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Abstract
Transit compartments (TC) models are used to describe pharmacodynamic responses that involve
drug action on cells undergoing differentiation and maturation. Such pharmacodynamic systems
can also be described by lifespan based indirect response (LIDR) models. The purpose of this
report is to investigate conditions under which the transit compartments models can be considered
a special case of LIDR models. An integral representation of a solution to TC model has been used
to determine the lifespan distribution for cell population described by this model. The distribution
served as a basis for definition of new LIDRE (lifespan based indirect response with an effect on
the lifespan distribution) models. Time courses of responses described by both types of models
were simulated for a monoexponential pharmacokinetic function. The limit response was
calculated as the number of transit compartments approached infinity. The difference between the
limit response and TC responses were evaluated by computer simulations using MATLAB 7.7. TC
models are a special case of LIDR models with the lifespan distribution described by the gamma
function. If drug affects only the production of cells, then the cell lifespan distribution is time
invariant. In this case an increase in the number of compartments results in a basic LIDR model
with a point lifespan distribution. When the drug inhibits or stimulates cell aging, the cell lifespan
distribution becomes time dependent revealing a new mechanism for drug effect on the gamma
probability density function. The TC model with a large number of transit compartments
converges to an LIDRE model. The limit LIDR models are approximated by the TC models when
the number of compartments is at least 5. A moderate improvement in the approximation is
observed if this number exceeds 20. The lifespan distribution for a cell population described by a
TC model is described by the gamma probability density function. A drug affects this distribution
only if it stimulates or inhibits the rate of cell maturation. If the number of transit compartments
increases, then the TC model converges to a new type of LIDR model.
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Introduction
A cellular response to chemotherapeutic agents is one of pharmacodynamic markers used
for assessment of drug efficacy and toxicity. Kinetics of cell populations of hematopoietic
lineages has been intensively modeled to provide quantitative measures of drug effects and
cell turnover. One of most commonly used models consists of a series of compartments
representing various stages of cell development that are meant to reflect the time course of
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the cell population count in tissues such as bone marrow and blood [1]. These compartments
are connected via first-order cell transfer rates and represent the maturation process from
progenitor cells in bone marrow to peripheral cells in blood. The reciprocal of each rate
constant is the mean transit time of a cell, which is interpreted as an average age of cells in
the compartment. Therefore, a sequence of the age compartments may also account for a cell
development process starting from their production (birth) and ending with elimination
(death or transfer to another tissue) [2]. Such a sequence of compartments is necessary to
account for a delay between exposure of progenitor cells to a therapeutic agent and its effect
which is typically determined from the blood cells count (maturation) or the time dependent
change in the age of a particular cell type (senescence). A sequence of age compartments is
the bone structure of more complex pharmacodynamic models of drugs affecting
hematopietic cell populations such as neutrophils [3, 4], red blood cells [5], and platelets [2].
In these models drug stimulated or inhibited the production of cell precursors or the transfer
rate between the age compartments.

Another approach has been proposed to describe the cell development kinetics that is based
on the assumption of a priori knowledge of lifespan distribution in a cell population. In this
concept a cell remains in the population until its assigned lifespan expires. Consequently, the
cell removal rate is determined by the cell production rate and the lifespan distribution [6].
Pharmacodynamic models have been developed assuming a simplistic point cell lifespan
distribution [6-8]. More realistic continuous distributions were also investigated [9]. The
drug effect on the cell aging process was modeled by introducing time variant lifespan
distributions where the time changes were controlled by drug effect [10-12]. Besides the
senescence, the lifespan based indirect response model has been also used to model the
maturation of neutrophils following chemotherapy treatment [13].

Therefore, both lifespan based indirect response models and transit (age) compartments
models have been used to model the maturation and the senescence of different type of cells.
Interestingly, the catenary structure of the transit (age) compartments models for cell
populations is very similar to signal transduction models used in modeling a delay between
drug effect at a site of action and measurable response [14]. The properties of the gamma
function are central for understanding the behavior of transduction models [15]. This
function has also been applied to account for the lifespan distribution of cell populations
exposed to random destruction [16, 17]. A link between these two apparently separate
applications of the gamma function is not coincidental. Under baseline conditions, the
lifespan distribution of a cell population described by the age compartment model is
identical with the gamma function. An objective for this report was to investigate if the
transit (age) compartments model accounting for a drug effect can be described by the time
variant lifespan distribution indirect response model. Mathematical derivations are provided
to claim that this is indeed the case. Additionally, computer simulations were used to
explore the convergence of the transit compartment models to the lifespan based indirect
response models when the number of compartments increases to infinity and the mean
lifespan is set constant.

