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In an environment where the availability of resources sought by a forager varies greatly, indi-
vidual foraging is likely to be associated with a high risk of failure. Foragers that learn where
the best sources of food are located are likely to develop risk aversion, causing them to avoid
the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living
in a group may not only learn by themselves, but also by observing others. Using evolutionary
agent-based computer simulations of a social foraging game, we show that in an environment
where the most productive resources occur with the lowest probability, socially acquired
information is strongly favoured over individual experience. While social learning is usually
regarded as beneficial because it filters out maladaptive behaviours, the advantage of
social learning in a risky environment stems from the fact that it allows risk aversion to be
circumvented and the best food source to be revisited despite repeated failures. Our results
demonstrate that the consequences of individual risk aversion may be better understood
within a social context and suggest one possible explanation for the strong preference for
social information over individual experience often observed in both humans and animals.
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1. INTRODUCTION

While there has been extensive research in the evolution
of individual decision-making under risk and, inde-
pendently, in the evolution of social learning, the
interaction between these two processes has received
relatively little attention. It is widely accepted that
individuals living in a group may acquire information
about their environment individually, through pro-
cesses such as trial and error, or socially, by observing
others in the group and learning from the latter’s
experience. In recent decades, the strategic use of indi-
vidual and social learning has been a focus of interest
for evolutionary biologists, psychologists and anthro-
pologists (e.g. [1–6]). While social learning saves the
costs of individual learning (in terms of time and
errors), it also bears the potential risk of learning
others’ maladaptive behaviour [7]. Consequently, the
availability to the population of reliable public infor-
mation is often considered as the main constraint on
the success of social learning [8–10].
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Obtaining reliable information is undoubtedly a
major constraint on any learning process, either in-
dividual or social. Among the well-known obstacles
confronting individual learners is the emergence of cog-
nitive biases as a result of the sampling process (e.g.
[11–14]). One such bias may arise from failures: an
action resulting in a relatively poor outcome is likely to
be avoided in subsequent sampling steps, in what is
known as risk aversion or ‘the hot stove effect’ [15,16].
Consequently, an action that has variable rewards and
which may initially appear to offer a low return, will be
abandoned in favour of alternative actions even if the
expected value of the former is higher. A scenario
where actions that are on average the most rewarding
are also the most variable is likely in a foraging situation.
As food items with high nutritional value are more rare
and are likely to be depleted first [17–20], searching for
them may involve repeated failures even though on aver-
age they are optimal choices. Although being risk-averse
may under some circumstances be adaptive [21], in this
situation it leads to sub-optimal behaviour (e.g. [22]).
In the present study, we suggest that this phenomenon
may result in an important (and so far overlooked) evol-
utionary advantage to social learning over individual
learning.

In a seminal analysis of the evolution of individual
and social learning, Rogers [23] showed that individual
This journal is q 2011 The Royal Society
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and social learning achieve a mixed evolutionarily stable
strategy (ESS) where their fitnesses are equal, but the
mean population fitness at the ESS point is the same as
that of a population containing only individual learners.
This result seemed paradoxical [23,24] in light of the con-
ventional view of social learning as a key contributor to
the evolutionary success of human populations. Later,
it was suggested that this conflict (known as Rogers’
paradox) can be resolved if social learning is not used
indiscriminately, but applied under appropriate circum-
stances—an assertion supported by both observations
of animals and theoretical work (reviewed in [25–27];
see also [24,28,29]). Nevertheless, theoretical work
has shown that Rogers’ paradox is generally robust
[2,24,29–31], and some experimental work indicates
that animals may rely on public information and discard
personal information even when it is maladaptive for
them to do so ([32–36]; see also [7,37,38]). This suggests
that the tendency to rely on social information may
reflect a general evolved response. It has also been
suggested that social learning may be advantageous in
changing environments (see [30]), but this is also the
case for individual learning [39]. Thus, while some rate
of environmental change can promote the evolution of
social learning, it cannot fully explain its advantage
over individual learning.

