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Abstract

Background: Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct
chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately 25uC) exhibits relatively low
plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few
degrees at the maximum.

Principal Findings: We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-
instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25uC with those acclimated at constant
15uC followed by constant 6uC for 2 d (15uCR6uC) showed that long-term cold acclimation extended the lethal time for
50% of the population (Lt50) during exposure to constant 0uC as much as 630-fold (from 0.137 h to 86.658 h). Such marked
physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0uC differs from that
caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of
proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring
of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glyceropho-
sphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glyceropho-
sphocholines.

Conclusion: Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation
and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring.

Citation: Koštál V, Korbelová J, Rozsypal J, Zahradnı́čková H, Cimlová J, et al. (2011) Long-Term Cold Acclimation Extends Survival Time at 0uC and Modifies the
Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster. PLoS ONE 6(9): e25025. doi:10.1371/journal.pone.0025025

Editor: Amit Singh, University of Dayton, United States of America

Received June 27, 2011; Accepted August 22, 2011; Published September 21, 2011

Copyright: � 2011 Kostal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Czech Science Foundation grants 206/07/0269 and 203/09/2014. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kostal@entu.cas.cz

Introduction

Genus Drosophila comprises almost 1500 described species and is

thought to be of tropical origin [1]. The ancestral level of cold

tolerance in this genus is suggested to be relatively low [2], and

most recent species are chill susceptible [3]. This is also true for a

common model of modern biology, the fruit fly Drosophila

(Sophophora) melanogaster. Its pre-adult development halts at

temperatures below approximately 10uC [4,5]. The adults and

pupae die when chilled to temperatures below 25uC even for just

2 h, and the larvae are even more chill susceptible [6]. The

following are the reasons for studying cold tolerance in this and

other such non-cold-hardy organisms. First, the accumulated

knowledge about D. melanogaster biology makes it a promising

model to investigate detailed mechanisms at the suborganismal

level. Second, different drosophilid species widely differ in their

cold tolerance [7,8]. For instance, the larva of the temperate/

subarctic drosophilid Chymomyza costata represents one of the most

cold-hardy organisms on the earth as it survives cooling to a

temperature as low as that of liquid nitrogen (2196uC) [9,10].

Third, the level of cold tolerance is a subject of significant

phenotypic plasticity [11–13]. Thus, both short-term cold

hardening and long-term cold acclimation considerably improve

cold tolerance of D. melanogaster [6,14–17]. Fourth, knowledge on

cold tolerance may help in the development of techniques for long-

term storage and/or cryopreservation of Drosophila strains for

research and industry [18].

Previous studies on the cold tolerance of D. melanogaster focused

mainly on the cold shock responses. Cold shock occurs on rapid

cooling without ice formation [19] and induces a specific type of

chilling injury (which will be described later). Thus, most previous

studies assessed the lower lethal temperatures (LLTs) for relatively

brief exposures (hours) to relatively severe cold (subzero temper-

atures close to the supercooling point [SCP]). In addition, many

studies have investigated the influence of rapid cold hardening

(RCH) on LLTs and cold shock survival [6,13–16,20–25]. RCH is
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a quick cold acclimation response that occurs within minutes to

hours of pre-exposure to a non-lethal low temperature and

improves survival after subsequent cold shock [26]. Cold shock

response is just one aspect of cold tolerance, however. The injuries

caused by low temperatures are likely numerous, heterogenous,

and complex. The three basic types of cold injury generally

distinguished [27] are freezing of body water, direct chilling injury,

and indirect chilling injury. Freezing of body water may result in

mechanical damage to delicate intracellular ultrastructures and the

extracellular matrix. It also causes cellular dehydration and freeze

concentration of solutes, likely causing them to reach toxic

concentration levels [28]. Direct chilling injury results from cold

shock, which may cause dissociation of multimeric macromolec-

ular complexes, protein denaturation [29,30], membrane lipid

phase transitions, massive ion leakage, and cell death [31,32].

Indirect chilling injuries accumulate over relatively long exposures

(days to months) to relatively mild cold (temperatures well above

the SCP, often around or above zero). Disturbed coordination of

various metabolic pathways (disorder), excess production of

reactive molecules (oxidative stress), disturbance of ion homeosta-

sis, or depletion of available free chemical energy (basically

adenosine triphosphate [ATP]) are the most likely causes of

indirect chilling injury [33–37].

In contrast to the wealth of studies on cold shock responses of D.

melanogaster, our knowledge on how it copes with indirect chilling

injuries and what is the role of long-term cold acclimation is

considerably less. Previous studies have indicated that the ability of

the third-instar larvae of D. melanogaster to survive at 0uC is very

low. For instance, a study [6] reported less than 20% survival after

2-h-long exposure to 0uC. It is believed that long-term cold

acclimation in insects is based, at least partly, on the accumulation

of cryoprotective solutes and restructuring of biological mem-

branes [27,38–40]. Cold acclimation of the larvae of C. costata is

associated with extensive remodeling of the lipid composition of

their membranes [41] and with the accumulation of high amounts

of proline, which is directly associated with the ability to survive

freezing and cryopreservation in liquid nitrogen [10,42].