Theoretical and results
Transit compartments model

The transit compartments model consists of a series of compartments P1, …Pn connected
with each other by first-order processes in a catenary manner as shown in Fig. 1. A
compartment Pi represents a subset of cells of the mean age i · TR/n, since the mean transit
time through each compartment is TR/n, if TR denotes the mean cell lifespan. We assume
that cells are produced at a time dependent zero-order rate kin(t), and the drug affects the
transit rates between the compartments. The drug effect is described by a function E(t) that
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will be specified later. Then transit compartments model is described by the following
system of differential equations:

(1)

(2)

where R0 is the total number of cells in all compartments. It is additionally assumed that
drug was administered at time t = 0, and prior to that the system was at steady state:

(3)

Consequently, the initial conditions can be determined from the baseline equation:

(4)

We limit our analysis to a pharmacodynamic response R that consists of the total cell count:

(5)

Although the transit compartments model can be applied to describe responses which are
defined by one age group (usually the oldest R = Pn), or a subset of all cells. We show in
Appendix 1 that the solution for each transit compartment is of the following form:

(6)

for i = 1, …, n.

Drug effect
Typically a drug affect is determined by the plasma drug concentration C(t). According to
the indirect paradigm of drug action [18], one can consider stimulation or inhibition of the
transit rates that results in a decrease or increase of the cell maturation or the mean age of
each cell in each compartment, and its lifespan overall. Then the effect can be described by
the Emax model

(7)

and

(8)
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where Smax (Imax) denotes the maximal drug effect, and SC50 (IC50) is the drug plasma
concentration eliciting 50% of the maximum effect.

For drugs acting on the cell production, the Emax function multiplies the baseline production
rate constant kin0. Consequently, the cell lifespan is constant and does not depend on the
drug effects and the cell production rate affected by drug is as follows:

(9)

and

(10)

The responses for four types of transit compartments models corresponding to concentration
time profiles generated for the monoexponential kinetic function for doses increasing in 10-
fold increments are presented in Fig. 2.

Lifespan distribution for a cell population described by the transit compartments model
If each cell is assigned at any moment of time t a lifespan, then one can describe the cell loss
rate for the population due to expiration of lifespan of individual cells [12], which can be
also understood as the finalization of the maturation process. If ℓ(t,τ) denotes the probability
density function for the distribution of lifespans τ at time t, then the differential equation for
describing the change of the cell number R due to a balance between the production rate
kin(t) and elimination rate due to the lifespan distribution is [12]

(11)

with the baseline initial condition

(12)

where TR is the mean lifespan for the baseline lifespan distribution ℓ0(τ) = ℓ(∞,τ):

(13)

The objective of this section is to determine the lifespan distribution for the cell population
described by the transit compartments model. If R is the sum of the cells in each of the aging
compartments then adding the differential equations 1 and 2 side by side results in

(14)

with the initial condition
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(15)

Using Eq. 6 we show in Appendix 2 that

(16)

Equations 11, 14 and 16 imply that the probability density function (p.d.f.) for the lifespan
distribution for a cell population described by the transit compartments model is

(17)

One can utilize the properties of the gamma function γn(τ) [15]

(18)

and verify by a direct integration that for any moment of time t

(19)

For derivations see Appendix 3. Equation 19 implies that ℓn(t, τ) is indeed a p.d.f. The plots
of ℓn(t, τ) at several time points for drug stimulating and inhibiting n/TR are shown in Fig. 3.
Since for t → ∞, E(t) → 1, then ℓn(∞, τ) reduces to the p.d.f. for the gamma distribution,
this implies that the mean lifespan is TR. Consequently, the total cell number R described by
the transit compartments model is a solution to the lifespan driven model Eqs. 11-12 if the
lifespan distribution p.d.f. is given by Eq. 17. If the drug acts only on kin (E(t) ≡ 1), then
ℓn(t, τ) becomes time independent and reduces to the gamma function γn(τ). These types of
lifespan distributions have been applied in the lifespan based indirect response models [9].
The case n = 1 can be interpreted as a cell population described by an indirect response
model. Consequently, each of the basic indirect response models [18] can be considered as a
lifespan driven indirect response model where

