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Abstract
In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering
array of choices as to where to start. To facilitate decision-making, we describe a consensus ‘what
to try first’ strategy based on our collective analysis of the expression and purification of over
10,000 different proteins. This review presents methods that could be applied at the outset of any
project, a prioritized list of alternate strategies and a list of pitfalls that trip many new
investigators.

Recombinant proteins are used throughout biological and biomedical science. Their
production was once the domain of experts, but the development of simple, commercially
available systems has made the technology more widespread. As a result, also more
widespread is an appreciation of the difficult, strategic choices inherent to the process.
Commonly confronted questions include: should the protein(s) be expressed in bacteria, in
yeast, in insect cells or in human cells? Which expression vector should be used? If bacterial
expression is used, which strain(s) should be chosen? Should one express the full-length
protein or a fragment thereof? Should the protein be tagged, and which affinity tag is the
best? What is a good purification strategy, and what are the common pitfalls? Unfortunately,
because every protein is different, there can be no ‘right’ answer to any of these questions a
priori, and purification protocols and strategies must be worked out for each individual
protein and with an eye to its intended use. This said, each project must begin somewhere,
and purification strategies can now be guided by evidence-based trends, probabilities and
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cautionary notes that have emerged from large-scale structural genomics studies. In this
review, which is targeted to the researcher with limited experience in protein expression and
purification, we draw on our collective experiences to suggest a ‘consensus’ starting point
for soluble protein expression and purification.

Over the past decade, our laboratories have collectively targeted and purified tens of
thousands of different proteins from the Eubacteria and Archaea, and thousands from the
Eukarya, including fungal, nematode, parasite, plant and human proteins (Table 1). These
proteins belong to many different classes, including proteins with no predictable structure,
human proteins of therapeutic relevance, proteins from parasites and viruses, integral
membrane proteins and multiprotein complexes. A near-complete list of these proteins is
available in a database (TargetDB) maintained by the Protein Data Bank (PDB;
http://targetdb.pdb.org/) under the auspices of the US National Institute of General Medical
Sciences (NIGMS)-funded Protein Structure Initiative
(http://www.nigms.nih.gov/Initiatives/PSI/). The European research network Structural
Proteomics in Europe (SPINE) also provides detailed target lists online
(http://www.spineurope.org/).

In efforts to identify an optimal approach(es) for the initial production and purification of a
‘typical’ protein, our groups have explored many different technologies and strategies. Our
common objective has been to balance success rates with ease and breadth of use, speed,
cost and versatility1–16. By comparing our independently optimized approaches, it is
apparent that our preferred methods have, in many instances, evolved to be quite similar, but
by no means identical (Table 2). Accordingly, in an effort to provide guidance to scientists
interested in generating purified recombinant proteins, representatives from our research
groups collaborated to articulate our ‘consensus’ advice (Box 1), along with a brief rationale
for each choice. In essence, we tried to answer the question “what would you try first?”,
understanding that several choices are often possible or even desirable. We also provide
guidance for those cases in which the initial attempt fails or problems are encountered, in
other words, “What next?”. In Supplementary Methods online, we provide links to online
protocols offered by several structural genomics groups as well as detailed experimental
protocols for the methods described here.

It is important to emphasize three aspects of this review. First, it is meant to serve as a guide
to those members of the research community who are interested in expressing recombinant
proteins, but who feel that they may not have the breadth of experience to decide among the
various possible approaches. Second, we selected this consensus strategy because it is
simple and has the widest use. There are other methods that are perhaps equivalent, but
space limitations preclude an in-depth discussion of all possible cloning, expression and
purification strategies. Third, the methods described here were developed with the intention
to produce purified, soluble protein in close-to-milligram quantities; there are many
applications for purified protein (biochemical assays, antibody production) that may not
have such requirements.

There are two important provisos to the methods and strategies described in this review.
First, our experience is dominated by studies with nonmembrane cytosolic and/or fragments
of proteins that comprise soluble domains. Second, although the protocols for the ‘first
attempt’ described here have proven to be optimal for the broadest range of proteins, in any
individual case, the methods will fail more often than they succeed.
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Obtaining the cDNA and creating the expression clone
cDNA

Recently, sequencing efforts and various cDNA consortia have made available large
libraries of full-length, sequence-verified cDNAs. Although there are inevitably issues with
clone contamination and mix-up, the resources are in general trustworthy. Among the most
comprehensive and best annotated is the Mammalian Gene Collection, which maintains a
repository of >19,000 human cDNAs, covering ~65% of all annotated genes. For genes or
splice variants not easily obtained through more traditional routes, total gene synthesis can
be used. Over the past few years, the cost of gene synthesis has dropped almost fivefold, and
it will undoubtedly continue to decrease. One advantage of gene synthesis is the ability to
change the codon bias of the gene to be more compatible with the recombinant host.
However, for Escherichia coli, expression strains supplemented with additional tRNAs can
often overcome the codon bias of the recombinant gene17. For example, in a study of 30
human genes by the Structural Genomics Consortium (SGC), there was no clear advantage
in the use of codon-optimized genes compared with the natural sequence expressed in
tRNA-supplemented strains (N.A. Burgess-Brown, S. Sharma, F. Sobott, C. Loenarz, U.
Oppermann and O. Gileadi; submitted).