The main objective of this study was to examine the influence of

long-term cold acclimation on the development of indirect chilling

injuries (mortality) in the third-instar larvae of D. melanogaster. The

larvae were acclimated by rearing at different constant temper-

atures of 25uC, 15uC, and 15uC followed by 6uC. Survival tests

were performed at constant 0uC. Third-instar larvae were selected

in order to obtain the comparative data for C. costata, which attains

its maximum cold tolerance (survival in liquid nitrogen) in this

developmental stage [10]. We tested two related hypotheses that

long-term cold acclimation of D. melanogaster larvae (a) improves

their cold tolerance (extends Lt50 at 0uC) and leads to the

development of the ability to survive freezing injury and (b)

modifies the metabolomic profiles of organic acids, free amino

acids, free fatty acids, sugars, and polyols and stimulates

restructuring of biological membranes.

Methods

Insect rearing and acclimation
The laboratory stock of fruit flies, Drosophila (Sophophora)

melanogaster (Meigen, 1830), strain Oregon, was maintained at

constant 18uC with 12-h/12-h light/dark (L/D) cycle on a diet

containing agar (1%), sugar (5%), yeast (4%), cornmeal (8%), and

methylparaben (0.2%). For experiments, approximately 30 female

flies that were 5- to 10-d-old were allowed to lay eggs in a vial

(40 mL) containing 5 mL of standard diet, for 24 h (one L/D

cycle). Thereafter, the flies were removed from the vial, and the

embryos and larvae developing in the diet were raised under the

following three different acclimation treatment conditions.

(i) 25uC acclimation—rearing at constant 25uC with 12-h/12-

h L/D cycle for 5 d

(ii) 15uC acclimation—rearing at constant 15uC with 12-h/12-

h L/D cycle for 14 d

(iii) 15uCR6uC acclimation—rearing at constant 15uC with 12-

h/12-h L/D cycle for 14 d, followed by rearing at constant

6uC and continuous darkness for 2 d.

We sampled pre-wandering larvae of similar physiological age

(but different ages in days) in all the treatments. At the end of an

acclimation treatment, when the first wandering larvae occurred,

the largest specimens of third-instar larvae were collected from the

diet and subjected to survival experiments or processed for

biochemical analyses. To avoid thermal stress, the larvae were

washed out of the diet by using water of the same temperature as

that in the respective treatment.

Survival at low temperatures
For survival experiments, groups of approximately 20 pre-

wandering larvae were placed in 1 g of larval diet in a plastic tube

(diameter, 1 cm; length, 5 cm), which was plugged with artificial

cotton. The larvae were then exposed to either (a) constant 5uC or

6uC (maintained in a programmable thermostat, F32-ME; Julabo,

Seelbach, Germany); or (b) constant 0uC (maintained in melting

ice); or (c) a temperature program (set in the programmable

thermostat F32-ME in combination with a temperature probe,

TC-08; Pico Technology, St. Neots, United Kingdom). The

temperature program started at 21uC and comprised three steps:

(i) cooling to 22uC at a rate of 0.033uC min21 (30 min); (ii)

cooling to 25uC at a rate of 0.1uC min21 (30 min); and (iii)

heating to +5uC at a rate of 0.33uC min21 (30 min). Thus, the

larvae spent a total of 75 min at subzero temperatures. At the start

of the program, a small ice crystal was either added on the surface

of diet (freezing condition) or not added (supercooling condition).

Adding the ice crystal resulted in an almost immediate freezing of

water in the diet and, probably, ice inoculation and freezing of

larval body fluids. When no ice was added, the diet did not freeze

(no freeze exotherm observed), and the larvae probably super-

cooled. After cold exposure, the tubes with the larvae were kept at

18uC with 12-h/12-h L/D cycle for 1 week, and pupariation was

scored as a criterion of survival.

Physiological parameters
Individual fresh mass (FM) of 20 larvae in each acclimation

treatment was measured using a Sartorius electronic balance

(precision, 0.01 mg). The weighed specimens were dried at 60uC
for 3 d, and their dry mass (DM) was measured. Water mass (WM,

in mg) and hydration (H, in mg; water?mg21 DM) were calculated

from the gravimetric data.

A total of 5 larvae in 4 replications were processed from each

acclimation treatment to determine the basic biochemical

parameters. Total proteins were measured by the bicinchoninic

acid protein assay [43] after extraction of total water-soluble

proteins by using 50 mM Tris, pH 6.8, followed by re-extraction

of detergent-soluble proteins from a centrifugation pellet in the

same buffer by the addition of 0.5% deoxycholate and 0.1%

sodium dodecyl sulfate (SDS). Total lipid content was measured by

spectrophotometric analysis with phosphoric acid-vanillin solution

[44] after extraction of lipids by using chloroform:methanol

solution (2:1, v/v) [41]. Glycogen content was measured by
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colorimetric determination by using phenol and concentrated

sulfuric acid [45] after extraction of glycogen in hot alkali [46].

SCP refers to the temperature at which spontaneous freezing of

body water occurs during gradual cooling of insect specimen. A

constant cooling rate of 0.2uC min21 was used and the minimum

temperature was set to 230uC. The individual larvae were

attached to thermocouples (type K, Pico Technology) using

thermally conductive paste Cooler Master HTK-002 (Sundial

Micro, Ontario, CA, USA).We measured the SCP of 16 larvae in

each acclimation treatment by recording the exotherms associated

with water-ice phase transition, using the programmable thermo-

stat F32-ME (Julabo) in combination with the temperature data

logger TC-08 (Pico Technology).

