
A Dutch family with moderately severe hemophilia B (Factor IX_{Heerde}) has a missense mutation identical to that of factor $IX_{London\ 2}$

S.R.Poort, E.Briët, R.M.Bertina and P.H.Reitsma

Department of Hematology, University Hospital, Leiden, The Netherlands Submitted March 23, 1989

Genetic alterations in the factor IX gene that lead to impaired synthesis and/or aberrant molecules result in an X-linked recessive bleeding tendency (hemophilia B). Here we report a $G \longrightarrow A$ transition at position 31119 (1), i.e. within exon 8 that codes for the larger part of the catalytic domain of factor IX, in a patient with moderately severe hemophilia B (FIX_{Heerde}) who has normal levels of factor IX antigen.

Exon 8 was amplified and sequenced as described before (2). In brief, 40 cycles of the polymerase chain reaction (3) were performed at 55°C with the exon 8 specific primers 5'-TCTGTGTATGTGAAATACTG-3'(nt 30769-30788 as in (1)) and 5'-GTTAGTGAGAGGCCCTGTTA-3'(nt 31431-31412). The amplified product of 663 bp was purified on agarose and directly sequenced using a commercial M13 sequencing kit (Boehringer Mannheim) and each of the amplification primers (80ng). The sequence analysis (figure) shows a $G \rightarrow A$ transition at position 31119 (1), which is identical to the mutation recently reported for factor $IX_{London2}(4)$. The mutation predicts the substitution of ³³³Arg by Gln. This apparently leads to an aberrant factor IX molecule with $\sim 1\%$ clotting activity and underlines the crucial role of ³³³Arg for normal factor IX function. Furthermore, the occurrence of the same mutation in two distinct geographic locations confirms that the CG dinucleotide involves a "hotspot" for mutation (5).

Part of the nucleotide sequence of the two orientations (5' \rightarrow 3' and 3' \rightarrow 5') of exon 8. The normal sequence is shown on the left and that from FIX_{Heerde} on the right. The nucleotide differences between the two sequences are indicated by arrows.

REFERENCES

- 1. Yoshitake S et al (1985) Biochemistry 24; 3736-3750
- 2. Reitsma PH et al (1988) Blood 72; 1074-1076
- 3. Saiki RK et al (1988) Science 239; 1350-1354
- 4. Tsang TC et al (1984) The EMBO J 7; 3009-3015
- 5. Barker D et al (1984) Cell 36; 131-138