Selecting the N and C termini
The objective of recombinant protein expression is usually to produce a sample that supports
a certain biochemical or biological activity, such as enzyme catalysis or protein-ligand
interactions. Frequently, the desired activity is supported by a discrete domain, and thus it is
often not necessary to express the full-length protein to address a particular biological
question. In expressing a protein domain, the choice of the N- and C-terminal boundaries
represents an important consideration because even small differences can dramatically
influence both solubility and expression. For example, Klock and colleagues18 evaluated a
nested set of 2,143 N- and C-terminal truncations from 96 targets and found considerable
variation in both solubility and aggregation behavior by altering the protein length by just a
few amino acids.

BOX 1 SUMMARY OF CONSENSUS PROTOCOL

• Obtain the cDNA by amplifying either genomic DNA (prokaryotic genes, or
eukaryotic genes with no introns) or full-length, sequence-verified cDNAs
(eukaryotes) or by total gene synthesis.

• Use ligation-independent cloning (LIC) to clone the full-length cDNA (or the
fragment of interest) into an E coli expression vector.

• Use T7 RNA polymerase–driven expression and an N-terminal oligohistidine
tag (include a cleavage site for a sequence-specific protease to enable removal
of the tag).

• Express the protein in a derivative of the E. coli BL21(DE3) strain, with
induction at low temperature (15–25 °C) in rich medium and with good aeration.
If expressing proteins from organisms that have codon biases differing from
those used by E. coli, use a strain supplemented with the appropriate tRNA
genes.

• Solubilize and purify the protein in a well-buffered solution containing an ionic
strength equivalent to 300–500 mM of a monovalent salt, such as NaCl.

• Use immobilized metal affinity chromatography (IMAC) as the initial
purification step.
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• If additional purification is required, use size-exclusion chromatography (gel
filtration). If necessary, use ion exchange chromatography as a final ‘polishing’
step.

• The affinity tag may be removed to minimize non-native sequences in the
recombinant protein and to achieve further purification. Use a recombinant,
hexahistidine-tagged protease and reapply the sample to IMAC column to
remove the protease and any cellular proteins that bound to the metal affinity
resin.

Despite the best efforts, and even for proteins whose domain structure is well-defined, it is
not currently possible to predict which specific N- and C-terminal boundaries are most
compatible with the expression of a soluble protein. Thus, pragmatism dictates testing many
truncated forms of the protein to select one or more for scale-up production. For proteins of
known or readily predicted three-dimensional structure, the borders should be engineered to
encompass the domain of interest. As an example, ten constructs of the targeted domain
might be made at the outset of every project, one corresponding to the full-length protein
and nine representing the clones derived from amplifying a combination of three different
5′-end primers and three different 3′-end primers. Gräslund and colleagues have compared
the success rate of the nested-primer approach with the predicted success rate if one had
chosen only a single ‘optimal’ construct. In a sample set of 400 human protein domains, the
use of multiple constructs increased the probability of generating a soluble protein
twofold19.

To select the sets of PCR primers for proteins with a predictable three-dimensional structure,
one should consider prior knowledge of the structure of a related protein, sequence
conservation patterns, and predictions of secondary structure or unfolded/disordered
regions20,21. Widely accepted guidelines are to: (i) remove predicted membrane-spanning
regions; (ii) avoid disrupting predicted secondary structural elements; (iii) respect the
boundaries of globular domains, if known; and (iv) avoid inclusion of low-complexity
regions or hydrophobic residues at the termini22. The optimal step size between the nested
primers is not yet fully understood; we commonly make constructs to encode proteins that
vary in length by 2–10 amino acids at each end19. For proteins without a predictable three-
dimensional structure, the approximate boundaries of the region of interest might be
identified using functional assays and scanning deletion mutagenesis, and then optimal
boundaries for expression can be identified using nested sets of PCR primers, as above23.
Boundaries of structured domains can also be determined experimentally by using limited
proteolysis combined with mass spectrometry analysis24. Clearly, when using protein
fragments, caution should be used in interpreting unexpected biological results.

Cloning
The most common methods now used in our groups to clone target genes into the requisite
expression vector rely on homology-based approaches, using either recombination
enzymes25 or ligation-independent cloning (LIC)26. Restriction enzyme–based approaches
are used less frequently. A comparison of the methods is shown in Supplementary Table 1
online.