Metabolomic profiling
The metabolomic profiles were extensively investigated by a set

of targeted and nontargeted mass spectrometry (MS)-based

analytical methods. Whole larvae (10 larvae in 4 replications from

each acclimation treatment) were homogenized and extracted in

70% ethanol. Low-molecular-weight sugars and polyols were

quantitatively determined in the ethanolic extracts after o-

methyloxime trimethylsilyl derivatization and subsequent analysis

by gas chromatography (GC) coupled to MS (GC/MS), as

described previously [47]. Nontargeted metabolomic profiling was

done by performing a combination of GC/MS and liquid

chromatography (LC) coupled to MS (LC/MS) in the same

ethanolic extracts after their treatment with ethyl chloroformate

under pyridine catalysis and simultaneous extraction in chloro-

form [48,49].

GC/MS metabolite profiles were obtained on a VF-17 capillary

column (Agilent, Santa Clara, CA, USA) coupled to a dual-stage

quadrupole (DSQ) mass spectrometer (Thermo Fisher Scientific,

San Jose, CA, USA) equipped with an electron impaction ion

source and operated in the full-scan mode from 40 to 500 amu. A

Thermo Trace gas chromatograph with a programmable injector

and interface hold at 230uC was directly coupled to the mass

spectrometer via an interface held at 250uC. A 0.5-mL aliquot of

the chloroform extract was injected in the splitless mode into the

GC/MS column. Oven temperature was initially maintained at

50uC for 1 min. Thereafter, it was raised to 302uC at a rate of

12uC min21 and maintained for 2 min. Helium was used as the

carrier gas and delivered at a constant flow rate of 1.2 mL min21.

LC/MS metabolite profiles were measured after evaporating a

30-mL aliquot of the chloroform extract to dryness by using a mild

stream of nitrogen. After dissolution in 200 mL of the LC mobile

phase, a 5-mL aliquot was injected into and separated on a Kinetex

C18 column (15062 mm; internal diameter [ID], 2.6 mm;

Phenomenex, Torrance, CA, USA) at 35uC at a flow rate of

200 mL min21, using a gradient elution with the mobile phase

consisting of (A) 5 mM ammonium formate in methanol and (B)

5 mM ammonium formate in water. The gradient elution

program was linear from 30% to 100% A for 12 min, then held

at 100% A for14 min, and finally equilibrated for 5 min.

The nontargeted GC/MS and LC/MS data were processed

with the Thermo Scientific Xcalibur 2.1 software and an in-house

developed Metabolite Mapper platform, which provides automat-

ed peak detection and metabolite deconvolution by employing

retention time and mass spectral and detector response features,

followed by time alignment of the data obtained in each particular

analysis for a defined experimental sample set and generation of

data matrix, which is automatically exported to a predefined

Microsoft ExcelTM spreadsheet for further statistical processing.

The 39 major metabolites were identified against relevant

standards and further subjected to quantitative analysis by using

an internal standard calibration method. All chemicals used were

purchased from Sigma-Aldrich Co. (St. Louis, MO, USA), except

the isotope-labeled metabolites used as internal calibration

standards, which were obtained from Cambridge Isotope

Laboratories (Andover, MA, USA). Whole-body concentrations

of the metabolites were recalculated as mmol?L21 of whole body

water (mM).

Glycerophospholipids (GPLs)
Whole larvae (5 larvae in 8 replications from each acclimation

treatment) were homogenized and extracted in ice-cold chlor-

oform:methanol solution (2:1, v/v) by using a previously described

method [50,51]. After extraction, the solvents were evaporated

under a stream of nitrogen, and lipids were stored at 280uC until

analysis. High-performance LC (HPLC) combined with electro-

spray ionization MS (ESI-MS) [17,52] was performed on an LC

quadrupole (LCQ) ion-trap mass spectrometer (Thermo Fisher

Scientific) coupled to a Rheos 2000 ternary HPLC system (Flux

Instruments, Basel, Switzerland) equipped with a FAMOS

autosampler and Thermos thermostat. The stored dry samples

were dissolved in 1 mL of methanol, and 5-mL aliquots were

injected into a Synergi Polar HPLC column (15062 mm; ID,

3.5 mm; Phenomenex). The mobile phase consisted of (A) 10 mM

ammonium acetate in methanol, (B) 10 mM ammonium acetate in

water, and (C) isopropanol. A linear gradient of A:B:C changing

from 90:10:0 to 70:0:30 within 14 min was applied with a flow rate

of 300 mL min21. The column temperature was maintained at

30uC. The mass spectrometer was operated either in the positive

or the negative ion detection mode at +4 kV or 23.6 kV,

respectively. Capillary temperature was 240uC, and nitrogen was

used as both the sheath and the auxiliary gas. For MS2 and MS3

fragmentations, ion isolation windows were 5 Da and 2 Da,

respectively. The maximum ion injection time was 100 ms;

collision energies were 30% (MS2) or 35% (MS3); and mass

range of 600 Da to 800 Da was scanned every 0.5 s. The basic

chemicals used for extraction and analysis were purchased from

Sigma-Aldrich Co. Calibration standards were obtained from

Avanti Polar Lipids (Alabaster, AL, USA).

The GPL analysis results were expressed in relative values, i.e.,

relative proportion of each GPL species from the total of 100%.

Our analysis was focused on the major glycerophosphoethanola-

mines (GPEtns), glycerophosphocholines (GPChols), and glycer-

ophosphoserines (GPSers). The relative proportions of individual

fatty acyls (FAs) were calculated from the GPL data.

