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Abstract Bone is a dynamic tissue. Skeletal bone integrity is
maintained through bone modeling and remodeling. The
mechanisms underlying this bone mass regulation are complex
and interrelated. An imbalance in the regulation of bone
remodeling through bone resorption and bone formation results
in bone loss. Chronic inflammation influences bone mass
regulation. Inflammation-related bone disorders share many
common mechanisms of bone loss. These mechanisms are
ultimately mediated through the uncoupling of bone remodel-
ing. Cachexia, physical inactivity, pro-inflammatory cyto-
kines, as well as iatrogenic factors related to effects of
immunosuppression are some of the common mechanisms.
Recently, cytokine signaling through the central nervous
system has been investigated for its potential role in bone
mass dysregulation in inflammatory conditions. Growing
research on the molecular mechanisms involved in
inflammation-induced bone loss may lead to more selective
therapeutic targeting of these pathological signaling
pathways.
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Introduction

Chronic inflammation influences bone mass regulation [1,
2]. The mechanisms underlying this bone mass regulation
are complex and interrelated. Inflammation disorders, such
as rheumatoid arthritis and inflammatory bowel disease,
share many common mechanisms but also have unique
features of bone mass dysregulation [1–4]. These mecha-
nisms are ultimately mediated through the regulation of
bone modeling and remodeling cycle [5, 6].

Bone modeling and bone remodeling

Bone is a dynamic tissue designed to provide structural
support and an important reservoir for mineral and
hematopoietic cells [3]. Bone modeling adapts structure to
loading by changing bone size and shape and so maintains
bone strength [7]. Bone modeling is the sum of the
activities of the endosteum and periosteum of bone to
produce bone forms [8]. Bone modeling predominates
during growth [9]. Bone formation and resorption are not
coupled in time or space in skeletal modeling. This process
results in an increase in bone diameter and modification of
bone shape. Bone modeling results in new bone formed at a
location different from the site of bone resorption [10].
Adolescence has been associated with accelerated bone
maturation and bone modeling is responsible for approxi-
mately 40% of peak skeletal mass [11]. Bone modeling is
important for changes in cortical geometry during growth.
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Peak bone mass occurs toward the end of the third decade
of life [12].

On the other hand, bone remodeling (or bone metabo-
lism) is a life-long process where old bone is removed from
the skeleton and new bone is added. Remodeling is initiated
by damage-induced osteocyte apoptosis, which signals the
location of damage via the osteocyte-canalicular system to
endosteal lining cells that form the canopy of a bone
remodeling compartment [7]. These processes also replace
bone during growth and following injuries like fractures but
also micro-damage, which occurs during normal activity.
Remodeling responds to functional demands of the me-
chanical loading. As a result, bone is added where needed
and removed where it is not required. Molecular signaling
within the bone remodeling compartment between precur-
sors, mature cells, cells of the immune system, and products
of the resorbed matrix titrate the birth, work, and lifespan of
this remodeling machinery to either remove or form a net
volume of bone.

Bone modeling and remodeling processes are not very
different at the cellular level. They are based on the separate
actions of osteoclasts and osteoblasts. A full remodeling
cycle is comprised of bone removal, or resorption, by
osteoclasts followed by bone formation by osteoblasts, two
processes that are tightly coupled. A schematic view of
bone remodeling process is illustrated in Fig. 1. The active
process of bone accumulation, or bone mass, is dependent
on bone volume, height, and puberty in childhood [11]. The
rate of bone remodeling is much higher in growing children
[13]. In the first year of life, almost 100% of the skeleton is
replaced. In adults, remodeling proceeds at about 10% per
year. Both osteoclasts and osteoblasts are derived from their
progenitors that reside in the bone marrow. Osteoclasto-
genesis is dependent on an adequate microenvironment,
which provides essential signals such as macrophage
colony-stimulating factor (M-CSF) and receptor activator
of nuclear factor-κB (RANKL) and cytokines [7, 14].
Osteoblasts are cells of mesenchymal origin that are
responsible for bone formation by secreting bone matrix
proteins and promoting mineralization. Differentiated
osteoblasts embedded in the bone matrix are termed
osteocytes, and they have an important function within
bone as mechanosensors and initiate bone remodeling [5].
Pre-osteoblasts express M-CSF and RANKL and can
induce osteoclast formation, indicating the close interaction
between bone formation and bone resorption [5, 14].