Recombination-based methods include, for example, the bacteriophage lambda integrase
system27 and the Cre-lox recombination system28. These methods are rapid, easy and
produce few false positives. However, the requirement for special cloning sites imposes
constraints: either additional amino acid codons are inserted at either end of the gene,
making the PCR primers quite long, or the work-around cloning strategies are more

et al. Page 5

Nat Methods. Author manuscript; available in PMC 2011 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



complicated. The unique feature of these methods is the ability to transfer the cloned
sequence among a series of compatible vectors that can be used to express the gene in
different hosts or with different tags. For bacterial expression, however, the probability of
identifying a clone that expresses a soluble protein is increased by making different variants
of a single protein in the same E. coli host rather than by cloning a single variant into vectors
with different tags and expression hosts19,29.

Ligation-independent cloning, which is used by most of our groups, has the disadvantage
compared with recombination-based approaches in that one needs to clone sequences
independently into each vector (if this is required). However, the method is inexpensive and
simple. One scientist can routinely generate two 96-well plates of distinct clones in a week
without the benefit of automation.

Expressing the protein
E. coli as the recombinant host for initial studies

The stably folded, globular domains of prokaryotic and eukaryotic proteins (for example,
catalytic domains or protein interaction domains) are a major focus both of the biomedical
research community and of our laboratories. These proteins are generally suitable for
expression in E. coli. Over the years, much effort has been put into optimizing E. coli as an
expression host for proteins from higher organisms30. This strategy has generated a wide
arsenal of tools that can be used to increase the yield of soluble protein.

A surprising variety of other classes of proteins, from full-length bacterial and human
proteins, to protein complexes, and even some human integral membrane proteins can also
be produced in E. coli. In terms of full-length proteins, analysis of large-scale protein
expression trials shows that up to 50% of proteins from the Eubacteria or Archaea and 10%
of proteins from the Eukarya can be expressed in E. coli in soluble form31
(http://targetdb.pdb.org/). Overall, the probability of successfully expressing a soluble
protein decreases considerably at molecular weights above ~60 kDa (Fig. 1). Proteins that
do not express in soluble form may not be modified or folded properly, or may precipitate
within E. coli through formation of inclusion bodies. Remarkably, expression in a
heterologous host does not solely account for the poor success rates; even after extensive
screens of expression conditions, 30% of proteins from E. coli itself cannot be produced in
soluble form when overexpressed in E. coli32.

On the basis of these studies, our view is that the first attempt for the recombinant
production of any protein—whatever the source—is to try E. coli as the expression host. It is
fast and inexpensive to test a wide variety of possible strategies in E. coli, and one can
complete a fairly comprehensive analysis within a relatively short period of time.
Alternative systems should be used only after the E. coli system has been reasonably
explored. This view balances the fact that there is definitely a lower probability of
expressing some classes of proteins in E. coli (full-length eukaryotic proteins, integral
membrane proteins) compared with other systems (human or insect cells), with the fact that
the E. coli system is useful in many cases, and also is far more cost-effective and
convenient.

Strain of E. coli.
For high-level protein production purposes, BL21(DE3) is an appropriate E. coli strain. It
has the advantage of being deficient in both lon and ompT proteases and it is compatible
with the T7 lacO promoter system33. For eukaryotic proteins, it is often important to use
BL21(DE3) derivatives carrying additional tRNAs to overcome the effects of codon bias.
Historically, ampicillin has been the most commonly used antibiotic-selection marker, but it
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is being replaced by carbenicillin, which is more stable. Vectors encoding resistance to
kanamycin or chloramphenicol are now widely used as well.

Fusion to oligohistidine tags
We suggest that the protein should be produced as a fusion to an affinity tag because tags
dramatically aid in protein purification and rarely adversely affect biological or biochemical
activity34. However, in selecting which tag to use, one is faced with a daunting number of
choices. Our groups have explored most of the available options, and we observed that no
affinity tag emerged as significantly more efficacious in successfully producing soluble,
active recombinant proteins35. Despite the lack of a clear winner based on success rate,
most of our research groups selected an N-terminal hexahistidine tag that can be removed by
a site-specific protease, such as the tobacco etch virus (TEV) protease36. However, many
other instances can be found in which proteins can be expressed in soluble form only as
fusions to other affinity tags29.

The rationale for the choice of an N-terminal hexahistidine is manifold. First, an N-terminal
tag ensures that the bacterial transcription and translation machineries always encounter 5′
and N-terminal sequences that are compatible with robust RNA synthesis and protein
expression, respectively. Second, oligohistidine-tagged proteins can be purified using a
relatively simple protocol using immobilized metal affinity chromatography (IMAC)37.
Third, histidine tags rarely affect the characteristics of the protein, which distinguishes it, for
example, from glutathione S-transferase (GST), which itself is a dimer that then imposes
dimerization on the recombinant protein. Fourth, the hexahistidine tag is relatively small and
usually does not dramatically alter the solubility properties of the target protein. By contrast,
larger tags, such as the maltose-binding protein (MBP), can often increase the apparent
solubility of the recombinant moiety, even when the protein is either insoluble by nature, or
unstable or unfolded and, therefore, less likely to be active38–40. Fifth, for the specific
application of protein crystallography, short histidine tags appear to be neutral actors; in
most of our projects, we routinely attempt crystallization and NMR structure determination
with both cleaved and uncleaved proteins, and their relative representation among the
resulting three-dimensional structures is roughly equivalent. A recent PDB-wide survey41
also indicates that hexahistidine tags do not have a consistent impact on the N-terminal
structure of the target protein.