Statistical analyses
Survival data (proportions of pupariated larvae) were fitted to

exponential decay curves, using the following formula.

Y~Top(-KX),

where Top is survival in a control (untreated) group of larvae and

K denotes the slope of decay. The K parameters in the different

acclimation treatments were compared using the F-test. The time

of exposure to low temperature that was lethal for 50% of the

larvae in a sample (Lt50) was calculated from the exponential

curves.

One-way analysis of variance (ANOVA) tests were used to

analyze whether the acclimation treatments influenced the

physiological and biochemical parameters. Bonferroni post-hoc

tests were applied to identify the differences among the

acclimation treatments. The analyses were performed using Prism

v. 4 (GraphPad Software, San Diego, CA, USA).

Cold Acclimation of Drosophila melanogaster
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The complex association of metabolomic changes with

acclimation treatments was determined by principal component

analysis (PCA) with Canoco v. 4.52 for Windows (Biometris-Plant

Research International, Wageningen, The Netherlands).

Results

Long-term cold acclimation significantly improved
survival at low temperatures

We observed a clear acclimation effect of relatively low rearing

temperature of 15uC on subsequent survival at low temperatures

in the third-instar larvae of D. melanogaster. While Lt50 at 0uC was

as short as 0.137 h (8 min 13 s) for the larvae acclimated at 25uC,

it increased to 3.165 h (3 h 9 min 54 s) for those acclimated at

15uC. Survival of the 15uC-acclimated larvae further improved on

exposure to 6uC for 2 d. After this treatment, Lt50 at 0uC
increased to 86.658 h (3 d 14 h 39 min 29 s) (Fig. 1). The K

parameters of the survival curves differed significantly among the

three acclimation treatments (F-test: F = 154.0, degrees of freedom

of the numerator [dfN] = 2, degrees of freedom of the denomi-

nator [dfD] = 15; P,0.0001). We used the temperature of 6uC for

the acclimation treatment because this was the lowest temperature

at which no significant mortality was observed within the 2 d-long

exposure of the 15uC-acclimated larvae. In contrast, Lt50 was as

short as 32.356 h at 5uC (Fig. 1, inset).

The larvae did not show survival ability in conditions favorable

for external ice inoculation and partial freezing of their body

fluids. None of the larvae survived cooling to 25uC when freezing

of the surrounding diet was stimulated by adding a small ice

crystal. In contrast, relatively high proportions of the larvae

survived cooling to 25uC under the supercooling condition.

However, acclimation at 15uC or 15uCR6uC was a prerequisite

for their survival in supercooled state (Table 1).

Physiological and biochemical changes associated with
cold acclimation

Although the physiological ages of the larvae reared at 25uC
and those reared at 15uC were similar (the FM of the larvae was

consistently within 85%–95% of the ‘‘final’’ FM of the wandering

larvae in the respective treatment), the latter grew bigger and had

larger reserves of total lipids than the former (see Dataset S1 for

detailed results and statistical analysis). Hydration, total protein

content, and glycogen levels were similar in the larvae in the two

acclimation treatments. Further acclimation of the 15uC-reared

larvae at 6uC for 2 d resulted in significant reduction in FM, DM,

and glycogen levels, while hydration, total protein content, and

total lipid content remained constant. SCPs of the larvae in all the

Figure 1. Survival at low temperatures in variously acclimated third-instar larvae of Drosophila melanogaster. The three acclimation
treatments (25uC, 15uC, and 15uCR6uC) are explained in the text. Each point shows the mean 6 standard error of mean (SEM) of survival at 0uC in a
group of approximately 20 larvae (replications, 3–8; total, n). Survival data were fitted to exponential decay curves. The inset shows the survival of
15uC-acclimated larvae at two different temperatures, 6uC and 5uC.
doi:10.1371/journal.pone.0025025.g001

Table 1. Survival of variously acclimated 3rd instar larvae of
Drosophila melanogaster on freezing/supercooling to 25uC.

Acclimation
treatment

Cooling
condition# Total (n) Survival (%)

25uC freezing 30 0

supercooling 31 0

15uC freezing 57 0

supercooling 49 38.6

15uCR6uC freezing 38 0

supercooling 48 50.0

#See text for detailed description of the temperature program; larvae were
cooled in their standard diet and freezing was stimulated by adding a small ice
crystal on the diet surface.

doi:10.1371/journal.pone.0025025.t001
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three acclimation treatments were similar and relatively low

(means ranged between 219.9uC and 220.2uC; Dataset S1).

We investigated the changes in the profiles of 39 major

metabolites that were present in detectable amounts in most

samples and the identities of which were verified by MS. The

concentrations of approximately two-thirds of the metabolites

were significantly influenced by the acclimation treatments (see

Dataset S2 for a complete list of metabolites and statistical

analyses). PCA identified a group of metabolites that showed an

increase in concentration during the cold acclimation process

(Fig. 2). This group included citrate (no. 4), alpha-aminobutyric

acid (no. 7), proline (no. 14), asparagine (no. 15), glutamate

(no. 18), tryptophan (no. 26), putrescine (no. 28), and trehalose

(no. 39) (the numbers in parentheses correspond to the numbers

shown in Fig. 2; more details in Dataset S2). The details of the five

most abundant metabolites in this group are shown in Fig. 3. The

sum concentration of sugars plus polyols and that of free amino

acids increased during cold acclimation, while the sum concen-

tration of detectable organic acids decreased. The sum concen-

tration of free fatty acids remained unchanged (Fig. 2).