A clear advantage for social learning has been
demonstrated recently by Rendell et al. [40]. In an
effort to search for the most effective strategy of learn-
ing from others, Rendell et al. launched a tournament
among social learning strategies. Strategies entered by
external participants competed against each other to
determine to what extent and under what conditions
it is best to use social or individual learning. The tour-
nament’s most successful strategies, including the
winner, were strategies that relied heavily on social
learning. The advantage of social learning demon-
strated by Rendell et al. was based on the fact that
individuals whose behaviour was copied by others
demonstrated the highest-payoff behaviour in their
repertoire, thereby inadvertently selecting the best
information to be used by social learners. The mean fit-
nesses of populations containing a number of strategies
were found to be positively correlated with the frequen-
cies of social learning. However, populations fixed on
only one of the winning strategies, employing social
learning as their main learning method, had a lower
mean fitness than populations fixed on strategies that
relied less heavily on social learning. These complex
results are nevertheless expected from this kind of mod-
elling, where social learners are information parasites
whose success depends on the quality of information
produced by individual learners (see discussion in [40]).

In the present study, we suggest that an advantage
to social learning over individual learning may result
from a different mechanism, involving risk sensitivity.
In a variable environment where choices with high
expected payoffs are associated with high risk of failure,
social learners can circumvent the problem of risk
aversion if they learn where to forage by watching indi-
viduals that have already found food. Consequently,
they acquire better information than individual lear-
ners, prevail and increase population mean fitness
J. R. Soc. Interface (2011)
even in the absence of individual learners (contrary to
Rogers’ paradox). This is likely when social foragers
are engaged in a producer–scrounger game (described
in [41,42]) in which producing (independent search)
facilitates individual learning, while scrounging ( joining
others’ food discoveries) facilitates social learning
[7,8,27,43].

To investigate the hypothesis that social learning
may have an advantage over individual learning in a
risky environment, we used agent-based evolutionary
simulations, combining a producer–scrounger game
with explicit individual and social learning rules for
associating different food patch types with experienced
reward. We tested which learning strategy was most
successful: exclusive individual learning, exclusive
social learning or combined individual and social learn-
ing (where the term ‘exclusive’ entails using only one
type of learning; an individual using the exclusive
social learning strategy will therefore engage only in
social learning, and although it can produce new infor-
mation for others when it searches for food, it will not
use this information to learn individually). We also
investigated whether the advantage of social learning
in a risky environment was related to learning complex-
ity, in terms of the extent of details in memory
representation [44], or to the frequency of learning
errors. Finally, we analysed the performance of each
learning strategy and confirmed an increase in the
population mean fitness as social learning evolved.
2. THE MODEL

The fitness consequences of a learning strategy depend
on a dynamic process involving stochastic sampling
errors that influence successive sampling steps and
eventually produce a wide distribution of possible out-
comes. This makes analytical modelling impractical
and it is therefore common to study the performance
of learning rules by means of computer simulations
(e.g. [13,16,45–47]). Formal analysis is even more diffi-
cult in the situation we study here, where learning
strategies are evolving in the context of a frequency-
dependent game. This is because the learning success
of a focal individual can influence the payoffs, and
indicates the learning process of other players. In
order to capture this highly dynamic process, we use
agent-based evolutionary simulations in which learning
and social strategies are encoded by genes carried and
expressed by individuals that are engaged in a virtual
social foraging game. While the conclusions that can
be drawn from such simulations may be limited to the
range of tested parameters, there is increasing recog-
nition that such simulations may be superior to the
analytical models in realistically complex situations
(reviewed by [48,49]). Accordingly, and in line with
recent suggestions to view computer simulations as
experimental research [50], our analysis may be
regarded as a demonstration that is valid for a certain
range of realistic conditions. Our model for learning
rules and social foraging strategies was inspired by
observations on the house sparrow, Passer domesticus,
in our own research group (see [51,52]), as well as by



Table 1. Symbols used in the simulations.

symbol description

F1 foraging allele: pure producer (always applies the producer strategy)
F2 foraging allele: part-time scrounger (0.5 probability of being a producer)
L0 learning rule allele: non-learning
L1 learning rule allele: complex learning rule
L2 learning rule allele: simple learning rule
I0 individual learning allele: no individual learning
I1 individual learning allele: individual learner
C0 social learning allele: no social learning
C1 social learning allele: social learner
n number of agents in the population
J number of steps in the game (equivalent to each agent’s lifespan)
G number of generations in the simulation
m mutation rate
a memory factor within the learning rule (weight of past events)
b probability that a scrounger erroneously joins unsuccessful producers
u probability of associating socially acquired information with the wrong patch type

Table 2. Genotypes and the phenotypes they produce as a result of epistatic interaction.

