tissue and a complete heart block occurs at around 48 to 50°C.
Using these two properties, we propose a potential tool to detect the moment at which clinically
significant tissue damage occurs by using the reduced slope in the thermal strain as a function
of heating time.

The variation in sound speed with temperature for most water-bearing soft tissue follows a
similar pattern to that of water. Around 37°C, the thermal expansion coeffcient for water
bearing tissue is negligible compared with the sound speed variation with temperature.
However, at temperatures above about 50°C, there is no further increase in the sound speed.
At this point, thermal expansion can contribute to physical displacements at the same level as
sound speed variations to apparent displacements. Thus, TSI may not be practical for ablation
monitoring based on precise temperature measurements, because it is more sensitive and
unambiguous for small temperature changes in the range below 50°C. For ablation treatment
of arrhythmia, however, a robust, reproducible indicator of tissue necrosis rather than absolute
temperature monitoring is required. In particular, it is more important to know when tissue
temperature has reached or exceeded 50°C so ablation can be terminated.

For the first time, a specially equipped ablation tip ML ICE array was used to collect thermal
strain data during RF ablation in the right atrium of the beating heart in vivo. Similar to in
vitro results, the thermal strain curve plateaus around 50°C. For this initial in vivo experiment,
ECG triggering was not integrated with data acquisition because of a weak ECG signal that
was overwhelmed by the RF ablation signal. Therefore, ultrasound data were acquired
continuously and manually processed to identify image frames that would be used for 2-D
speckle tracking.

It is desirable to automatically select both reference frames and their respective well-matched
regions based on correlation coefficients. Because minimal cardiac motion occurs during end-
diastole [45], this cardiac phase can be easily identified in the ECG, facilitating subsequent
data collection and processing. Currently, we are investigating several options to enable ECG-
triggered data acquisition. Because we were able to trigger the RF generator to start the ablation,
we could use the signal from the generator fed into the ultrasound system. This technique will
obviously depend on the ringdown time of the RF ablation signal. Another option would be to
create a special isolation buffer amplifier for the animal ECG to provide a cleaner signal to the
Vivid-7 machine.

Another issue is the low SNR of the prototype ML array. Because it has a low frame rate (1
Hz) relative to the heart rate, we did not have enough frames to average within a cycle to
compensate for low SNR. However, it would be beneficial to use a higher frame rate for
averaging. The speckle tracking algorithm also will benefit from a higher frame rate, which
permits less mismatch and more usable frames in one cycle.

Important tissue parameters, such as the attenuation coefficient and thermal expansion
coefficient, which could affect the apparent temperature rise, and thus influence speckle
tracking, have not been included in this data analysis. Further studies will involve finite element
simulations that will include all relevant parameters. Nevertheless, it is important to note that
the goal of this technique was not to track an absolute temperature but to detect clinically
significant tissue damage during ablation therapy. Other possible indices to monitor the
ablation processes, such as the stiffness change in the ablated tissues compared with normal
tissues, temperature dependence of the shear modulus [47], and thermally-induced changes in
backscattered energy (CBE) from tissue inhomogeneities, can be used in conjunction with TSI.
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These methods use the same RF data but are processed differently. In the future, we will explore
the possibility of integrating these measures for robust monitoring and real-time optimization
of RF ablation in the heart.

Because only three in vivo experiments are reported in this paper, additional in vivo studies are
needed to better evaluate the robustness of this technique for real clinical applications.
Nonetheless, preliminary results look promising and suggest that thermal strain imaging may
be a useful tool to guide RF ablations of the heart using intracardiac devices.
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Fig. 1.
Photograph showing relative positions of the thermocouple, ablation catheter array, and the
sample for the dynamic in vitro heating experiment.
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Fig. 2.
Timing diagram describing ablation/data acquisition sequence for in vivo experiments.
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Fig. 3.
Approximate geometry of the modified microlinear-PZT catheter tip. The original microlinear-
PZT tip has a special metal coated plastic which is transparent to ultrasound but permits
simultaneous RF ablation. Experimental temperature feedback is performed with placement
of a very small (<100 µm) thermocouple (arrow) in the plastic tip housing.
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Fig. 4.
Schematic diagram of the axially symmetric region used for finite element modeling of thermal
diffusion.
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Fig. 5.
Block diagram describing processing steps to generate thermal strain image.
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Fig. 6.
B-mode images (dB) with thermal strain overlaid using microlinear array for in vitro
experiment: rapid heating case. Thermal strain is displayed at a temperature of approximately
52°C.
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Fig. 7.
Thermal strain plotted with temperature rise in porcine myocardium using a microlinear array
for in vitro experiment: rapid heating case.
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Fig. 8.
B-mode images (dB) with thermal strain overlaid using microlinear array for in vitro
experiment: slow heating case. Thermal strain is displayed at a temperature around 52°C.
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Fig. 9.
Thermal strain plotted with temperature rise in porcine myocardium using a microlinear array
for in vitro experiment: slow heating case.
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Fig. 10.
Cardiac motion versus time (first 5 cardiac cycles before RF ablation) for the same region
corresponding to the thermal strain image in Fig. 11.
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Fig. 11.
B-mode images (dB) with thermal strain overlayed using microlinear array for in vivo
experiment: case 1. Image is displayed at time of maximum thermal strain magnitude.
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Fig. 12.
Thermal strain plotted with temperature rise in porcine myocardium using a microlinear array
for in vivo experiment: case 1.
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Fig. 13.
B-mode images (dB) with thermal strain overlayed using microlinear array for in vivo
experiment: case 2. Image is displayed at time of maximum thermal strain magnitude.
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Fig. 14.
Thermal strain plotted with temperature rise in porcine myocardium using a microlinear array
for in vivo experiment: case 2.
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Fig. 15.
B-mode images (dB) with thermal strain overlayed using microlinear array for in vivo
experiment: case 3. Image is displayed at time of maximum thermal strain magnitude.
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Fig. 16.
Thermal strain plotted with temperature rise in porcine myocardium using a microlinear array
for in vivo experiment: case 3.
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Fig. 17.
Temperature rise and thermal diffusion effect comparing measurements and finite element
simulations.
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TABLE I

Ultrasound System Parameters Used in Experiments.

Parameter/device
description In vitro In vivo

Ultrasound system GE Vivid 7, Color Doppler special mode GE Vivid 7, Color Doppler special mode

Catheter and array A separate ablation catheter and a prototype 9F forward-
looking ML ICE catheter array

A prototype integrated ablation catheter 9F forward-
looking ML ICE catheter array

Sampling frequency 20 MHz (later upsampled to 40 MHz for processing) 20 MHz (later upsampled to 40 MHz for processing)

Transmit frequency 11 MHz 11 MHz

Transmit focus 1 to 2 mm 2 mm

Imaging target Porcine heart muscle Porcine right atrium

Imaging depth 5 mm 10 mm

Imaging width 45° 45°

Number of beams 128 128

Packet size 8 8

Frame rate 32 Hz 1 Hz

Temperature measurement Thermocouple Thermocouple embedded in the array
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