We identified 41 different GPLs (list and statistical analysis in

Dataset S3). Most of the GPL species were present in relatively

small proportions, not exceeding 1% of the total GPL pool. Almost

50% of the GPL species exhibited statistically significant

acclimation-related changes (Dataset S3). PCA identified two

GPEtns, GPEtn 16:0/18:2 (no. 18) and GPEtn 18:1/18:2 (no. 21),

which showed a close association with the most cold-hardy group

of larvae (Fig. 4). Detailed results for these two compounds are

shown in Fig. 5, which also illustrates some of the changes in

parameters calculated from the GPL composition data. The

relative proportion of total GPEtns was slightly lower in the 15uC-

acclimated larvae than in the 25uC-acclimated larvae, but it

significantly increased (from 57.0% to 65.2%) in the 15uCR6uC-

acclimated larvae. The relative proportions of total unsaturated

FAs and total 18-carbon FAs did not change significantly with cold

acclimation (Fig. 5).

Discussion

We found that long-term cold acclimation considerably

improved cold tolerance in the third-instar larvae of D. melanogaster.

A comparison of the larvae acclimated at constant 25uC with those

acclimated at constant 15uC followed by constant 6uC for 2 d

(15uCR6uC) showed that long-term cold acclimation extended the

survival time (or Lt50) at constant 0uC as much as 630-fold (from

0.137 h to 86.658 h) (Fig. 1). Our data indicate that LLT was also

shifted by cold acclimation, although this was not focused upon in

our study. About 50% of the larvae survived supercooling to 25uC
for a brief period when acclimated at 15uCR6uC, while none of

the larvae survived the same treatment when acclimated at 25uC
(Table 1).

Nature of cold injury and effect of cold acclimation
It is not easy to directly compare our results with those of other

studies on cold tolerance of D. melanogaster because, as pointed

earlier [11], various authors have used at least 27 different tests of

cold tolerance and assessed different metrics of response (survival,

chill coma onset or recovery, reproductive success). Most previous

studies have dealt with cold shock situation, and one clear

commonality can be derived: LLT is close to 25uC and is relatively

fixed [6,12–17,25]. This means that relatively low variability or

plasticity, spanning a range of only a few degrees, has been

observed for LLT at the evolutionary or physiological level,

respectively. Thus, LLT is similar in closely related Drosophila

species [2] in different populations of D. melanogaster [15,53] and in

different generations of experiments on the selection for cold shock

tolerance (low adaptive evolutionary variability) [14,25,54].

Similarly, both RCH and long-term cold acclimation have shown

relatively weak effects on LLT, shifting it by only a few degrees at

the most (low physiological plasticity associated with acclimation)

[15–17].

In contrast to the relatively fixed LLT, Lt50 at 0uC has shown

dramatic plasticity in response to long-term cold acclimation in D.

Figure 2. Principal component analysis showing the association between acclimation treatments (points) and concentrations of
metabolites (eigenvectors) in the third-instar larvae of Drosophila melanogaster. Red point, 25uC; green point, 15uC; blue point, 15uCR6uC.
The numbers (metabolites) are partially decoded in the text and completely listed in Dataset S2. PC1 axis explains 47.0% of the variation and PC2 axis
explains additional 31.5% of the variation (Monte Carlo test: F = 20.508; P = 0.0010). The eigenvectors extending beyond the inner and outer dashed
circles represent the compounds that fit the model by more than 60% and 90%, respectively. OA organic acids; FFA, free fatty acids; FAA, free amino
acids; PolyOH, sugars and polyols.
doi:10.1371/journal.pone.0025025.g002
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Figure 3. Acclimation-related changes in selected metabolites in the third-instar larvae of Drosophila melanogaster. Each column
represents the mean 6 standard deviation (SD) of 4 independent replications (10 larvae each). Influence of acclimation treatment on metabolite
concentration was tested by ANOVA followed by Bonferroni post-hoc test (means indicated with different letters are significantly different). Pro,
proline; Asn, asparagine; His, histidine; Glu, glutamate.
doi:10.1371/journal.pone.0025025.g003

Figure 4. Principal component analysis showing the association between acclimation treatments (points) and relative proportions
of glycerophospholipids (eigenvectors) in the third-instar larvae of Drosophila melanogaster. Red point, 25uC; green point, 15uC; blue
point, 15uCR6uC. The numbers (glycerophospholipids) are partially decoded in the text and completely listed in Dataset S3. PC1 axis explains 32.3%
of the variation and PC2 axis explains additional 31.3% of the variation (Monte Carlo test: F = 8.471; P = 0.0020). The eigenvectors extending beyond
the inner and outer dashed circles represent the compounds that fit the model by more than 60% and 90%, respectively. GPEtns,
glycerophosphoethanolamines; GPChols, glycerophosphocholines; GPSers, glycerophosphoserines; UFAs, unsaturated fatty acyls; 18C FAs, 18-
carbon fatty acyls.
doi:10.1371/journal.pone.0025025.g004
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melanogaster larvae (this study) and adults [17]. LLT suitably

describes the effect of cold shock, while Lt50 is much better suited

for describing the effect of indirect chilling injury. This is because

the physiological bases of cold shock injury and indirect chilling

injury are likely different [16,27,55,56]. Acute direct chilling injury

during cold shock is probably related mainly to protein

denaturation and membrane lipid phase transitions [29–32].