T7 RNA polymerase–based expression vectors
The most commonly used expression systems are based on pET vectors (Merck/EMD; the
pET System manual, 2006), which drive expression of a recombinant gene under the control
of the T7 RNA polymerase promoter and lac operator33,42. The vectors are designed for
use in λDE3 lysogen strains of E. coli, which harbor a genomic copy of the gene for T7
RNA polymerase under the control of the lac repressor. Under repressive conditions, T7
RNA polymerase is not produced, and transcription of the target gene is negligible. After
induction, when the T7 RNA polymerase is produced, most of the cellular protein synthesis
machinery will be devoted to producing the target protein. On occasion, low-level
expression of T7 polymerase within these strains leads to expression of the recombinant
protein and may slow or prevent growth of the transformed bacteria. The expression of such
highly toxic proteins can be effected by using T7 lysozyme-expressing strains42, strains in
which the T7 RNA polymerase is under the control of the arabinose promoter43, by
producing the protein in a cell-free system44 or by driving expression of the recombinant
protein directly by the more tightly regulated arabinose promoter system45.
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Expression conditions
Using T7 systems, protein expression can be induced either with the chemical inducer
isopropyl-β-D-thiogalactoside (IPTG) or by manipulating the carbon sources during E. coli
growth (auto-induction; ref. 46 and the pET System manual; Merck/EMD, 2006).

In both cases, the cells can, and should, be grown to high densities (OD600 of 4–20) in
highly enriched medium47 in baffled shake flasks48,49. Whatever the final cell density, it is
advisable to induce the expression of the T7 RNA polymerase at mid-to-late log phase of the
growth curve to ensure maximal yield while avoiding the problems associated with cells
going into stationary phase (for example, induction of proteases). One feature of the T7
system is that many recombinant proteins often precipitate when expressed at 37 °C, but are
soluble when the temperature during induction is 15–25 °C, presumably because slower
rates of protein production allow newly transcribed recombinant proteins time to fold
properly50. Thus, lower temperatures during induction should be used as the default.

Small-scale test expression
Small-scale test expression is widely used as a predictive tool to determine which of the
derivative clones actually produces soluble protein and to establish the optimal scale for the
large-scale growth. A major concern is that the expression level and solubility of a
recombinant protein is influenced by the culture conditions and the degree of aeration, and
these parameters do not always scale with culture volume. The results from small and large-
scale growth also vary owing to differences in sample preparation and protein purification
methods that are used for each scale of growth. Therefore, whereas positive small-scale
experiments are often predictive of the results from large-scale growth, there will inevitably
be a substantial proportion of false negatives in which an apparently nonexpressed or
insoluble protein can be in fact, expressed in soluble form when grown on a larger scale. If
the total number of constructs to be tested is small (for example, <20 constructs), it may be
wiser to proceed immediately to larger-scale cultures to avoid any potential complications.

For analysis of large numbers of constructs, parallel small-scale protein purification can be
performed efficiently in volumes of 1–20 ml, in 96-well format. This scale typically
produces 10–200 µg of protein, which is sufficient for many analytical tests. The results can
be used to optimize the construct design and experimental conditions before embarking on
larger scale purifications49,51,52.

Protein purification
As a chromatographic procedure, IMAC has the advantages of having strong, specific
binding, mild elution conditions and the ability to control selectivity by including low
concentrations of imidazole in chromatography buffers. There is a broad array of common
resins with slightly different binding capacities and binding strengths, but all tolerate harsh
cleaning procedures (TALON Metal Affinity Resins User Manual, Clontech, 2007; the
QIAexpressionist, Qiagen, 2003; and HisTrap HP, 1 ml and 5 ml (instructions), Amersham
Biosciences, GE Healthcare, 2003). Most purification steps can be integrated by high-
performance liquid chromatography; the most commonly used devices are the ÄKTA
systems from GE Healthcare.

The final purity of the protein can be optimized by controlling the ratio of recombinant
protein to the column size; lower-affinity contaminants can be competed with a relative
excess of the histidine-tagged recombinant protein. Accordingly, it is beneficial to determine
the amount of the soluble target protein to be loaded on the column, and this can be
estimated from small-scale expression trials. As a general rule, to maximize purity, one
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should load the column with a slight excess over the predicted binding capacity. Although
not necessary, it is relatively straightforward to implement these protein purification
protocols on automated chromatography systems, which have proven reliable, effective and
simple to use.