The identification of the RANKL-RANK-osteoprotegerin
(OPG) system is a major breakthrough in bone biology.
Disruption of the RANKL-RANK-OPG axis leads to the
uncoupling of bone metabolism [2]. RANKL enhances
differentiation of osteoclasts and their bone resorption
capacity [15]. Several osteotropic factors, including vitamin
D, parathyroid hormone (PTH) and prostaglandins promote

the expression of RANKL [1, 2]. The Wnt genes encode a
highly conserved class of signaling factors required for the
development of musculoskeletal and neural structures. Wnt
signaling is critical for bone mass accrual, bone remodeling,
and fracture repair [1, 16–19].

Uncoupling of the bone remodeling cycle in chronic
inflammatory disorders

Bone remodeling process regulates calcium homeostasis,
repairs micro-damaged bones from everyday stress, and
also shapes and ensures the mechanical integrity of the
skeleton throughout life [3–5, 7]. An imbalance in the
regulation of bone remodeling's two contrasting events,
bone resorption and bone formation, results in bone loss.
Chronic inflammatory diseases in children negatively
influence skeletal health. Inflammation-associated bone
loss can lead to growth retardation, reduced peak bone
mass, and increased fracture risk [20]. Various mechanisms
have been proposed for bone loss during inflammation [10].
The underlying disease process or therapeutic agents such
as immunosuppressive therapies may influence bone cell
function in inflammatory disorders.

Chronic inflammatory diseases are often associated with
cachexia [21, 22]. Cachexia is associated with anorexia and
reduced nutritional intake and negatively impacts bone
mass [23]. Chronic inflammation of the gastrointestinal
tract reduces calorie intake and inhibits the absorption of
nutrients important to bone metabolism [1]. Mildly elevated
plasma homocysteine levels induced by vitamin B insuffi-
ciency deteriorate normal collagen cross-link formation, an
important bone quality determinant [24, 25]. Furthermore,
vitamin D deficiency is often prevalent in chronic inflam-
matory diseases [26]. Vitamin D deficiency reduces calcium
and phosphorus absorption, increases PTH secretion, and
enhances RANKL expression on osteoblasts [27]. Ele-
vated expression of RANKL enhances bone resorption by
promoting osteoclastogenesis. Vitamin D deficiency
causes growth retardation and skeletal deformities in
children [28]. In adults, vitamin D deficiency exacerbates
osteopenia and osteoporosis, causes osteomalacia, and
muscle weakness. Vitamin D can also modulate the
immune response, and thus exerts an indirect role in
inflammation-associated bone loss [29].

Physical immobility associated with chronic inflammatory
conditions can lead to bone loss through reduced mechanical
bone stimulation. Local or systemic inflammation causes
pain, spasm, and decreased flexibility. Prolonged physical
inactivity contributes to bone loss. Bone grows in response to
the magnitude and direction of the forces to which it is
subjected [10, 30]. This response keeps mechanically
induced deformation of bone at a set point. Physical
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inactivity diminishes mechanical loads by influencing
linear growth and muscle mass and may alter the
functional muscle-bone set point [31]. The risk for hip
fractures decreases as physical activity increases. Non-
randomized trials have shown that exercise protects
against bone loss [32].

Pro-inflammatory cytokines stimulate RANKL expres-
sion in osteoblasts. Enhanced production of RANKL

promotes osteoclast differentiation and stimulates bone
resorption activity of osteoclasts. TNF-α and IL-1 syner-
gize with RANKL and stimulate bone resorption by
osteoclasts [33, 34]. Rate of bone resorption is in
equilibrium with the rate of bone formation during bone
remodeling. Newly formed bone completely replaces the
bone lost in the resorption phase. Inflammation may
uncouple this tightly regulated bone remodeling cycle,
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Fig. 1 The bone remodeling process. Bone remodeling is a dynamic
process in which old bone is removed and new bone is formed. It
consists of two distinct stages—formation and resorption—that
involves the activity of special cells termed osteoblasts and osteo-
clasts. a Mature mineralizing osteoblasts differentiate terminally into
osteocytes. Osteocytes communicate with each other but also
communicate with osteocytes through gap junctions and respond to
changes in fluid flow arising from stress or mechanical stimulation.
Important extrinsic anabolic signals, such as PTH, IGF-I, and
mechanotransduction, stimulate bone formation whereas hypothalamic
leptinergic signals transmitted through adrenergic nerves inhibit bone
formation. Dietary intake of vitamin D influences calcium and
phosphate metabolism and impacts the bone mineralization and
formation. Bone formation is completed when the bone surface is