(20)

Effect of drug on lifespan distribution
Equation 17 describes how the drug acting on the transit rates in the transit compartments
model affects the distribution of lifespans at any moment of time t. This relationship
suggests a generalization of a function describing a drug effect on any arbitrary lifespan
distribution ℓ(t,τ). Prior to introducing a formal definition let us notice that for a time t the
transformation
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(21)

satisfies the following conditions

(22)

Equation 22 implies that  is a smooth invertible transformation of the lifespan interval 0 <
τ < ∞ onto itself. Let Φt(τ) be an arbitrary transformation of the lifespan interval satisfying
conditions in Eq. 22, i.e.

(23)

Then a transform of a p.d.f. for lifespan distribution that is time invariant ℓ0(τ) can be
defined as follows

(24)

One can use the change of variable s → Φt(τ) to show that  is a p.d.f. for any time t.
Its dependence on time is determined entirely by Φt(τ). In particular ℓn(t,τ) can be viewed as
the effect of  on the time invariant gamma distribution γn(τ):

(25)

Figure 3 shows the transformed gamma p.d.f. due the drug effect E(t). Using this notation
the TC model Eq. 14 is identical with a lifespan based indirect response model with drug
effect E(t) acting on the lifespan distribution γn(τ) according to Eq. 25:

(26)

Equation 26 serves as a rationale for a definition of a new lifespan based indirect response
model for drugs affecting a time invariant lifespan distribution ℓ0(τ):

(27)

where

(28)

In this report we will limit ℓ0(τ) to the simplest point lifespan distribution δτ0(τ) = δ(τ − τ0).
Then
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(29)

where  is the inverse of Φt(τ) (see Appendix 4 for derivations). For τ0 = TR Eq. 27
becomes (see Appendix 5 for derivations):

(30)

with the initial condition

(31)

where the variable TE is a solution to the following differential equation:

(32)

with the initial condition

(33)

In particular, when the drug affects only kin0, E(t) ≡ 1, then the solution to Eqs. 32-33 is

(34)

In this case Eq. 30 simplifies to

(35)

which is identical with the basic lifespan based indirect response model introduced by
Krzyzanski et al. [6]. The signature profiles for R(t) corresponding to the monoexponential
pharmacokinetic function are shown in Fig. 4. Equations 30-33 constitute a definition of a
new basic model of the lifespan based indirect response with an effect on the lifespan
distribution (LIDRE).

Convergence of the transit compartments model
If the number of transit compartments n increases and the mean lifespan TR is constant, then
the sequence of gamma p.d.f.s γn(τ) approaches the point life-span distribution δ(τ − TR),
where the convergence is defined by the following integrals:

(36)
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for any arbitrary continuous and bound function f(τ). This convergence property of the
gamma p.d.f. is called the approximate identity [19] and it is illustrated in Fig. 5. Equation
36 implies that the solution Rn(t) of Eq. 14 corresponding to n transit compartments
approaches the solution R∞(t) of the basic indirect response model described by Eq. 30 as n
becomes very large:

(37)

and the convergence is understood in the usual sense. The error between Rn(t) and R∞(t) is
equal to:

(38)

where

(39)

and Ψt(τ) is defined in Appendix 5. For proofs see Appendix 6. Simulations of Rn(t) and
R∞(t) profiles are shown in Fig. 6. The percent errors of approximation of R∞(t) by Rn(t)
are presented in Table 1. Equation 38 simplifies when there is no drug effect on n/TR. Then
E(t) ≡ 1, and , and consequently,

(40)

Methods
The simulations of drug effects were done assuming the monoexponential pharmacokinetic
function:

(41)

where kel = 0.3 and V = 3. Units were omitted for all variables not to imply a particular time,
concentration, or response scale. Series of simulations was performed to demonstrate an
effect of dose on response time profiles for TC and LIDRE models. The doses were selected
to cover the whole range of responses from a close to baseline to a maximal response. They
were Dose = 100, 1000, 10,000, and 100,000. The parameters for the Emax effect models
were Smax = Imax = 1, SC50 = IC50 = 100. The baseline for the response was R0 = 100, the
lifespan TR was set to 24, and the response production rate kin0 was calculated from Eq. 4.
Additional simulations were performed to evaluate the shape of the gamma p.d.f. as a
function of the number of transit compartments n and assess the error of the approximation
of the basic LIDRE model by TC models as n → ∞. MATLAB 7.7 (The MathWorks Inc.,
Natic, MA) was used for simulations. The PD responses generated for both transit
compartments and lifespan based indirect response models were coded as MATLAB m-
functions. The ODE solver ode15s capable of solving stiff differential equations was used to
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solve model equations. All plots were generated as MATLAB figures. The MATLAB m-
functions for simulations of the LIDRE models are included as a supplementary material.

Discussion
The interpretation of the transit compartments as consecutive stages of aging pools is
mechanistically sound and offers a very flexible modeling tool to describe drug effects on
various cell populations. This model is especially robust when additional processes to cell
maturation or senescence are considered such as cell loss due to random destruction [2],
chemo-toxic effects, apoptosis, mobilization [4] or margination/demargination. Also the cell
production rate might be different from a zero-order process. Alternatives account for a first-
order mechanisms of cells proliferation [1] or a size-limited cell population growth [20].
These processes were not included into our analysis for sake of simplicity and are subjects
for future studies.

Despite of numerous modeling advantages of the TC model that include simplicity,
robustness, and easy numerical applications, there are few drawbacks that are often
encountered during this model application. First, most common, is a selection of the number
of transit compartments. A typical approach when the number of transit compartments
cannot be determined as the number of cell development stages is to increase the number of
compartments until a negligible improvement in the model performance is observed, or a
limit for the number of differential equations in applied software has been reached. The
lifespan based indirect response model offers a generalization of an integer parameter n to a
real valued parameter p that can be estimated along with the mean lifespan parameter TR.
This can be simply achieved by replacing the gamma function γn(τ) described in Eq. 19 by a
general equation for the gamma distribution [21]

(42)

where Γ(p) is the Euler gamma function that extends evaluation of the factorial on the real
numbers. This function can be easily coded using several lines of the code to achieve 7 digit
accuracy [22].

A second drawback of the TC model is a problem with calculation of the mean lifespan for a
cell population with the time variant transfer rates (e.g. affected by drug). The interpretation
of TR/n as a mean transit time of a cell residing in a transit compartment holds true only if
the transfer rate is constant. For time variant transit rates the mean transit time is time
dependent and its calculation requires a re-derivation of non-compartmental parameters [2,
5]. The derived equation for the lifespan distribution ℓn(t,τ) offers a calculation of the time
dependent mean lifespan TR(t) as defined by the elementary probability theory

(43)

Finally, the assumption of the transfer rate between the transit compartments as a first-order
process that is proportional to the compartment size can be challenged. Although, the cell
number in a particular aging stage is a factor, it is unrealistic to assume that the transfer rate
between aging pools is solely controlled by the size of the cell population. For example, the
age of reticulocytes is determined by their residual RNA content, and their maturation rate is
a function of the RNA degradation half-life [23]. An application of p.d.f. other than ℓn(t,τ) in
the lifespan based indirect response model can release that assumption.
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The simulated profiles of p.d.f.s corresponding to stimulation or inhibition of the cell
transfer rates between the transit compartments shown in Fig. 3 are in agreement with what
is expected about the drug effect on the mean lifespan. Stimulation accelerates the aging
process which results in a temporal shift of the p.d.f. to earlier lifespans followed by a return
to the baseline lifespan distribution when the drug is cleared from the system. A similar
pattern can be observed for drug inhibiting the aging process but with an opposite direction.
There p.d.f.s shift toward longer lifespans. A somewhat paradoxical feature to be observed is
that the drug effect on a p.d.f. takes place for times when the drug was not in the system
(zero is a mark for the drug administration). This supposedly counterintuitive observation
can be explained by the definition of the lifespan of a cell at a time t. The lifespan of cells
prior to drug administration that will live long enough to be exposed to drug action should
reflect this effect. Consequently, at time t = 0, the p.d.f. is different from the baseline p.d.f.
because all cells in the population will be exposed to drug effect that will change their
survival expectancy based on the baseline (drug free) lifespan distribution. The time variant
p.d.f. converges to the baseline p.d.f. as the drug effect diminishes.