Preparation of the bacterial lysate
Preparation of the bacterial lysate is a critical step. Optimal conditions maximize cell lysis
and the fraction of the recombinant protein that is extracted while minimizing protein
oxidation, unwanted proteolysis and sample contamination with genomic DNA. Mechanical
lysis by high-pressure homogenization or sonication, or lysis by freeze-thaw procedures
with lysozyme are equivalent in most cases. The lysis buffer should contain a strong buffer
(50–100 mM phosphate or HEPES) to overcome the contribution of the bacterial lysate,
high ionic strength (equivalent to 300–500 mM NaCl) to enhance protein solubility and
stability, protease inhibitors and a reducing agent such as Tris(2-carboxyethyl) phosphine
hydrochloride (TCEP) to prevent oxidation of the protein. Loading large amounts of
bacterial lysate (>1 l culture volume) on small (<1 ml) affinity columns may require prior
removal of any particulate or viscous material. This can be accomplished by using enzymes
that degrade nucleic acid and cell-wall material, such as DNase or Benzonase (Merck/EMD)
and lysozyme, respectively. Some of the enzymes used in lysis are less active in the
presence of reducing agents or high salt concentration; optimal lysis may require sequential
addition of the components. Clarified lysates can also be filtered before loading on the
affinity columns.

IMAC purification is performed in phosphate buffer, pH 8.0 and an ionic strength equivalent
to 300–500 mM NaCl. HEPES buffer (and, to a lesser extent, Tris buffer) at pH 7.5–8.0 can
also be used. It has been consistently observed that conditions of high ionic strength (for
example, 500 mM NaCl) maintain solubility and stability of the widest variety of proteins.
Indeed, a substantial fraction of proteins precipitate if the salt concentration is reduced to
physiological levels, particularly as the protein becomes more pure and concentrated. The
choice of NaCl as the salt is mainly historical and, although not systematically explored,
there is no reason to believe that sodium and chloride are optimal. Indeed, sodium and
chloride levels in the cell are very low and are probably never the physiologically relevant
counter-ions for intracellular proteins. A modest amount of imidazole (see resin
manufacturer’s recommendations) should be included in the cell extraction buffer to reduce
binding of less histidine-rich proteins to the IMAC column. For intracellular proteins, care
should be taken to maintain a reducing environment. TCEP, unlike dithiothreitol (DDT), is
compatible with all known IMAC matrices. Finally, inclusion of glycerol (10%) during
protein purification enhances the solubility and stability of many proteins.

Chromatography
After the lysate is loaded on the IMAC column, it should be washed with buffer including an
intermediate concentration of imidazole (see manufacturer’s instructions), which will elute
weakly bound contaminants without sacrificing large amounts of the recombinant protein. It
is sometimes necessary to optimize the wash step with respect to the concentration of
imidazole as well as the volume of the wash. Finally, the recombinant protein should be with
a step gradient (for example, 300 mM imidazole). If EDTA and DTT are added after IMAC;
add the EDTA first to sequester any nickel that has leached off and that could react with the
DTT.

The choice of gel filtration as the next step may be surprising, considering its lower
resolving power compared with ion exchange or other adsorption chromatography methods,
but this step is often sufficient after IMAC if the protein was abundant in the lysate.
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Moreover, gel filtration is more generic, can be performed in any buffer condition, and can
be used to resolve the oligomerization state of the target protein. In some cases, if the
protein is judged insufficiently pure for the intended purpose, one can remove the tag with a
histidine-tagged TEV protease and perform IMAC again as an additional ‘generic’
purification step, collecting the recombinant protein in the flowthrough. This step very
efficiently removes histidine-rich proteins derived from the expression host, which may
have copurified in the primary IMAC procedure, as well as the cleaved tag and the histidine-
tagged protease.

Protein characterization
Characterizing the purified protein in some detail reduces the risk of wasting resources on
protein material of inadequate quality. It also provides a means to ensure that different
batches of the same protein have similar properties. Below, we outline a simple, generic
protein characterization protocol that allows the experimentalist to judge whether the correct
protein has been purified, whether additional molecular species are present and to estimate
the approximate protein concentration. Other characterization methods that are very
informative but not as widely applied, such as mass spectrometry, static or dynamic light
scattering, and measuring protein thermal stability, are described in Supplementary
Methods.

Inspection of gel filtration chromatogram
If size exclusion chromatography was used as the last purification step, a close look at the
chromatogram is essential. Symmetric elution profiles are characteristic of homogeneous
proteins, whereas asymmetric profiles reflect inhomogeneous, or partially aggregated,
samples (Fig. 2), or whether the column itself is in poor condition. The elution profiles will
also reveal the primary oligomerization state. The presence of additional oligomerization
states may be of biological significance, or may be a sign of nonspecific aggregation. If the
protein elutes in the void volume of the chromatogram, the protein is most likely forming
large, nonspecific aggregates, which may be an indication of improper folding and
compromised activity. It is also of value to analyze individual peaks by SDS-PAGE or mass
spectrometry to analyze the protein in each peak.