restored and covered by a layer of protective bone cells called bone-
lining cells. b Bone resorption. In this phase, osteoclasts act on the
trabecular bone surface to erode the mineral and matrix. Osteoclasts
are terminally differentiated bone-absorbing cells. Bone resorption is
accomplished by a series of tightly orchestrated molecular and
biochemical changes that eventually results in the creation of small
cavities on the surface of the trabecular bone. The main switch for
osteoclastic bone resorption is the RANK-L that is released by
activated osteoblasts. Its action on the RANK receptor is regulated by
OPG, which is also derived from osteoblasts. CNS central nervous
system; IGF-I insulin-like growth-hormone I; OPG osteoprotegerin;
PTH parathyroid hormone; RANK-L receptor activator for NF-κβ-
ligand, SNS sympathetic nervous system
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resulting in negative bone balance. Pro-inflammatory
cytokines such as IL-6 and IL-1β promote the expression
of calcium-sensing receptor and result in decreased circu-
lating PTH and vitamin D levels [35, 36]. Anti-TNF-α
therapy is very effective in treating patients with inflam-
matory disorders. This treatment improves the underlying
condition but also appears to have an independent benefi-
cial effect on bone, probably via the inhibition of
osteoclastogenesis [1].

An additional mechanism by which inflammation
uncouples bone remodeling cycle is through alternation of
glucocorticoid signaling [1]. Glucocorticoids suppress
inflammation and help to resolve underlying illness.
However, glucocorticoid treatment has been associated
with osteopenia in chronic inflammatory disease [37].
Glucocorticoids reduce osteoblast protein synthesis [38].
While glucocorticoids at physiological doses are essential
for normal osteoblast differentiation [39], glucocorticoids at
high doses diminish the number of osteoblasts by promot-
ing apoptosis [40]. Glucocorticoids can also cause muscle
wasting [41]. Glucocorticoid-induced myopathy may con-
tribute to bone deficits via the functional muscle-bone unit.
Recent studies suggest divergent effects of glucocorticoids
on bone metabolism. There is currently debate in the
pediatric bone field regarding the skeletal effects of
glucocorticoids. Results suggested that children with oral
corticosteroid treatment were at a greater risk of bone
fracture, likely due to decreased bone formation [37].
Modest deficits in bone mineral content (BMC) in the
lumbar spine but greater whole body BMC and femoral
shaft dimensions were observed in pediatric patients with
steroid-sensitive nephrotic syndrome compared with con-
trols [42]. In a follow-up study, glucocorticoids in child-
hood nephrotic syndrome were associated with low
trabecular bone mineral density (BMD) but high cortical
BMD and increased cortical dimensions were related to
increased muscle mass [43].

Bone mass regulation in rheumatic diseases

Rheumatoid arthritis, juvenile idiopathic arthritis, the
seronegative spondyloarthropathies including psoriatic ar-
thritis, and systemic lupus erythematosus are all examples
of rheumatic diseases in which inflammation is associated
with skeletal pathology [44]. Although some of the
mechanisms of skeletal remodeling are shared among these
diseases, each disease has a unique impact on articular bone
or on the axial or appendicular skeleton [45, 46]. Studies in
human disease and in animal models of arthritis have
identified the osteoclast as the predominant cell type
mediating bone loss in arthritis [44, 47]. Many of the
cytokines and growth factors implicated in rheumatic

diseases have been demonstrated to impact osteoclast
differentiation and function either directly, by acting on
cells of the osteoclast-lineage, or indirectly, by acting on
other cell types to modulate expression of the key
molecules such as RANKL and its inhibitor OPG [48].

Reduced BMD and bone strength occurs in pediatric
patients with rheumatoid arthritis [20, 49]. The hallmark
of rheumatoid arthritis is inflammation of the synovium.
The synovium becomes hyperplastic and inflamed, which
is driven by innate and adaptive immune responses and
subsequently invades the articular cartilage, causing bone
erosions [50, 51]. Bone loss in the inflamed joint is also
due to the uncoupling of bone remodeling. Pro-
inflammatory cytokines released by activated immune
cells in the inflamed joints promote osteoclast activity
and bone erosion [1, 2, 51]. IL-17 recruits neutrophils to
the inflamed joint and activates osteoclast differentiation
by increasing the expression of RANK/RANKL in
synoviocytes [52]. IL-17 also decreases the expression of
OPG in osteoblastic cells, which promotes osteoclasto-
genesis and induces local bone erosion [53]. Other pivotal
pro-inflammatory cytokines present in the arthritic joint
include TNF-α, IL-6, IL-1, and IL-10 [54]. An additional
pathway in which rheumatoid arthritis affects bone mass is
through paracrine activity of 11β-hydroxysteroid dehydro-
genases (11β-HSDs), potentially a major mechanism by
which osteoblasts and osteoclasts are uncoupled [1]. Activ-
ities of 11β-HSDs were stimulated by pro-inflammatory
cytokines, specifically IL-1 and TNF-α, suggesting that
these factors might contribute to inflammation-mediated
bone loss [55–58].