Consistently with the paradigm for basic indirect response models, four types of drug action
result in four distinct response profiles also for the transit compartments model [18]. The
inhibition and stimulation of the cell production rate results in no effect on the cell lifespan
distribution. The inhibition and stimulation of the rate of the cell aging affects lifespan
distribution. Responses will increase when aging is inhibited (mean lifespan increases) and
decrease when aging is stimulated (mean lifespan decreases). These response time profiles
are shown in Fig. 2 for varying doses. The basic feature of the presented profiles is a delayed
peak that increases with doses. The peak times for all model types also increase with doses.
When the mean lifespan parameter TR is independent on the number of transit compartments
n, increasing n to infinity results in a response profile R that is controlled by a point lifespan
distribution centered at TR. In the case of drug affecting kin0, R is a basic lifespan based
response that has been described previously [6]. Here the response elimination rate is the
production rate delayed by TR. The peaks increase with the doses but the peak times occur at
the same time TR. The lifespan based indirect response model obtained as n approaches
infinity for TC models with drug affecting the aging process is different form a previously
introduced model [12]. The latter assumed a bimodal lifespan distribution with drug
changing temporarily the proportions between the modes. This resulted in a presence of a
lag in the response profile. Also, the peak times did not depend on dose. As shown in Fig. 4
the basic LIDRE model does not have either of these characteristics. There is no lag in the
response curve and the peak times are dose dependent. If drug increases TR, then the peak
times increase with doses. If drug decreases TR, then response peak times decreases with
increasing doses. Interestingly, the latter characteristic is opposite to the behavior of the
peak times for an analogous transit compartments model if the number of compartments is
relatively small. Contrary to all previously introduced LIDR, the LIDRE model does not
exhibit a delay time, but requires an additional variable TE to account for the drug effect.

The proposed basic LIDRE model assumes a point lifespan distribution for a cell population
affected by a drug. As mentioned above such a model can be potentially applied to describe
the cell responses for drugs known to accelerate cell maturation, increase proliferation, and
inhibit cell death. Hematopoietic growth factors posses these characteristics. Recombinant
human granulocyte colony stimulating factor (rHuG-CSF) is known to accelerate maturation
of neutrophil precursors and stimulate mobilization of progenitor cells [26], recombinant
human erythropoietin (rHuEPO) promotes release from the bone marrow to the circulation
of young (stress) reticulocytes [27] that changes the lifespan distribution of these cells in the
circulation. Similar effects on platelet release have been reported for agonists of the c-mpl
receptor, a thrombopoietin receptor [2]. rHuEpo has been shown to act as a survival factor
for red blood cells [28]. Pharmacodynamic TC models have been developed to account for
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cell responses to rHuG-CSFs [4, 29], c-mpl agonists [2, 30,31], and rHuEPO [5]. These TC
models are LIDR models with the lifespan distribution described by the gamma function.
Therefore more simplistic LIDRE models with point lifespan distribution may also
adequately describe such data. Standard model selection techniques should be applied to
yield the best model.

Analysis of the equation for a p.d.f. for the lifespan distribution obtained for the transit
compartments model permitted a general mechanism by which a drug can affect an arbitrary

lifespan distribution. This model is described by the operation  where the invariant
(baseline) lifespan distribution ℓ0(τ) becomes a time variant distribution ℓ(t,τ) due to the
changes caused by a time dependent drug effect . A clear intuitive interpretation of this
effect is difficult to offer, but one can interpret it as a time dependent change in the τ-axis for
the lifespan distribution p.d.f. that shifts the distribution to the right or left. Freise et al. [10]
introduced a pharmacodynamic model of drug affecting the distribution of cell lifespan that
was further expanded to account for the changes in the environment [11]. The fundamental
equation defining the p.d.f. for lifespan distribution was identical to Eq. 11. The
mathematical derivations describing drug effect on the life distribution bare similarity to the

operator  introduced in Eq. 28. Further analysis is necessary to determine if a new
mechanism for drug effect on the cell lifespan distribution obtained from the generalization
of the equation of the drug effect in the TC model is a special case of the models introduced
by Freise and colleagues.