SDS-PAGE analysis
After protein purification, samples should be resolved by denaturing SDS-PAGE. If stained
with a dye such as Coomassie brilliant blue, the intensity of the bands will usually be
proportional to the amount of protein53. This allows the purity of the sample to be estimated
and whether the purified protein is of the expected size.

UV absorption spectroscopy
To quantify the amount and concentration of purified protein, the simplest and most
common method is the Bradford assay53, which measures the binding of Coomassie
brilliant blue to the protein. As some proteins bind the dye anomalously, it is also useful to
measure the UV absorption at A280 and calculate the concentration of the protein by using
the predicted molar extinction coefficient at A280
(http://www.expasy.org/tools/protparam.html). By taking a UV absorption spectrum, it is
also possible to uncover contamination with DNA or RNA, or reveal common copurifying
cofactors (for example, NAD, FAD, heme).

Storing purified protein
Aliquots of the protein to be stored should be placed in thin-walled PCR plastic tubes,
frozen in liquid nitrogen and stored at −80 °C. Small aliquots should be frozen to avoid
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damaging freeze-thaw cycles, and aliquots should be thawed on ice. Concentrated proteins
(for example, >1 mg/ml) tend to be more stable to freeze-thaw cycles. Proteins are usually
concentrated using centrifuge-driven filter devices with adequate molecular weight size
cutoffs. Care should be taken during centrifugation to avoid local over-concentration and
irreversible precipitation or aggregation of the protein on the filtration membrane.

It is advisable to explore the stability of the protein to concentration and freeze-thaw cycles
before processing the entire batch. The frozen and thawed sample should be compared with
protein that was not frozen for biochemical activity, visible precipitation, changes in
physical properties (for example, dynamic light scattering or gel filtration profile) or
crystallization characteristics. In our collective experience, relatively few proteins are
irreversibly inactivated by one freeze-thaw cycle. In those rare instances, the protein can be
stored at 4 °C for short periods of time, at −20 °C in high concentrations of glycerol, or as
an ammonium sulfate suspension.

Common ‘traps’ and ‘pitfalls’
Poor lysis

In small-scale test expression and solubility trials designed to assess the extent to which a
protein partitions to the soluble or insoluble fractions, it is important to ensure that the cells
are lysed and fractionated properly. Although this is not technically challenging, we have
found that it is very common to fail to achieve complete bacterial lysis, which leads to an
underestimation of the proportion of recombinant protein in the soluble fraction. Care should
also be taken when removing the soluble fraction after centrifugation; it is relatively easy to
contaminate the soluble fraction with insoluble material, which can lead to an overestimate
of the amount of recombinant protein in the soluble fraction. As a quality control, it is
advisable to inspect the protein profiles of the fractions using SDS gel electrophoresis. Some
cellular proteins characteristically resolve into the soluble and insoluble fractions and these
serve as excellent internal controls (Supplementary Fig. 1 and 2 online).

The recombinant protein fails to bind the IMAC column
The pH of the lysate should be 7.5–8.0 for efficient binding, and the buffer should not
contain chelators (EDTA or citrate), high imidazole concentrations (for example, >30 mM
for Ni-NTA resins) or DTT. In some instances, it is necessary to reduce the amount of
imidazole in the loading buffer to <5 mM. The column must be properly charged with metal
ions and, when charging columns, make sure the concentrated NiSO4 solution is buffered
and set to pH 7.5. It is also important to remember that imidazole is a base; the final
solutions must be adjusted to the correct pH. In some cases the target protein may bind
weakly to the IMAC column, so the concentration of imidazole in the wash step should be
reduced (for example, 20 mM).

The wrong or a mutant protein was expressed or purified
An incorrect protein may occasionally be expressed and purified, which most commonly
results from a simple clone mix-up. In that instance the problem will be detected either by
gel electrophoresis or mass spectrometry of the purified protein.

If the recombinant protein is expressed at low levels, it is also relatively common to purify
an endogenous E. coli protein that binds to, and elutes from, the IMAC column and that also
adventitiously migrates with the predicted mobility of the target protein54. In some cases,
this E. coli protein may even appear to be induced after the expression of T7 RNA
polymerase. Determining whether you have purified your recombinant protein or an
endogenous bacterial protein can readily be accomplished with mass spectrometry, but is
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more difficult by denaturing gel electrophoresis. A western blot to the affinity tag can
sometimes be useful to track the recombinant protein.