genotypes phenotype

F1L0I0C0, F1L0I0C1, F1L0I1C0, F1L0I1C1, F1L1I0C0, F1L1I0C1,
F1L2I0C0, F1L2I0C1

1. pure producer, non-learner

F1L2I1C0, F1L2I1C1 2. pure producer, simple learning rule
F1L1I1C0, F1L1I1C1 3. pure producer, complex learning rule
F2L0I0C0, F2L0I0C1, F2L0I1C0, F2L0I1C1, F2L1I0C0, F2L2I0C0 4. part-time scrounger, non-learning
F2L2I1C0 5. part-time scrounger, exclusive individual learning, simple

learning rule
F2L1I1C0 6. part-time scrounger, exclusive individual learning, complex

learning rule
F2L2I0C1 7. part-time scrounger, exclusive social learning, simple

learning rule
F2L1I0C1 8. part-time scrounger, exclusive social learning, complex

learning rule
F2L2I1C1 9. part-time scrounger, both individual and social learning,

simple learning rule
F2L1I1C1 10. part-time scrounger, both individual and social learning,

complex learning rule
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previous work on social foraging in this species (e.g.
[41,53–55]), but it may be applied to all social foragers.

A detailed description of the model following the
ODD (Overview, Design concepts, Details) protocol
[56,57] is provided in the electronic supplementary
material, appendix A. Most readers may find the
description below sufficiently informative.
2.1. The population

We simulated a population of n haploid agents. Each
agent is defined by four genetic loci: (i) a foraging strat-
egy locus, F, which defines the agent’s probability of
applying the producer or scrounger strategy; (ii) a
learning rule locus, L, which determines the resolution
at which the agent studies the environment; (iii) an
individual learning locus I, which determines whether
the agent learns while producing; and (iv) a social
learning locus C, which determines whether the agent
learns while scrounging (see the detailed description
of all genes given below). The four genes give rise to
J. R. Soc. Interface (2011)
24 possible genotypes, but owing to epistatic effects
they produce only 10 phenotypes (tables 1 and 2). All
agents have the same lifespan, namely one generation
composed of J foraging steps executed simultaneously
by all agents during a ‘producer–scrounger game’ (see
below). All agents end their lives at the end of the
game and there is no overlap between generations.
Fitness is determined according to the agents’ accumu-
lated payoffs during the J steps of the game, and the top
50 per cent of agents are then selected to reproduce
asexually, each giving rise to two genetically identical
offspring (an extension of this type of model to include
sexual reproduction is in Arbilly et al. [58]). After pro-
duction of the new generation, mutation occurs at a
rate m ¼ 1/n at each locus. The population is followed
through G generations. It should be clear that although
we assume for simplicity that individuals are engaged
in a single game of J steps during their lifetimes, similar
results would be expected for repeated games of J steps
during each lifetime as long as learning starts anew for
each new game (i.e. repeated games are independent).



Table 3. Food patch parameters and expected values. E12 and E34 represent perceptual unification of two patches based on a
common visual cue (e.g. colour or shape); the black square and triangle and the white circle and pentagon represent possible
visual characteristics of the patches that may cause perceptual unification based on colour. The shapes and colours are shown
here only for illustrative purposes.

patch

E1 E2 E3 E4 E12 E34

parameter B O W B O W

nutritional value 4 1.500 0.750 0.250
probability of finding food 0.250 0.333 0.500 1
expected value 1 0.500 0.375 0.250 0.750 0.313
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The assumption that learning starts anew every gener-
ation may be realistic when the relevant cues for finding
food change over time or change when the environment
changes.

2.2. The environment

The simulated environment consists of four food patches
E1, E2, E3 and E4. The four patches are visually dis-
tinguishable from one another, but patches E1 and E2

have a common visual characteristic, for example, the
same colour, and so do patches E3 and E4; therefore,
these can be viewed as E12 and E34, respectively (see illus-
tration in table 3). We assume that the relative
frequencies of E1 and E2 within E12 and of E3 and E4

within E34 are equal. Each patch is represented by two
parameters: the probability of finding food items in the
patch, and the nutritional value of these items (table 3).
The two parameters were set to be negatively correlated,
so that the best food (the food with the highest nutritional
value) is the least likely to be found. This environmental
set-up represents a non-trivial learning task and is likely
to be common in nature (valuable food items may be
depleted sooner and become less common). To simplify
the simulation, patch parameters remained constant
throughout the game (no depletion during the game),
and the environment had no spatial structure.