If TR is fixed and n approaches infinity, the gamma p.d.f. for the lifespan distribution γn(τ)
approaches the point distribution δ(τ − TR). This property is called the approximate identity
and results in a convergence of the TC models to a basic LIDR or LIDRE model. Figure 5
implies that even for n as large as 100 the approximation of δ(τ − TR) is far from accurate.
However, the resulting transit compartments response curves Rn(t) presented in Fig. 6 are
very close to the LIDR model for n = 100. The maximum absolute difference between Rn(t)
and R∞(t) relative to the maximum absolute difference between R∞(t) and R0 is listed in
Table 1 for an array of n values. The difference ranges between models 16.4–47.9% for n =
10, 11.2–43.9%, for n = 20, and 4.7–35.4% for n = 100. These ranges are calculated at a
fixed dose of 10,000 across all four models reflecting four different mechanisms of drug
action. The poorest approximation is observed for the inhibition of kin0 PD model where
even for n = 100 the error was greater than 35.4%. This approximation error assessment is
meant to provide guidelines in selection of the number of transit compartments for a model
that would mimic the lifespan based indirect response. It is clear if n is less than 5 then
approximations are not satisfactory. Increasing n leads to a gradual improvement but there is
no outstanding number that can be considered as a mark. In practice, this implies that a
transit compartments model with n between 5 and 20 provides a relative good approxiation
of the LIDR model. An addition of more transit compartments than n = 20 leads to a modest
improvement of the error of the approximation. To explore which model parameters control
the approximation error one can use Eq. 38.

In summary, the transit compartments models can be considered as lifespan based indirect
response models with the gamma lifespan distribution. Stimulation and inhibition of the cell
aging process in transit compartments model is interpreted as a temporal change in the
lifespan distribution in the LIDR model. If the number of compartment increases and the
mean lifespan is constant, then the transit compartments models approach a basic LIDR
model with a point lifespan distribution. A modest improvement of this approximation can
be observed if the number of the transit compartments exceeds 20. Finally, the mechanism
by which drug affects the lifespan distribution for cells described by the transit
compartments models can be generalized to arbitrary cell lifespan distributions, which leads
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to a new class of basic lifespan based indirect response models that will be explored in
future studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The author is grateful to Dr. Juan Jose Perez-Ruixo for reviewing this manuscript and providing insightful
comments. This study was supported by the National Institute of General Medical Sciences, National Institutes of
Health Grant GM 57980.

Appendix 1

Derivation of Eq. 6
To simplify calculations we introduce the following variables

(44)

Then the transit compartments model Eqs. 1-2 become

(45)

(46)

Equation 45 can be solved using the integrating factor technique [24]:

(47)

We will show by mathematical induction that for i = 1, …, n

(48)

Since the case i = 1 reduces to Eq. 47, it remains to show that Eq. 48 is true for i + 1
assuming it holds for i. Using the same integrating factor as for Eq. 47 one can solve Eq. 46
with i + 1 to obtain the following representation of Yi+1:

(49)

One can substitute the right hand side of Eq. 48 for Yi(τ) in Eq. 49:
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(50)

Equation 50 can be further reduced to

(51)

Changing the order of the first two integrals in Eq. 51 results in

(52)

The only part of the integrant that depends on τ is equal to

(53)

Substituting Eq. 53 in the integrant of Eq. 52 gives

(54)

Equation 11 is equal to Eq. 48 with i + 1, which completes the recursive proof that Eq. 48
holds true for i = 1, …, n. Finally, to derive Eq. 6 one needs to replace Yi(t) and k(τ) in Eq.
48 with the original Pi and kin(t) using Eq. 44.

Appendix 2

Derivation of Eq. 16
Equation 6 with i = n implies that the solution for the n-th compartment is

(55)

Changing the variables τ → t − τ in the first integral results in

(56)

The difference in the integrand can be integrated separately as follows
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(57)

The change of the variable

(58)

reduces the integral in the second term of Eq. 57 to the following form

(59)

The properties of the gamma distribution imply that [21]

(60)

Consequently,

(61)

where the original integration variable τ was restored in the integral in Eq. 60. The baseline
conditions Eq. 3 imply that for τ > t

(62)

Hence

(63)

One can insert In back in Eq. 57 resulting in

(64)
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After multiplying both sides of Eq. 64 by nE(t)/TR one arrives at Eq. 16.