Juvenile idiopathic arthritis is the most common pediat-
ric rheumatic disease [59] and affects joints in any part of
the body. In this disease, the synovium and inflammation
process can spread to surrounding tissues, eventually
damaging cartilage and bone. Other areas of the body,
especially the eyes, may also be affected by the inflamma-
tion. Without treatment, juvenile idiopathic arthritis can
interfere with a child’s normal growth and development.
Burnham et al. have evaluated the bone density, structure,
and strength in 101 pediatrics patients with juvenile
idiopathic arthritis as compared to 830 healthy control
subjects. Significant reduction in trabecular volumetric
BMD and reduced bone strength was observed among
those patients [20, 49, 60, 61]. Children with juvenile
idiopathic arthritis are at risk for deleterious alternations in
cortical bone strength and trabecular bone density, placing
them at greater risk of bone fracture. The pronounced bone
deficits are greater than would be expected for their
reductions in muscle cross-sectional area. Thus, bone
alternations in juvenile idiopathic arthritis could represent
a mixed defect of bone development and low muscle
forces [49].
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Bone mass regulation in inflammatory bowel disease

Low BMD is common in patients with inflammatory bowel
disease [62, 63]. Poor nutrition, physical inactivity, expo-
sure to glucocorticoids, decreased muscle mass, inflamma-
tory cells, and cytokines all contribute to low BMD in
inflammatory bowel disease. Nutritional supplementations
have reversed growth impairment in patients with inflam-
matory bowel disorder and benefited bone mineralization
[51]. Lean tissue mass correlated positively with lumbar
spine and total body BMD. Increased lean tissue mass may
be related to improved physical activity which in turn, may
increase BMD in children with inflammatory bowel disease
[51, 64–67]. Vitamin D deficiency may play a role in the
pathological process of bone loss in inflammatory bowel
disease. Low serum 25-hydroxyvitamin D levels have been
reported in patients with chronic inflammatory bowel
disease [68]. Soluble factors released by the inflamed
intestine may impair bone formation [69]. Activated
lymphocytes are present in the inflamed intestinal mucosa
in inflammatory bowel disease. Activated lymphocytes and
their secreted cytokines affect bone cell function. TNF-α
and IFN-γ inhibit osteoblast formation and function, and
TNF-α stimulates osteoclast formation via RANKL. Neu-
tralization of TNF-α in patients with inflammatory bowel
disease is associated with a rise in bone formation
biomarkers and improved BMD [65, 70].

Sylvester et al. reported inconsistent findings with regard
to biomarkers of bone resorption in pediatric patients with
Crohn’s disease. Urinary N-telopeptides of collagen levels
were decreased while urine deoxypyridinoline to creatinine
ratios were not [71]. Possible reasons for the lack of
elevated resorption markers in Crohn’s disease in the
Sylvester’s study may be contributed to study design and
analytic approach. Recent studies suggest that biomarkers
of bone metabolism vary significantly with many con-
founding factors such as age, sex, and Tanner stage with a
peak during the pubertal growth spurt followed by a rapid
decline to adult levels [72–76]. After adjustment for these
effects, Tuchman et al. reported that Crohn’s disease was
associated with lower biomarkers of bone formation and
greater bone resorption [66]. Beneficial anti-inflammatory
effects of glucocorticoids may offset some of its negative
effects on bone. Dubner et al. carried out an elegant study
in children with new-onset of Crohn’s disease. Their
protocol was rigorously designed to adjust for numerous
variables that may affect bone density, structure, or
strength in the participants. In this study, glucocorticoid
treatment was directly correlated with increased cortical
BMD Z-score after 6 months, and the absence thereof with
declines in cortical BMD in the subsequent 6 months [64].
The authors speculated that glucocorticoids may lead to a
reduction in bone turnover, possibly causing reduced

intracortical porosity, greater secondary mineralization, and
higher cortical BMD. 11β-HSD1 is induced by inflammatory
cytokines [1, 77]. Upregulation of 11β-HSD1 is documented
in colonic mucosa in experimental colitis [78] and in patients
with inflammatory bowel disease [79]. Un-regulation of
11β-HSD1 increases the sensitivity of the colon to thera-
peutic glucocorticoids [1, 80]. A high 11β-HSD1 activity in
the inflamed colon may lead to more effective anti-
inflammatory effects on the colon, enabling a lower level
of glucocorticoids to be used. This could have a potential
bone-sparing effect.