If the expression construct is sequenced before the experiment, errors introduced in primer
synthesis or PCR will be detected. In practice, PCR-generated sequence errors are so rare
that it is often more practical to do the expression trials first, and to sequence the successful
expression constructs later. Of course, if none of the constructs express a protein, it is
essential to sequence the expression clones and, ultimately, to sequence the clones selected
for scale-up and purification.

Bacterial proteins copurify with the recombinant protein
Copurification of E. coli proteins with the histidine-tagged recombinant protein is very
common, especially when the expression level of the recombinant protein is low.
Contaminants include proteins that contain multiple histidine residues (for example, SlyD;
Table 3), and molecular chaperones that may bind to the resin directly or to the recombinant
protein54,55. The affinity resin has limited capacity, so loading near-saturating amounts of
the recombinant protein on a column improves purity. Tag cleavage followed by affinity
purification is also effective in removing contaminants, as these proteins are unaffected by
the protease and bind to the column after reapplication of the cleavage reaction. Samples
copurifying with chaperones should be regarded with suspicion because this indicates that
the protein may have some unfolded character. In cases where the target protein cannot be
separated from the chaperones by additional chromatography, use an alternative expression
system, process a different construct of the protein or try working with a closely related
ortholog.

Samples contain additional proteins or multiple protein species or states
If the protein target is contaminated with other proteins, one can perform additional
purification steps such as ion-exchange chromatography. Purifying samples contaminated
with different post-translationally modified species or proteolytic fragments of the same
protein is more challenging, but not necessarily intractable. For example, different
phosphorylated states of a protein can sometimes be resolved using ion-exchange
chromatography56.

‘Pure’ samples precipitate or fail to concentrate
Pure proteins often precipitate out of solution, even at relatively low (<1 mg/ml)
concentrations. This behavior is sometimes coupled with sample inhomogeneity, either in
the form of contaminating protein or alternate folded states. Precipitation can also occur by
aggregation owing to the presence of hydrophobic or hydrophilic patches on the surface of
the target protein. In either case, the problem worsens as the protein concentration increases.
There are no generic solutions but some potential solutions, which must be explored for each
protein, are to: find a more stabilizing buffer through screening using analytical gel filtration
or thermal denaturation (see Supplementary Methods), maintain the protein at lower
concentration (<0.1–0.5 mg/ml), maintain an adequate reduced state to prevent protein
oxidation (>5 mM DTT, refreshed as required), maintain the salt concentration at high levels
(ionic strength >500 mM of a monovalent salt), add glycerol to 10%, add arginine in the
range of 50–500 mM, add a mild nondenaturing detergent (0.1% β-octylglucoside) or keep
the protein at its optimal temperature (determined empirically).

Rescue strategies
In even the best of circumstances, it is unusual to generate a soluble version of any given
protein on the first attempt. As such, it is important to have a series of alternative
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approaches. Here we provide various suggestions in the order in which we would usually
apply them.

Changing expression conditions
Adjustment of the expression conditions seldom results in radical changes but, as some
optimization can be done quite easily, it is worth the effort. The first step is to lower the
temperature to slow down protein production. Different types of media can also be tested;
rich media, such as Terrific Broth, 2×YT or ZYP5052 (auto-induction), often support good
expression. Changing the E. coli strain can also improve expression of a soluble protein51.

Expression of more variants of the protein sequence
As described above, it is important to test the expression of a range of constructs to identify
those that express a soluble derivative. We suggest expressing as many as 10 constructs in
the initial attempts. If this proves unsuccessful, then it may be advisable to explore
additional constructs, particularly if one has knowledge that a structurally related protein can
be expressed in soluble form.

Alternate tags
Our consensus strategy is to append an N-terminal histidine tag to each construct. If the
histidine-tagged recombinant protein does not express or is insoluble, then the probability
that it will be expressed in an active form with another N-terminal fusion partner is reduced
considerably. Our advice, therefore, is not to iteratively append different N-terminal fusions
but to first explore a C-terminal fusion to the histidine tag instead. Some proteins that are
completely insoluble with an N-terminal histidine tag can be expressed in soluble form with
a C-terminal histidine tag57.

Although we do not advise extensive sampling of other N-terminal fusions, this strategy can
sometimes lead to production of soluble, stable fusion protein. If the aim is to study the
function of the target protein, and the fusion protein is an acceptable reagent, then it may be
an appropriate strategy. However, this approach has its caveats. In the absence of a robust
and quantitative functional assay, one reasonably uses solubility as a proxy for function.
However, proteins that are soluble only with a larger tag can be ‘dragged’ into solution by
the tag, and revert to an insoluble form if the fusion partner is removed38–40.This indicates
that the integrity of the recombinant protein as a fusion protein may be suspect. For
example, wildtype GFP is mostly insoluble when expressed in E. coli at 37 °C but is largely
expressed in the soluble fraction as an MBP fusion58. Nonetheless, bacterial colonies
expressing the MBP-GFP fusions display only weak fluorescence, suggesting that the GFP
is nonfunctional (G.S. Waldo; unpublished data). Accordingly, before any functional
studies, considerable attention should be paid to whether a target protein appears to be
soluble only because it is a passenger on a larger tag.