Appendix 3

Derivation of Eq. 19
For given times t and τ let us define

(65)

Since the derivative

(66)

Equation 17 can be simplified to the following form

(67)

Applying the change of variables  in the following integral, one can further reduce
it to the integral of the gamma function γn(s) defined in Eq. 18:

(68)

The latter is a consequence of γn(s) as a probability density function. This proves Eq. 19.

Appendix 4

Derivation of Eq. 29
To prove Eq. 29 we use the definition of the Dirac delta function δτ0(τ) = δ(τ − τ0) stating
that for any test function φ(τ) (an indefinitely differentiable function with a compact support
contained in the interval (0,∞)) the following relationship holds [19]:

(69)

Let φ(τ) be a test function, then according to Eq. 24

(70)

The substitution s → Φt(τ) transforms the last integral in Eq. 70 to the following
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(71)

where  is the inverse of Φt(τ). The integral in Eq. 71 is evaluated according to Eq. 69.
Consequently, for any test function φ(τ)

(72)

This proves Eq. 29.

Appendix 5

Derivation of Eqs. 30, 32, and 33
A general form for the basic LIDRE model for drug affecting the point distribution
according to Eqs. 27 and 28 will be described as follows

(73)

where after applying Eqs. 24, 65 and 66:

74

Therefore Eq. 73 can be further simplified to

(75)

To calculate the integral in Eq. 75 let us introduce a transformation Ψt(τ)

(76)

One can verify that for any time t

(77)

The change of variables s → Ψt(τ) transforms the integral in Eq. 74 to

(78)
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where the derivative of the inverse is

(79)

and the definition of the delta function δ(τ − TR) has been utilized. To abbreviate the right
hand side of Eq. 78 the following function of time t is introduced:

(80)

Then Eq. 73 simplifies to Eq. 30

(81)

Notice that Eq. 81 was derived without an assumption of any specific form for kin(t) like one
specified by Eqs. 9 and 10. Equations 76 and 80 imply

(82)

At t = 0, Eq. 82 becomes

(83)

Since TR > 0 and E(z) > 0, then TE(0) < 0. For z < 0, E(z) = 1 (see Eq. 3), which implies

(84)

This proves Eq. 33. To derive a differential equation for TE(t), calculate the derivative with
respect to t of both sides of Eq. 82. The derivative of the right-hand side is zero, and the
derivative of the integral in the left-hand side results in the following equation:

(85)

That results in Eq. 32.

Appendix 6

Proof of Eqs. 37-39
Integration of both sides of Eq. 26 leads to
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(86)

Similarly, integration of Eq. 30 results in

(87)

Upon subtraction of both sides of Eqs. 87 and 86:

(88)

Following the definition of Ψt(τ), Eq. 88 implies that

(89)

Analogously, Eq. 80 implies

(90)

Hence

(91)

and Eq. 37 follows. To show that Eq. 37 holds true one can transform Eq. 91 further
utilizing the fact that γn(τ) is a p.d.f.

(92)

Since Eqs. 7-10 imply that φs(τ) is a bound function of s and τ, i.e. there is a constant M > 0
such that for any s and τ

(93)

Hence
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(94)

The dominated convergence theorem [25] implies that for any t the right hand side of Eq. 92
approaches 0 as n → ∞, for any s

(95)

Equation 95 is true due to the approximate identity property of the gamma distribution p.d.f.
γn(τ) cited in Eq. 36, which we will prove for an arbitrary continuous and bound function
f(τ). Let ε >0 be a small number and M > 0 be such |f(τ)| ≤ M for all τ. Then the continuity of
f(τ) implies that there is a small ε > 0 such that for any TR-ε < τ < TR+ ε

(96)

The integral in Eq. 95 can be partitioned into a sum of three integrals:

(97)

The first and third integral in Eq. 97 can be bound as follows:

(98)

and

(99)

The bound for the second integral in Eq. 97 is

(100)

Since

(101)

the first and third integral in Eq. 97 can be bound by ε for large enough n, and consequently
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(102)