Bone mass regulation in chronic kidney disease

Reductions in BMD are common in patients with chronic
kidney disease (CKD) and may increase susceptibility to low-
trauma fracture [81, 82]. Multiple factors may attribute to
decreased bone formation in chronic kidney disease (Fig. 2).
A wide spectrum of skeletal manifestations may occur in
CKD [83]. Renal osteodystrophy is important in CKD
children because of the risk of long-term consequences such
as growth retardation and bone deformalities [84, 85].
Growth failure is a significant problem in CKD [86].
Pediatric patients have unique problems because CKD
profoundly interferes with bone growth and mineralization
[87, 88]. Secondary hyperparathyroidism is associated with
excessive bone resorption and high turnover bone disease
whereas sub-optimal PTH levels may cause low turnover
bone disease [89]. Recent findings suggest that inflammation
negatively impacts bone mass in CKD. IL-6, the major
mediator of the acute-phase inflammation, is elevated in
CKD patients [90]. A number of factors such as hyperten-
sion, adiposity, insulin resistance, fluid overload, persistent
infections, genetic variations of IL-6 gene, reduced renal
function, and dialysis per se have been implicated in the
pathogenesis of increased IL-6 levels in CKD [91, 92].
Increased circulatory levels of IL-6 may uncouple bone
remodeling in end-stage renal disease (ESRD). IL-6 affects
bone turnover independently of PTH. An inverse correlation
between serum IL-6 and the bone turnover markers
osteocalcin and β-isomerized C-terminal cross-linked pep-
tide of collagen type I was documented in hemodialysis
patients [93]. Indeed, calcitriol treatment affects bone
remodeling by influencing the levels of plasma IL-6, beyond
its suppressive effect on PTH [94]. IL-6, synthesized by
osteoblasts in response to PTH, stimulates osteoclastogenesis
and bone resorption in vitro, and has been implicated in the
pathogenesis of bone loss in several inflammatory con-
ditions. Increased serum IL-6 levels were associated with
elevated bone resorption rate in uremic patients with renal
osteodystrophy [95]. IL-6, released from human osteoblastic
cells in the uremic milieu, has been implicated in the
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deranged bone turnover of uremic patients [96]. Osteoblastic
IL-6 secretion was negatively associated with osteoblastic
cell growth in dialysis patients with low bone turnover [97].
Increased expression of IL-1α, IL-6, TNF-α, and TGF-β has
been demonstrated in bone marrow in ESRD patients. IL-6
and TGF-β were also detected in osteoblasts and osteocytes.
The extent of cytokine deposition corresponded to the
severity of renal osteodystrophy [98], suggesting an impor-
tant role of cytokines in the pathogenesis of renal osteodys-
trophy. IL-6 exerts its action by binding to its receptor
(IL6R) and transduces subsequent signaling within cells. In
vitro as well as in vivo data point to IL-6 as an autocrine/
paracrine factor in bone osteoclasts. Increased mRNA
expression of IL-6 and IL6R was found in osteoclasts and
bone marrow cells in iliac crest bone biopsies from ESRD
patients [99]. Thus, chronic inflammation in CKD has a
negative impact on bone remodeling. Pro-inflammatory
cytokines may contribute to the pathogenesis of renal
osteodystrophy.

Neuropeptides and bone mass regulation in chronic
kidney disease

Cytokines signal through CNS and influence bone
remodeling [100, 101]. Central to this hypothesis is the
discovery that leptin is an important regulator of bone
mass. The characterization of the sympathetic nervous
system as a regulator of bone remodeling has led to
several clinical studies demonstrating a substantial protec-
tive effect of ß-blockers, particularly ß1-blockers, on
fracture risk [102]. Studies in several model organisms
have reinforced the role of the CNS in the regulation of
bone remodeling by the identification of several additional
genes such as melanocortin 4 receptor (MC4R), neuro-
peptide Y (NPY), Y2 receptor, cannabinoid receptor CB1
(Cnbr1), and the genes of the circadian clock [101]. These
genes have several common features, including high levels
of expression in the hypothalamus and the ability to
regulate other major physiological functions in addition to

bone remodeling including energy homeostasis, body
weight, and reproduction.