Acclimation mechanisms (associated with both RCH and long-

term cold acclimation) apparently have only a limited ability to

prevent/repair this type of injury, i.e., to shift the LLT by more

than a few degrees. On the other hand, chronic (cumulative) indirect

chilling injury is probably related to the inability to maintain

homeostatic processes, which results in a lack of free chemical

energy, metabolic disorder, oxidative stress, and disturbance of ion

homeostasis [33–37]. The deleterious effects of this type of injury

can relatively be well prevented by acclimation processes,

especially long-term cold acclimation. This is why Lt50 shows

such marked plasticity. Long-term cold acclimation involves

numerous adjustment processes that require considerable time to

be executed properly, such as gradual cessation of cold-sensitive

processes (cell cycle, morphogenesis, development, reproduction)

[57], regulated metabolic suppression [33], bolstering the

antioxidative potential [34], accumulation of cryoprotective solutes

[39], synthesis of specific proteins with antifreeze or ice nucleation

activity [58–60], membrane restructuring [40], stimulation of

protein stabilization/refolding machinery [61,62], and channel

arrest [33,35]. In contrast, the physiological nature of acclimation

processes beyond RCH remains largely unknown, but these

processes may involve accumulation of cryoprotective solutes such

as glycerol, rapid membrane restructuring, and stimulation of

repair mechanisms [17,25,26].

Meanings of upper limit of cold injury zone and SCP
Theoretical modeling and fitting of experimental data for

various insects have revealed that an upper threshold temperature

may exist for indirect chilling injury. The lowest temperature that

causes no significant mortality during prolonged exposure to cold

is referred to as upper limit of cold injury zone (ULCIZ) [63,64].

We did not collect sufficient data in our study to estimate the value

of ULCIZ precisely. The Lt50 of the 15uC-acclimated D.

melanogaster larvae was 3.2 h at 0uC, extended to 32.4 h at 5uC,

and further to .48 h at 6uC (Fig. 1). We suppose, however, that

cold-related mortality occurs even above 6uC. The lower threshold

temperature for larval development (LDT) is approximately 10uC
[4,5]. Hence, at temperatures below 10uC, the larvae cannot

continue to develop and become fated to die. If we accept that the

main cause of their death is the inability to maintain the balance

between energy demand and supply and thus support other

homeostatic functions that depend on access to free energy, then

the death is due to accumulation of typical indirect chilling

injuries. This suggests that ULCIZ and LDT are, in fact, the same

thresholds in D. melanogaster larvae. This may be a rule for other

chill-susceptible, quiescent insects. On the other hand, the concept

of ULCIZ is useful for chill-tolerant, diapausing insects. Rich

empirical knowledge of many researchers shows that these insects

can be stored for very long periods (months to years) at low

temperatures (typically around 0uC) without much loss of viability,

i.e., above ULCIZ [62].

Is it theoretically possible to identify a lower threshold

temperature for indirect chilling injury, analogous to ULCIZ? In

experimental setting, it would mean to identify a threshold

temperature at which acute direct chilling injuries start to occur

and prevail over the chronic effects of indirect chilling injuries.

Perhaps, 22uC can be close to such a threshold temperature for D.

melanogaster, as some experiments have indicated that survival of

various developmental stages rapidly declines when exposure

temperature drops below 22uC [13,15].

Another threshold temperature, SCP, can be measured easily

and precisely. In our experiments, it was close to 220uC in all the

acclimation treatments. The ecophysiological meaning of SCP,

however, is limited in D. melanogaster larvae, as in the other chill-

susceptible insects [3]. SCP represents the temperature at which

ice crystallization of body fluids occurs when larvae are in a dry

environment, i.e., without any surrounding ice. External ice

Figure 5. Acclimation-related changes in selected glycerophospholipids and calculated parameters in the third-instar larvae of
Drosophila melanogaster. Each column represents the mean 6 SD of 4 independent replications (5 larvae each). The influence of acclimation
treatment on relative proportions was tested by ANOVA, followed by Bonferroni post-hoc test when significant influence was detected (means
indicated with different letters are significantly different). GPEtn 16:0/18:2, 1-palmityl-2-linoleyl-sn-glycerophosphoethanolamine; GPEtn 18:1/18:2, 1-
oleyl-2-linoleyl-sn-glycerophosphoethanolamine; UFAs, unsaturated fatty acyls; 18C FAs, 18-carbon fatty acyls.
doi:10.1371/journal.pone.0025025.g005
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crystals may stimulate freezing of body fluids at temperatures close

to 0uC (inoculation by external ice). In fact, such inoculation is a

prerequisite of freeze tolerance in the larvae of C. costata and some

other insects [42]. Therefore, we tested whether our acclimation

treatments could stimulate development of freeze tolerance in D.

melanogaster larvae. None of the larvae survived in our freezing tests

despite that the conditions were relatively mild (slow cooling and

melting rates, inoculation by external ice at 21uC, minimum

temperature of 25uC, and total 75 min spent at subzero

temperatures) (Table 1). We have no direct evidence that the

mortality observed in the freezing tests was indeed caused by

freezing injuries. Nevertheless, we consider it highly probable

because the larvae survived the same temperature program under

the supercooling condition (i.e., without ice nucleation). Our data

are supported by previous studies, in which no ability to tolerate

freezing injury has been observed in the larvae of 22 different

species of Drosophila [2].