This completes the derivations of Eqs. 36, 37 and 38.
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Fig. 1.
Schematic representation of the transit compartments model (upper) and basic lifespan
based indirect response model (lower). In both models cells are produced at a zero-order rate
that can be affected by drug kin(t). The transfer rates between the transit compartments are
first-order constants n/TR where n is the number of compartments and TR is the total mean
transit time through all compartments. The cell elimination for the lifespan indirect response
model is determined by their time dependent lifespan distribution ℓ(t,τ). Drug affects both n/
TR and ℓ(t,τ) via a mechanism described by the effect function E(t). The transit
compartments P1, P2, …, Pn are described by Eqs. 1-2. The sum of the transit compartments
can be described by a lifespan driven indirect response R. The convolution symbol is
defined by Eq. 11
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Fig. 2.
Simulated response versus time profiles for transit compartments models corresponding to
the monoexponential pharmacokinetic function at indicated doses. a Stimulation of kin0
(Eqs. 9, 1, 2). b Inhibition of kin0 (Eqs. 10, 1, 2). c Stimulation of n/TR (Eqs. 7, 1, 2). d
Inhibition of n/TR (Eqs. 8, 1, 2). The parameter values used for simulations were n = 10,
kin0 = R0/TR, R0 = 100, TR = 24, Imax = Smax = 1, and IC50 = SC50 = 100
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Fig. 3.
Effect of drug on the lifespan distribution at various times. Probability density functions
ℓn(t,τ) corresponding to stimulation of n/TR (Eqs. 7, 1, 2) (left) and inhibition of n/TR (Eqs.
8, 1, 2) (right). The parameter values used for simulations were Dose = 1000, kel = 0.3 and
V = 3, n = 10, kin0 = R0/TR, R0 = 100, TR = 24, Imax = Smax = 1, and IC50 = SC50 = 100
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Fig. 4.
Response time courses for basic lifespan indirect response models corresponding to the
monoexponential pharmacokinetic function at indicated doses. a Stimulation of kin0 (Eqs. 9
and 35). b Inhibition of kin0 (Eqs. 10 and 35). c Stimulation of n/TR (inhibition of TR) (Eqs.
7 and 30). d Inhibition of n/TR (stimulation of TR) (Eqs. 8 and 30). The parameter values
used for simulations were kin0 = R0/TR, R0 = 100, TR = 24, Imax = Smax = 1, and IC50 =
SC50 = 100
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Fig. 5.
Simulated profiles of the p.d.f. γn(τ) for n = 1, 2, …, 10, 20, …, 100. The TR = 24. Each
curve has a unique peak at τn = (1 − 1/n)TR. For n → ∞, γn(τ) approaches the delta function
δ(τ − TR). This property of the gamma p.d.f. is called the approximate identity
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Fig. 6.
Response time courses for transit compartments models with an increasing number of
compartments. a Stimulation of kin0 (Eqs. 9, 1, 2). b Inhibition of kin0 (Eqs. 10, 1, 2). c
Stimulation of n/TR (Eqs. 7, 1, 2). d Inhibition of n/TR (Eqs. 8, 1, 2). The bold curves are
solutions of the basic lifespan based indirect response model: a Stimulation of kin0 (Eqs. 9
and 35). b Inhibition of kin0 (Eqs. 10 and 35). c Stimulation of n/TR (inhibition of TR) (Eqs.
7 and 30). d Inhibition of n/TR (stimulation of TR) (Eqs. 8 and 30). The parameter values
used for simulations are the same as for Fig. 2, except for Dose = 10,000, and n = 1, 2, 3, 4,
5, 10, 20, 100
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Table 1

Percent difference between the transit compartments model response Rn(t) and the limit lifespan based indirect
model response R∞(t) for four models

n Stimulation of kin0 Inhibition of kin0 Stimulation of n/TR Inhibition of n/TR

1 75.3 76.1 64.7 77.5

2 52.5 53.2 42.1 63.1

3 42.9 43.7 32.9 57.8

4 37.2 37.9 27.8 54.9

5 33.5 33.8 24.4 53.0

10 23.6 24.4 16.4 47.9

20 16.4 16.9 11.2 43.9

100 6.5 7.8 4.7 35.4

The difference was evaluated at as the maximum absolute difference between Rn(t) and R∞(t) relative to the maximum absolute difference

between R∞(t) and .

The model parameters are as in Fig. 6
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