2.3. Foraging strategy

The foraging strategy locus (F) determines the agent’s
probability of applying a producer strategy at each step
of the producer–scrounger game described below, with
the complementary probability of applying a scrounger
strategy. Following preliminary simulations showing the
emergence of a bi-allelic population (see explanation in
the ODD protocol format of appendix A), we assumed
two alternative foraging alleles: F1, whose carriers
have a probability 1.0 of adopting a producer strategy,
and F2, whose carriers have a probability of 0.5 of
applying the producer strategy and 0.5 of applying the
scrounger strategy (i.e. follow others). The F1 and F2

alleles were assigned randomly with equal probability
to the n individuals in the first generation.

2.4. Learning strategy

An agent’s learning strategy is defined by two genes:
The I gene determines whether the agent applies indi-
vidual learning (I1 allele) or does not (I0 allele), and
J. R. Soc. Interface (2011)
the C gene determines whether the agent applies
social learning (C1 allele) or does not (C0 allele). The
social learning gene C is irrelevant for pure producers (F1

carriers) as social learning takes place while scrounging
from others (table 2). However, part-time scroungers (F2

carriers) may exclusively adopt individual learning (I1C0

genotype), exclusively adopt the social learning strategy
(I0C1 genotype) or use a strategy combining both individ-
ual and social learning (I1C1). In the first generation, all
agents are assigned the non-learning alleles I0 and C0

and alleles I1 and C1 are introduced into the population
by random mutation.

2.5. Learning rules

Learning may take place both when an agent acts as a
producer and when it acts as a scrounger (see above).
The value of the food item it has obtained (zero in
the case it has obtained no food) updates the agent’s
memory, and this information is used in the agent’s
subsequent producing steps to decide in which patch
to search for food. Memory is updated using a linear
operator rule [59–61], also known as the weighted
return rule [16], which yields for each patch a weigh-
ted average of the most recently acquired payoff and
previous payoffs, according to the equations:

Mi;tþ1 ¼ aMi;t þ ð1� aÞYi;t ; t ¼ 1; 2; . . . ; J ;

where Mi,t is the value of patch Ei in the agent’s
memory at step t, and Yt is the updating vector: Yi,t

equals the payoff obtained at step t if patch Ei was vis-
ited at step t (i.e. only the memory of the visited patch
is updated, while memories for the other patches do not
change). Here, a (0 � a � 1) is a memory factor
describing the weight given to the agent’s past experi-
ence. Note that when learning individually (while
producing), Yi,t is the payoff the producer initially
obtains. When learning socially (while scrounging),
Yi,t might be viewed as the payoff the scrounger
observes to be obtained by the producer, or the payoff
the scrounger actually receives (i.e. after deducting
the finder’s share, see game description below).
Although the usual definition of social learning is the
former [27], we model it here as the latter, as we believe
that in a realistic producer–scrounger game, it is much
easier for scroungers to obtain information on what they
actually received than on what the producer found.
However, we also carried out simulations in which
scroungers updated their memory using their
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observation of what the producer found; these show
qualitatively similar results, and are presented in the
electronic supplementary material, appendix B. For
the first step, Mi,1 are set to be the mean of expected
values of all four patches (Mi,1 ¼ 0.53 for all i).

Following Arbilly et al. [44], who found that learning
complexity may interact with the performances of social
foraging strategies, two learning rules are defined by
the alleles at the learning rule locus. The first is a com-
plex learning rule (allele L1) that views the environment
in full detail, as composed of the four food patches
E1, E2, E3, E4. The second is a simple learning rule
(allele L2) that views the environment as composed of
only two patches, E12 and E34 (table 3). Note that
with the complex learning rule, individuals can poten-
tially learn to prefer the patch with the highest
expected value (table 3; patch E1, expected value ¼
1.0), while with the simple learning rule they can at
best learn to prefer the E12 combination (with an
expected value of 0.75). Thus, if applied successfully,
complex learning should be better than simple learning.
However, as complex learning divides its sampling steps
between four patches in memory representation (rather
than two), it is more likely to involve sampling errors
when the total number of learning steps is small (see
extensive analysis of this aspect in [44]). Assuming
that complex learning is more costly, a fractional deduc-
tion of 0.01 from the cumulative payoff was made for all
agents carrying the L1 allele (see [44] for the analysis of
different levels of this cost). A third allele L0 results in
no learning, and for carriers of L0, patch information
is not stored in memory and the patch in which to
forage when producing is chosen at random (with an
expected payoff of Mi,t ¼ 0.53 that remains constant
throughout the game). In the first generation, all
agents are assigned allele L0, and alleles L1 and L2 are
introduced into the population by random mutations.
Note that for carriers of the non-learning allele L0, the
learning genes I and C that were described above (learn-
ing individually and/or socially) are not relevant.