Metabolomic profiling and long-term cold acclimation
Almost two-thirds of the 39 major metabolites identified in this

study exhibited statistically significant concentration changes in

response to long-term cold acclimation. Most of the changes,

however, were relatively small and rarely reached a several-fold

magnitude. For instance, the concentration of putrescine in the

15uCR6uC-acclimated larvae was approximately 4.5-fold that in

the 25uC-acclimated larvae. This difference was approximately 3-

fold for the concentrations of the amino acids asparagine and

histidine. Most metabolites were present in relatively low

concentrations (,10 mM), which makes their effective contribu-

tion to cryoprotective functions unlikely.

Two compounds, trehalose and proline, were present in

relatively high amounts (.10 mM) and showed a positive

association with increasing cold acclimation (Figs. 2 and 3). Both

these compounds have received much attention in previous studies

as they belong to a group of compatible solutes, i.e., they are

accumulated in relatively high concentrations in variously stressed

organisms and play different protective roles in these organisms

[65–69]. Previous studies have observed accumulations up to

several hundred mmol?L21 in many overwintering insects, for

both trehalose [39] and proline [70–73]. When accumulated in

relatively high amounts (which is not the case of D. melanogaster

larvae), these compounds can colligatively contribute to the

extension and stabilization of supercooling [74] or can stimulate

vitrification, i.e., transition of body water from the liquid phase to

an amorphous, glass-like phase during drying or freezing [75–77].

At relatively low concentrations, they may non-colligatively

protect the native macromolecular structures such as proteins

and biological membranes by preferential exclusion from their

hydration shells [78,79]. In addition to such non-specific

cryoprotective mechanisms, some specific roles have been

attributed to trehalose and proline. Trehalose can assist refolding

of unfolded proteins by molecular chaperones [80,81]; serve as a

scavenger of oxygen radicals [82]; and directly replace missing

water molecules in the hydration shells of proteins and

phospholipid membranes during desiccation [83–85]. Amphipath-

ic proline molecules can intercalate between the headgroups of

membrane phospholipids during freeze dehydration and alleviate

mechanical stresses in the membranes or can disturb the

membranes, making them less prone to the liquid crystalline-to-

gel transition [65].

In comparison to other cold-acclimated insects, the larvae of D.

melanogaster in our study showed relatively low levels of accumu-

lated trehalose and proline. We therefore consider it premature to

speculate whether these compounds causally contributed to cold

tolerance of the larvae and/or which of the abovementioned

mechanisms was involved. Nevertheless, three aspects of our

metabolomic analysis are quite interesting when compared with

the literature data. First, several previous studies have investigated

RCH-induced changes in putative cryoprotectants in D. melanoga-

ster adults and obtained mixed results. Targeted analysis of glycerol

did not confirm glycerol accumulation [23,24]; nontargeted

proton nuclear magnetic resonance (1H-NMR) metabolomic

profiling showed increase in trehalose and glucose levels and no

change in proline levels [86]; and targeted analysis of glucose

failed to confirm glucose accumulation in a slightly modified RCH

protocol [25]. These observations indicate that (a) metabolomic

profiles are sensitive to small modifications in acclimation

conditions, which themselves have little or no effect on cold

tolerance and (b) some facets of acclimation response are shared

between RCH and long-term cold acclimation (such as trehalose

accumulation), while some others differ (such as proline accumu-

lation occurring only during long-term cold acclimation). Second,

in a previous study, a 3- to 6-fold increase was found in the proline

levels in D. melanogaster strains selected for resistance to chilling

injury at 0uC for 30–60 h or to cold shock at 27uC for 2–3 h [87].

This observation supports our results, suggesting that there is a

close association between proline level and cold tolerance. Third,

trehalose and proline are two compounds that exhibit the clearest

accumulation responses to diapause transition and long-term cold

acclimation in C. costata, reaching the levels of 56 mM (trehalose)

and 147 mM (proline) in diapausing cold-acclimated larvae

[10,42]. In addition, a direct evidence of the essential role of

proline in high freeze tolerance, including survival in liquid

nitrogen, has been obtained by artificially increasing the levels of

proline in the tissues of C. costata larvae [10]. Thus, the larvae of D.

melanogaster possess the metabolic ability to accumulate proline, the

same as that critical for the development of high cold tolerance in

the larvae of the related species C. costata. These results open

avenues for further investigating the role of proline in the cold

tolerance of D. melanogaster.

Membrane restructuring in response to long-term cold
acclimation

Long-term cold acclimation stimulated small but statistically

significant changes in the lipid composition of biological

membranes in D. melanogaster larvae (Figs. 4 and 5). Membrane

restructuring in response to cold has been documented in various

poikilotherms, including insects. Several basic patterns have been

repeatedly reported such as FA desaturation, shortening of average

FA chain length, increase in the relative proportion of GPEtns,

and reshuffling of FAs [40,88–90]. We found that the relative

proportion of unsaturated FAs and the length of FA chains did not

change significantly with cold acclimation in D. melanogaster larvae.