Coexpression of interacting proteins
Many proteins are obligate components of multiprotein assemblies and these often require
an interacting protein for correct folding and stability21,59,60. Such proteins, and those with
unstructured polypeptide chain segments, often cannot be expressed in E. coli in soluble
form, but it has proven possible to improve the properties of these proteins by coexpressing
the cognate interacting protein61–63. This strategy is only starting to be used in the large-
scale projects, in those cases when entire families of interacting proteins are being studied.
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Ligand supplementation
Many proteins can be stabilized by the binding of a small molecule—a principle that has
found widespread application in generic screening for protein ligands64,65. This property
can be exploited to increase the proportion of recombinant protein expressed in soluble form
or to stabilize a protein during purification. If a sufficiently soluble, cell-permeable and avid
ligand is available, one can use it to stabilize newly synthesized proteins and promote
solubility66,67. This concept has also not yet been explored sufficiently in a systematic way.

Other expression hosts
If bacterial expression is unsuccessful to this point, other hosts should be considered.
Common eukaryotic alternatives are the baculovirus expression system in insect cells68, the
yeasts Pichia pastoris69 and Saccharomyces cerevisiae70, human cells71, or cell-free
systems using prokaryotic or eukaryotic extracts72–76. These cell-free systems, which have
been used extensively to generate thousands of purified proteins for structural studies77–79,
can be used to produce proteins that are toxic to E. coli79 and can use PCR-amplified linear
DNA fragments, without cloning into a vector, for screening and optimization.

All these other expression systems are reasonably simple to use, but they are somewhat
more time-consuming to work with than are bacteria and require equipment less commonly
found in a typical laboratory.

Coexpression of chaperones
Proper in vivo folding of a recombinant protein can be promoted by coexpression of
molecular chaperones, which are typically produced from cotransformed plasmids carrying
several chaperones with synergistic effects, such as the pG-Tf2 vector80—a combination of
GroEL-GroES81 and trigger factor82. In our hands, chaperones have been used successfully
only in isolated cases, and we know of no study of considerable size that has demonstrated
broad efficacy.

Refolding
A commonly tried but only episodically successful protocol to rescue insoluble protein is to
denature the protein and try to refold it in vitro. The method can be successful83,84,
particularly for extracellular proteins. However, even the most robust protocols only refold a
small fraction of the input protein, and it is difficult to purify the refolded fraction. The best
procedures use an activity assay to monitor refolding, and affinity reagents that select any
refolded, active protein. We would advise using refolding as a last resort for intracellular
proteins.

Summary
The methods and strategies for protein expression and purification have been reviewed for
the expert many times in excellent, comprehensive ways. Here we attempted to provide a
resource for those entering the field, reflecting the experiences of our groups in the
application of the various methods to large numbers of proteins. We understand there are
many possible routes to obtain high-quality protein and acknowledge that the methods
described above should be considered as a starting point that can be embellished once
sufficient expertise has been obtained. Detailed protocols for the methods described in this
review can be found in the Supplementary Methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Solubility as a function of construct length. Fraction of successful purifications and structure
determinations as a function of protein length (data from New York Structural GenomiX
Research Center). Dotted line, fraction of cloned targets resulting in successful large-scale
purifications. Dashed line, fraction of soluble clones (those that express soluble protein at a
1-ml scale) that yield pure protein at large scale. Solid line, fraction of purified proteins
resulting in successful crystal structure determinations. There are relatively few targets with
lengths greater than 800 amino acids, so these fractions have been extrapolated and are
shown in gray.

et al. Page 20

Nat Methods. Author manuscript; available in PMC 2011 September 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Gel filtration profiles. Representative good (left) and bad (right) gel-filtration profiles of two
different proteins purified on an ÄKTAxpress system using a HiLoad Superdex 200 column
(GE Healthcare).
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Table 1

Overview of targeted proteins

Organism Targets cloned Targets purified Percentage purified

Viruses 335 118 35

Archaea 8,043 2,917 36

Bacteria 58,806 17,350 30

Eukarya 42,239 8,008 19

These data were obtained from TargetDB (21 December 2007) and include data from all structural genomics centers listed, plus updated
information from the SGC. Source, http://targetdb.pdb.org/statistics/TargetStatistics.html and
http://www.thesgc.com/structures/target_progress.php.
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Table 3

Common E. coli proteins that copurify by IMAC

Protein Accession number Monomer mass (kDa)

GroES NP_418566 10.39

Fur NP_415209 16.79

SlyD NP_755987 20.85

CA NP_414668 25.10

RplB P60422 29.86

DnaJ NP_414556 41.10

GroEL AAS75782 57.35

DnaK NP_414555 69.11

Based on information in references 54 and 55, and on unpublished observations.
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