To account for the possibility that learning while
scrounging from others may be inaccurate, we include
u as the probability of attributing the scrounged
payoff in the scrounger’s memory to a different patch
from the one in which it was actually obtained. The
payoff can be erroneously attributed with equal
probability to any of the other patches.
2.6. Decision rule

When producing, the agents decide in which patch to
forage based on the information acquired and updated
according to the learning process described above. We
used the exponential (logit) response rule (following
[62–65]) according to which at step t, patch Ei is
chosen with a probability based on its relative weight
in memory (Mi,t), using the expression:

pi;t ¼
eMi;t

P4
k¼1 eMk;t

:

This expression holds for complex learners (L1

carriers) that distinguish between all four patches;
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simple learners (L2 carriers) use the same expression
but k goes from 1 to 2 (rather than from 1 to 4). The
patches’ variability results in highly dynamic memory
values that do not necessarily approximate the patches’
nutritional value; the use of an exponential ratio pre-
vents choice rigidness in the case of values that are
close to zero, and allows more frequent sampling of
seemingly less attractive patches than a simple ratio.
2.7. The producer–scrounger game

As described above, the agents’ lifespan is composed of
J steps. Each step begins with a choice of foraging strat-
egy (producing or scrounging) according to the agent’s
foraging allele (see above). Agents with allele F1 (they
always search), or agents with allele F2 (they use the
producer strategy with a probability of 0.5), choose a
patch to forage in (based on the above learning and
decision rules) and receive a payoff (or not) according
to patch parameters described in table 3. Agents with
allele F2 that act as scroungers are then assigned to pro-
ducers to simulate a scrounging process. We first
assume that at each step, scroungers are able to dis-
tinguish successful producers from producers that
failed to find food, and join only successful producers
that can be identified by their feeding behaviour (see
[66] for supporting evidence). We also include a prob-
ability b of erroneous joining (i.e. joining producers
that did not find food) and examine its effect on the
results. A producer in our game can be joined by only
one scrounger, and the payoff is divided between the
two agents (such that a finder’s share, namely half the
payoff, always goes to the producer). Since assignment
of scroungers to producers is completely random, it is
possible for a scrounger to be left with no payoff if the pro-
ducer to which it was assigned has already been joined by
another scrounger, while some producers may not be
joined by any scroungers. This game structure is some-
what different from a game in which any number of
scroungers can join a producer (see [59,67]), but it leads
to the same frequency-dependent dynamics typical of a
producer–scrounger game.
3. RESULTS

3.1. Coevolution of individual and social learning
in the producer–scrounger game

We initially investigated the coevolution of individual
and social learning in the producer–scrounger game
without any of the errors that may disturb the social
learning process (u ¼ 0 and b ¼ 0, i.e. assuming that
social learners identify patch types correctly, and join
only producers that found food). An analysis of pheno-
type frequencies for various values of J, the number of
steps, is shown in figure 1 (results of the same simu-
lations where social learners’ memory is updated with
the observed producer’s finding appear in electronic
supplementary material, appendix B, figure A). All
populations begin on average as half pure producers
(F1) and half part-time scroungers (F2), which are all
non-learners (L0I0C0), but as long as learning has an
advantage over non-learning (J . 5, figure 1b–f), the
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Figure 1. Mean phenotype frequency and standard error in gen-
erations 1501–3000, across 10 repeats of the simulation for each
value of the number of steps J ((a) J ¼ 5; (b) J ¼ 10; (c) J ¼ 30;
(d) J ¼ 50; (e) J ¼ 70; (f) J ¼ 100). Population size n ¼ 300,
number of generations G ¼ 3000, memory factor a ¼ 0.5,
probability of erroneous joining b ¼ 0, probability of social
learning error u ¼ 0. Phenotypes 1–10 are as described in
table 2. Phenotypes 7 and 8 are the part-time scroungers that
apply exclusively social learning using simple and complex learn-
ing rules, respectively. Missing error bars imply that the
standard error is too small to be visible. Complete fixation of
dominating strategies was prevented by recurrent mutations.
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part-time scroungers that are also exclusively social
learners (F2I0C1 genotype) evolve to dominate the
population almost completely. Whether the exclusively
social learners evolve to apply the simple or the complex
learning rule depends on the number of learning steps
available to them: for example, for J � 70, complex
learning is always the sole learning rule allele
(figure 1e); for J ¼ 30 steps, the simple learning rule
L2 is the fitter rule (figure 1c) and for J ¼ 50, the two
J. R. Soc. Interface (2011)
rules may evolve alternately, with some advantage to
the simple learning rule (figure 1d).