The relative proportion of GPEtns was significantly lower in the

25uC- and 15uC-acclimated larvae than in the 15uCR6uC-

acclimated larvae, which is in agreement with the generally

expected trend. The ethanolamine moiety is less hydrated and

occupies a smaller area than the choline moiety. As a result,

GPEtns assume a more conical conformation and pack less

efficiently into the lipid bilayers than GPChols, thus decreasing

their order. Increase in the relative proportion of GPEtns in cold

thus counteracts the ordering effects of low temperatures [91]. In

this study, 50% of all the molecular species of GPLs were slightly

but significantly influenced by cold acclimation. Most of the

changes, however, were of so small a magnitude that it would be

too speculative to explain them on an adaptive basis. We reached a

similar conclusion in our previous analysis of membrane lipids in

D. melanogaster adults [17]. One change, however, merits special
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attention. In both the larvae and the adults of D. melanogaster, the

most prominent change related to cold acclimation was the

increase in the relative proportion of GPEtns with linoleic acid (FA

18:2) esterified at the sn-2 position of glycerol. In a study [41], the

level of GPEtn 16:0/18:2 in C. costata larvae was also elevated by

almost 20% during cold acclimation. A similar response has been

reported in some other insects [52,92]. It has been proposed that

the adaptive value of specific pairing of palmitic and linoleic acids

in a single GPL molecule may be related to the widening of the

window between the temperatures of gel phase transition (Tm) and

hexagonal phase transition (Th), thus increasing the span of

environmental temperatures at which the membrane remains fluid

and functional [92]. Verification of this hypothesis requires further

study.

Overgaard and coworkers observed very small changes in the

FA composition of membrane GPLs in D. melanogaster in response

to RCH [93,94]. The response was characterized by an increase in

the proportion of linoleic acid (FA 18:2) at the expense of palmitic

acid (FA 16:0) and oleic acid (FA 18:1). Typically, all the changes

were in the order of less than 1 molar percent, but together they

caused a slight increase in the proportion of the unsaturated FAs

and a decrease in the average FA chain length. Slow cooling rates

(i.e., longer RCH) resulted in more pronounced changes, which

indicated that membrane restructuring requires some time. Both

slow and fast rates of RCH showed positive effects on survival after

cold shock, despite that they differed in the absence and presence

of membrane remodeling response, respectively. Influence of

RCH on membrane remodeling was re-assessed later [25] and no

significant effects of RCH on the molar percent composition of

FAs or on the relative proportion of unsaturated FAs was found.

These results suggest that membrane remodeling is not a

significant mechanistic explanation of RCH response in D.

melanogaster.
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35. Koštál V, Vambera J, Bastl J (2004) On the nature of pre-freeze mortality in
insects: water balance, ion homeostasis and energy charge in the adults of

Pyrrhocoris apterus. J Exp Biol 207: 1509–1521.
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62. Koštál V, Tollarová-Borovanská M (2009) The 70 kDa heat shock protein assists
during the reparation of chilling injury in the insect, Pyrrhocoris apterus. PLoS One

4: e4546.
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temperature tolerance in anhydrobiotic tardigrades is limited by glass transition.
Physiol Biochem Zool 82: 749–755.

77. Sformo T, Walters K, Jeannet K, Wowk B, Fahy GM, et al. (2010) Deep
supercooling, vitrification and limited survival to 2100 degrees C in the Alaskan

beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol 213:
502–509.

78. Arakawa T, Timasheff SN (1983) Preferential interactions of proteins with

solvent components in aquaeous amino acid solutions. Arch. Biochem Biophys
224: 169–177.

79. Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes.
Biophys J 47: 411–414.

80. Lee DH, Goldberg AL (1998) Proteasome inhibitors cause induction of heat

shock proteins and trehalose, which together confer thermotolerance in
Sacharomyces cerevisiae. Mol Cell Biol 18: 30–38.

81. Viner RI, Clegg JS (2001) Influence of trehalose on the molecular chaperone
activity of p26, a small heat shock/a-crystallin protein. Cell Stress Chaperones 6:

126–135.
82. Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during

cellular stress protects cells and cellular proteins from damage by oxygen

radicals. J Biol Chem 29: 24261–24267.
83. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with

water stress: Evolution of osmolyte systems. Science 217: 1214–1222.
84. Crowe JH, Crowe LM, Carpenter JF, Wistrom AC (1987) Stabilization of dry

phospholipid bilayers and proteins by sugars. Biochem J 242: 1–10.

85. Crowe JH (2002) Lessons from nature: The role of sugars in anhydrobiosis.
Comp Biochem Physiol A 131: 505–513.

86. Overgaard J, Malmendal A, Sørensen JG, Bundy JG, Loeschke V, et al. (2007)
Metabolomic profiling of rapid cold hardening and cold shock in Drosophila

melanogaster. J Insect Physiol 53: 1218–1232.

87. Misener SR, Chen C-P, Walker VK (2001) Cold tolerance and proline
metabolic gene expression in Drosophila melanogaster. J Insect Physiol 47: 393–400.

88. Sinensky M (1974) Homeoviscous adaptation – a homeostatic process that
regulates viscosity of membrane lipids in Escherichia coli. Proc Nat Acad Sci USA

71: 522–525.
89. Cossins AR, Prosser CL (1978) Evolutionary adaptation of membranes to

temperature. Proc Nat Acad Sci USA 75: 2040–2043.

90. Hazel JR (1995) Thermal adaptation in biological membranes: Is homeoviscous
adaptation the explanation? Annu Rev Physiol 57: 19–42.

91. Hazel JR (1989) Cold adaptation in ectotherms: Regulation of membrane
function and cellular metabolism. Adv Comp Environ Physiol 4: 1–50.
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