Leptin plays a key role in skeletal physiology. Leptin-
deficient (ob/ob), leptin receptor-deficient (db/db) and lip-
odystrophic mice, all of which exhibit decreased leptin
signaling, have the same high bone mass phenotype [103].
Leptin is cleared from the circulation by the kidney [104,
105]. In CKD patients, serum levels of leptin were
significantly increased [105, 106]. Elevated leptin level is a
potent inhibitor of bone formation [100, 103]. High serum
leptin levels are reported in several disorders, typically
associated with osteopenia, such as liver cirrhosis, type 2
diabetes, and ESRD [107]. An inverse correlation between
serum leptin levels and histomorphometric indicators of
bone turnover has been demonstrated in renal bone disease.
Serum leptin inversely correlated with PTH, bone formation
rate, and mineral deposition rate in chronic dialysis patients.
A complementary analysis in the same study in male dialysis
patients revealed that the risk for low turnover bone disease
increases with serum leptin concentrations. Adynamic bone
disease is five times higher in patients with high serum leptin
(third tertile) than those with relatively low serum leptin
(first tertile) [108].

We demonstrated that elevated leptin levels may be an
important cause of uremia-associated cachexia via signaling
through the hypothalamic melanocortin system [109]. Leptin
signaling is an important regulator of bone metabolism.
Leptin acts centrally through the hypothalamic melanocortin
receptors to affect appetite, metabolic rate, and bone mass
[100]. Patients with loss-of-function mutations of
melanocortin-4 receptor (MC4R) have markedly increased
total body BMC and increased BMD [110], suggesting that
leptin may regulate bone mass by increasing melanocortin
receptor mediated signaling. We evaluated the role of leptin
and melanocortin signaling on bone mass and bone strength
in a mouse model of uremia. We showed that uremia
induced in c57Bl/6J mice by subtotal nephrectomy resulted
in elevated BUN, creatinine, and circulating leptin levels
compared to pair-fed sham-operated mice. Whole-body and
femoral BMC/BMD in nephrectomized c57Bl/6J mice were
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significantly lower than those in sham-operated mice.
Femoral bone volume was markedly reduced in nephrec-
tomized c57Bl/6J mice and this reduction was due to
decreased cortical bone volume rather than cancellous bone
volume. Cortical bone provides strength by being highly
resistant to bending and torsion while cancellous bone has a
vast surface area created by an interconnecting trabecular
meshwork. The reduced femoral bone BMC/BMD and
femoral cortical bone volume contributed to the observed
reduction of femoral load to failure (a measure of bone
strength and fracture risk) in nephrectomized c57Bl/6J mice.
Agouti-related peptide (AgRP), a melanocortin receptor
reverse agonist, was associated with increase in cortical
bone volume but no change in cancellous bone volume as
well as improved cortical bone strength [111]. These results
in mice are consistent with clinical data from patients with
CKD on dialysis in which decreases in cortical but not
cancellous bone correlated with fracture risk. Hence, our
results suggest that aberrant leptin signaling through mela-
nocortin receptors may play an important role in the
decreased bone mass and strength associated with CKD.

Neuropeptide Y (NPY) is a target of leptin signaling in the
hypothalamus and functions through its receptors. Immuno-
reactivity of NPY is found in nerve fibers distributed
throughout bone [112], strongly suggesting a role of NPY
in the regulation of bone metabolism. NPY Y2-deficient
mice display an increase in trabecular bone mass that can be
reproduced by hypothalamus-specific deletion of Y2 gene
[113], indicating that Y2 signaling in the hypothalamus
inhibits bone formation. Recent studies indicate that signal-
ing of Y2 receptor regulates, via a hypothalamic relay, the
bone remodeling process in both femoral trabecular and
cortical bone compartments [114]. Circulating levels of NPY
are elevated in ESRD patients [115]. Whether the role of Y
receptor and NPY signaling in bone metabolism is conserved
from mouse to humans is unknown.

Conclusions

Chronic inflammatory diseases are characterized by systemic
and local bone loss. The clinical picture is a composite of
inflammatory lesions and structural damage, demonstrating
the tight interaction between the immune and the skeletal
system. Growing knowledge of the molecular mechanisms
involved in the uncoupled bone metabolism has revealed
potential targets for therapeutic interventions.
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