An example of typical evolutionary dynamics within
generation lifespan J ¼ 70 is shown in figure 2, and
illustrates how within a few hundred generations,
part-time scroungers dominate the population almost
completely, employing social learning as their only
learning strategy and using a complex learning rule
(the F2L1I0C1 genotype). Although individual learning
evolved in some cases for a short period within the
first 500 generations in various allelic combinations, it
became extinct as soon as the exclusive social learning
genotype I0C1 evolved.

To understand why exclusive use of social learning
was the most successful strategy, we explored the
patch choice distribution developed by each learning
strategy during the game. Using a non-evolutionary
simulation, we analysed the distribution of patch
choice by each strategy during repeated one-generation
games of different lengths (different number of steps J ),
in populations of part-time scroungers. We compared
exclusively social learners, exclusively individual lear-
ners and players that learn both individually and
socially with all players using the complex learning
rule. The results of this analysis are depicted in
figure 3. Since patch E1 has the highest expected
payoff (table 3), a successful learning process based on
the complex learning rule should lead to its preference
over the other three patches. As expected, a qualitative
preference is produced by all three strategies, but the
magnitude of this preference varies. For games longer
than J ¼ 37 steps, exclusively social learners developed
a stronger preference for the correct patch (E1) than
players using the other two strategies (compare
figure 3c with figure 3a,b). As a result, exclusively
social learning also yielded consistently higher mean fit-
ness (cumulative payoff) than the other two strategies
(figure 4).

It is important to note that patch choice for each
learning strategy (and its fitness consequences) was
analysed in populations applying that strategy alone
(pure populations). Thus, the better patch choice
among exclusively social learners must have been a
result of socially acquired information alone without
any individually produced experience (see §4).
3.2. Learning from unsuccessful others

So far, we have assumed that scroungers join only pro-
ducers that have found food (b ¼ 0) and therefore learn
socially to associate patch type with the nutritional
value of the food item (minus finder’s share—see
model description) but never learn socially to associate
this patch type with a complete failure (i.e. with a zero
payoff). This situation changes when scroungers erro-
neously join producers who did not find food (b . 0),
and as a consequence, experience some of the payoff
variability from the high-risk high-reward patches.
The effect of b on the success of exclusively social learn-
ing indicates that part-time scroungers can afford
erroneous joining of up to 10 per cent and still maintain
exclusively social learning (figure 5; see also electronic
supplementary material, appendix B, figure B).
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However, as b increases (e.g. b ¼ 0.15, 0.2), the popu-
lation is gradually taken over by pure producers that
use the complex learning rule and do not engage in
any social learning (figure 5, phenotype 3). The evol-
utionary dynamics of each of the 10 runs with b ¼

0.15 (figure 5b) are not shown here, but were dominated
by the exclusively social learner phenotype once it
J. R. Soc. Interface (2011)
evolves; however, this could take a long time (more
than 2000 generations in two of the cases, and in two
cases out of the 10 it did not happen at all).
3.3. Errors in learning from others

As mentioned earlier, with probability u, a social lear-
ner may erroneously attribute the scrounged payoff
acquired in a particular patch to a different patch
type from the one in which it was actually found. Simu-
lation results for various values of u are presented in
figure 6 (see also electronic supplementary material,
appendix B, figure C). Values of u � 0.2 do not
reduce the success of exclusively social learners (pheno-
type 8, figure 6a). As u increases to 0.5 (figure 6b,c), the
frequency of exclusively social learners decreases and
their place is taken by the pure producer-complex lear-
ner phenotype 3, as well as by part-time scroungers
applying the combined individual and social learning
strategy (phenotypes 9 and 10). Interestingly, when
exclusive social learning decreases in frequency, it also
evolves an association with the simple learning rule
rather than with the complex learning rule (figure 6c,
phenotype 7). The specific timing of this switch in
terms of the value of u depends on the relation between
the number of steps J and complex learning cost g

(which was set here to 0.01): exclusive social learning
will evolve an association with the simple learning
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3000 across 10 repeats of each simulation. Population size
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erroneous joining b ¼ 0. Phenotypes 1–10 are as described
in table 2 (successful phenotypes here: phenotype 8, part-
time scrounger that applies exclusively social learning and a
complex learning rule; phenotype 3, pure producer that uses
a complex learning rule).
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rule at lower values of u if we increase the complex
learning cost g, and at higher values of u if we increase
the number of steps J. However, the results remain
qualitatively similar (not shown, see related analysis
in [44]). At u ¼ 0.7 (figure 6d), the error in socially
acquired information makes social learning disadvanta-
geous, and part-time scroungers evolve into exclusively
individual learners (phenotype 5).
4. DISCUSSION

4.1. Social learning as an exclusive means to
acquire information

Our simulations show that in a variable environment
where high payoffs are associated with greater risk,
social learning may have an advantage over individual
learning, to the extent of becoming the population’s
only means of acquiring information. This case is
indeed extreme; however, we believe that it provides
an important insight into the evolution of individual
and social learning. Individual learners update their
memory with their personal experience, which includes
successes and failures in their searching (producing)
activity. Failures (with zero payoffs) are most likely to
occur in the patches that are, on average, the most
highly rewarding (E1 and E2; table 3). Remembering
these failures, individual learners may develop an aver-
sion towards those patches and avoid them in their
subsequent producer steps. Moreover, several learning
J. R. Soc. Interface (2011)
models (e.g. [13,16]) have shown that this risk aversion
emerges again after each failure, despite occasional suc-
cessful episodes. In our simulation, this effect is
responsible for maintaining the low level of average E1

preference among individual learners (figure 3a,b).
Exclusively social learners, on the other hand, update
their memory only while scrounging from others, and
do not remember (by definition) their own failures as
producers. Thus, as long as the chance of erroneously
joining an unsuccessful producer (b) is zero, exclusively
social learners remember only successful experiences.
This circumvents the development of risk aversion to
variable patches, and allows development of a strong
preference for the E1 patch, which offers food items
with the highest nutritional value (i.e. the highest
payoff when food is found). Since E1 is also the patch
with the highest expected reward (despite its high
risk), part-time scroungers that learn to prefer it
during their searching steps enjoy the best payoffs and
hence have the highest fitness. Note that relying even
partly on individual learning was sufficient to reduce the
proportion of correct choices (compare figure 3b and 3c)
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and consequently to reduce fitness (figure 4). These
dynamics also account for the success of learning over
non-learning in games as short as J ¼ 10 steps when
exclusively social learning is possible (figure 1). Other
simulations (not shown) have shown that exclusively indi-
vidual learning requires games to be about twice as long in
order to evolve, as it requires a longer sampling period to
overcome the error resulting from risk aversion (see also
[68], and extensive analysis in [44]).

The risk aversion we see in our simulation is some-
what related to a phenomenon known as the ‘hot
stove effect’ [15], or ‘stickiness’ [12], where aversive
experiences prevent future exploration of a potentially
good option. It is also related to learners’ tendency to
underweight rare events and to choose the option that
has been better most of the time [14,69]. However,
while these phenomena describe maladaptive outcomes
of individual learning, our study suggests that the
same learning rules may become highly adaptive when
applied in the context of social learning.

Finally, we have shown both in evolutionary and
non-evolutionary simulations that in the absence of
erroneous joining (b ¼ 0) and social learning error
(u ¼ 0), a population composed purely of exclusively
social learners is the most fit. This may seem surprising
since, unlike previous models where exclusively social
learning was facilitated by information transfer from
one generation to the next (e.g. [70]), in our model all
the information had to have been generated anew at
every generation without individual learning. If there
are no individual learners in the population, who pro-
duces the information? We assume that all agents are
born naive, with no knowledge about the environment,
and in their first step as producers they choose a patch
randomly. Nevertheless, if successful, this random
choice produces new information for potential scroun-
gers who will register this success (as they are all
social learners) and will take it into account when
choosing a patch as producers; then they too will be
joined by scroungers if they succeed in obtaining a
payoff. Thus, the only source of information available
to the population derives from the random successes
that become public information.

While we demonstrated the advantage for exclusively
social learning in an environment where the highest
expected payoff is associated with both the lowest prob-
ability of finding food and the highest nutritional value,
we can show that for this advantage to persist, the
patches learned by social learners do not necessarily
have to be those with the highest possible expected
payoff. It is sufficient that they are better on average
than the safe patches. For example, replacing the
second best patch (E2) with a patch that offers nutri-
tional value of 19 with a probability of 0.05 (expected
value ¼ 0.95), resulted in a situation where exclusively
social learners still prevailed but learned to prefer this
second best patch (unpublished simulations). This is
to be expected because learning only from successful
foraging events led social learners to prefer the patch
with the highest nutritional value without being able
to tell its expected payoff. Nevertheless, as long as
this patch is better on average than the patch preferred
by individual learners, social learners will prevail. On
J. R. Soc. Interface (2011)
the other hand, in a situation where the patch offering
the highest nutritional value has a worse average payoff,
exclusive social learning will result in maladaptive
choices and therefore will not evolve (unpublished
simulations).
4.2. Errors diminishing the success of social
learning

We also examined the effect of increasing the erroneous
joining probability b. The part-time scrounger exclu-
sively social learner F2L1I0C1, withstood erroneous
joining probabilities of up to 0.15 (although with
delayed takeover). Interestingly, the failure of exclu-
sively social learners with b � 0.2 is mainly a result of
inefficient scrounging rather than a result of inefficient
learning. Part-time scroungers were already subject
to the risk of not finding a successful producer to join.
Adding a substantial probability of joining unsuccessful
producers reduced their chances of success even further.
Indeed, as a result, they were replaced by pure produ-
cers that were not affected by b, and could actually
benefit indirectly from the fact that more scroungers
would fail to join them when they did find food. The
assumption that scroungers will mostly attempt to
join successful producers is critical for our result—
both in maintaining part-time scroungers in the
population and in finding that exclusively social learning
is the fittest learning strategy (since its rapid acquisition
of information relies on joining successful producers).
This assumption is common in simulations of the
producer–scrounger game (e.g. [59,67]), and is also sup-
ported by recent observations in house sparrows, where
68 per cent of scrounging events in flocks of adult spar-
rows resulted in the recovery of food, while the
probability of finding food by chance was only 16 per
cent [66]. In light of these experimental and theoretical
results, it is likely that indiscriminate joining would be
rather costly and should occur only to a limited extent.

To account for the possibility that social learning
while scrounging is cognitively more difficult and may
be subject to errors, we considered the effect of learning
errors during scrounging steps (with probability u).
Some experimental evidence suggests that scrounging
from others may inhibit the learning of foraging cues
[71–73], but in some species scrounging does not seem
to present such a problem [74,75]. In either case, our
analysis suggests that learning errors during scrounging
are quite affordable for part-time scroungers; they will
adhere to exclusive social learning even at a learning
inaccuracy as high as 40 per cent. However, we found
that this rate of learning errors during scrounging
selects for using a simple rather than a complex learning
rule. This is consistent with our previous analysis of the
evolution of simple and complex individual learning
rules, where simple learning prevailed when the effec-
tive number of learning steps was relatively small [44].
The effect of learning errors while scrounging may
be similar because it reduces the number of effective
learning steps.

Considering how cognitive abilities may evolve, it is
quite likely that they begin as low-performance abilities,
that is, with high error frequency, and improve through
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selection over the course of generations. In that sense, it is
interesting that low performance of exclusively social
learning (with u as high as 0.5) is nevertheless beneficial
enough for social learning to evolve, hinting perhaps
that even if this sort of ability initially appears in a
population in a primitive form, it will have no trouble
spreading and improving (i.e. decreasing u) quite rapidly.

4.3. Rogers’ paradox, risky payoffs and the
evolution of social learning

The notion that social learning accelerates knowledge
acquisition compared with individual learning is hardly
new. Learning by observing successful others can save
various costs of individual exploration, including the
cost of time. However, our model demonstrates not
only that social learning can expedite knowledge acqui-
sition but also that by ignoring personal experience and
relying solely on social information, a more adaptive be-
haviour can develop. These results overcome the paradox
described by Rogers [23] and that has been debated
extensively in the literature (e.g. [2,3,24,29,70,76]). Our
results demonstrate that in a variable environment,
where the most rewarding behaviour comes with a risk,
Rogers’ paradox may not exist. On the contrary, a learn-
ing strategy involving individual learning is not adaptive,
and exclusive use of social learning produces better
knowledge and increases the population’s mean fitness.
Of course, this scenario is rather extreme; a situation
where the individual completely disregards its personal
experience is not very plausible. Yet, our results highlight
the potential importance of the interaction between vari-
able payoffs and social learning for understanding the
evolution of both learning rules and social learning.

Finally, there is evidence that animals (and humans)
frequently rely on socially acquired information more
than on their own individual experience, to the extent
of adopting maladaptive behaviours [7,32–38]. The
advantage of exclusively social learning in a variable
environment demonstrated by our results suggests one
possible explanation for this phenomenon.
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