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Abstract
We consider the design of an effective and reliable adaptive finite element method (AFEM) for the
nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization
technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the
removal of the singular electrostatic potential inside biomolecules; this technique made possible
the development of the first complete solution and approximation theory for the Poisson-
Boltzmann equation, the first provably convergent discretization, and also allowed for the
development of a provably convergent AFEM. However, in practical implementation, this two-
term regularization exhibits numerical instability. Therefore, we examine a variation of this
regularization technique which can be shown to be less susceptible to such instability. We
establish a priori estimates and other basic results for the continuous regularized problem, as well
as for Galerkin finite element approximations. We show that the new approach produces
regularized continuous and discrete problems with the same mathematical advantages of the
original regularization. We then design an AFEM scheme for the new regularized problem, and
show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for
the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is
based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To
provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class
of feature-preserving adaptive mesh generation algorithms designed specifically for constructing
meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular
surface. All of the algorithms described in the article are implemented in the Finite Element
Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new
regularization scheme are demonstrated with FETK through comparisons with the original
regularization approach for a model problem. The convergence and accuracy of the overall AFEM
algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an
insulin protein.
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contraction; convergence; optimality; surface and volume mesh generation; mesh improvement
and decimation

1. Introduction
The Poisson-Boltzmann Equation (PBE) has been widely used for modeling the electrostatic
interactions of charged bodies in dielectric media, such as molecules, ions, and colloids, and
thus is of importance in many areas of sciences and engineering, including biochemistry,
biophysics, and medicine. The PBE provides a high fidelity mean-field description of the
electrostatic interactions and ionic distribution of a solvated biomolecular system at the
equilibrium state, and entails singularities of different orders at the position of the singular
permanent charges and dielectric interface. The popularity of the PBE model is clearly
evidenced by the success of software packages such as APBS, CHARMM, DelPhi, and
UHBD. We summarize the mathematical PBE model in some detail in Section 2, referring
to the classical texts [36,48] for more physical discussions.

While tremendous advances have been made in fast numerical solution of the PBE over the
last twenty years (cf. [35,25,26] for surveys of some of this work), mathematical results for
the PBE (basic understanding of the solution theory of the PBE, as well as a basic
understanding of approximation theory for PBE numerical methods) were fundamentally
unsatisfying, due to the following questions about the PBE and its numerical solution which
remained open until 2007:

1. Is the PBE well-posed for the dimensionless potential ũ?

2. What function space does the solution ũ lie in?

3. Can one derive a priori (energy and/or pointwise) estimates for the solution ũ?

4. Is there an efficient (low-complexity) and reliable (provably convergent under
uniform mesh refinement) numerical method that produces an approximation uh to
the ũ?

5. Is there a provably convergent adaptive method for the PBE?

That these basic questions were open through 2007 is somewhat remarkable, given the
popularity of this model. However, four key features of the PBE model, namely: (1) the
undetermined electrostatic potential at the boundary of a given system; (2) the singular fixed
charge distribution in biomolecules; (3) the discontinuous dielectric and Debye constants on
the irregular dielectric interface (with a possible second interface representing an ion
exclusion layer); and (4) strong nonlinearity in the case of a strong potential or heavily
charged molecules, place the PBE into a class of semilinear partial differential equations that
are fundamentally difficult to analyze, and difficult to solve numerically. In fact, numerical
evidence suggested that the most popular algorithms used for the PBE were actually non-
convergent under mesh refinement, which would put the reliability of scientific results based
on numerical solution of the PBE in doubt.

To address this issue, in 2007 Chen, Holst, and Xu [11] used a two-scale decomposition as a
mathematical technique to answer each of the open questions above about the PBE, building
the first available solution theory and approximation theory for the PBE. (A basic existence
and uniqueness result using variational arguments had appeared already in [23].) A splitting-
type treatment of the singular charges was not new, and is a very natural physical idea first
sketched out in [21] and then also explored numerically in [64]. This method decomposes
the PBE into a Poisson equation with singular charge and uniform dielectric that determines
a singular function us, and a regularized Poisson-Boltzmann equation (RPBE) that
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determines a smooth correction u, with the sum of the two giving the dimensionless
potential: ũ = us + u. This natural splitting technique was exploited in [11] to show that: the
regularized PBE is well-posed, as is also the full PBE; the solution ũ can be split into a
singular function us (having a simple closed form expression) and a smooth remainder u
which lies in a well-understood function space H1+α with α ≥ 0; the remainder function u is
pointwise bounded almost everywhere; a standard finite element discretization that
incorporates the singular function converges and does so at optimal rate in the limit of
uniform mesh refinement; and finally, an implementable adaptive algorithm exists that can
be proven mathematically to converge to the exact solution of the PBE.

While this two-scale decomposition made a number of basic mathematical results possible
in [11], the resulting numerical algorithms (both based on uniform mesh refinement and
adaptive mesh refinement) are subject to a hidden instability. This instability is in fact tied to
the two-scale decomposition technique itself. (Example 2.1 in Section 2.2 gives a more
complete description of this difficulty.) While this feature of the splitting has no impact on
the mathematical or convergence results in [11], the practical impact is that algorithms based
on this particular decomposition are not accurate enough to be competitive with other
approaches. A slightly modified decomposition scheme was proposed by Chern et. al [14]
(see also [20]) and was applied together with Cartesian grid-based interface methods to
solve the PBE for simple structure geometries. The new splitting technique gives rise to a
modified form of the regularized PBE with similar structure to the splitting scheme in [11],
but appears to be more stable.

This article is focused on using a similar decomposition variant to remove the instability
present in the formulation appearing in [11], as well as to improve the theoretical results and
algorithm components of the adaptive finite element algorithm described in [11]. In
particular, we adopt a variation of the regularization splitting scheme similar to [20,14,11],
involving a 3-term expansion rather than a 2-term expansion. We establish several basic
mathematical results for the 3-term splitting, analogous to those established in [11] for the
original 2-term splitting. This includes a priori L∞ estimates, existence and uniqueness, and
discrete estimates for solutions, and basic error estimates a general class of Galerkin
methods. We then focus specifically on finite element methods, and design an adaptive finite
element method (AFEM) for solving the resulting regularized PBE. Due to recent progress
in the convergence analysis of AFEM for linear and nonlinear equations [10,27], we also
substantially improve the AFEM convergence result in [11] to one which guarantees
contraction rather than just convergence. We present numerical examples showing the
accuracy, efficiency, and stability of this new scheme. To provide a high-quality geometric
model as input to the AFEM algorithm, we will also describe a class of feature-preserving
adaptive mesh generation algorithms designed specifically for constructing meshes of
biomolecular structures, based on the intrinsic local structure tensor of the molecular
surface.

While we focus on (adaptive) finite element methods in this article, the splitting framework
we describe can be incorporated into finite difference, finite volume, spectral, wavelet, finite
element, or boundary element methods for the PBE. While the finite element method has the
advantage of exactly representing the molecular surface (when appropriate mesh generation
algorithms are used; see Section 5), advances in finite difference and finite volume methods
include interface discretization methods which substantially improve solution accuracy at
the dielectric discontinuity surface [14,63,62,20]; see also [54] for a similar approach using
mortar elements. Boundary element methods for the (primarily linearized) PBE are also
competitive, due to algorithm advances for molecular surface generation (see [59,58] and
Section 5), due to emergence of fast multipole codes for surface integrals [34,32,33], and
due to new techniques for nonlinearity [8].
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The remainder of the paper is organized as follows. In Section 2, we give a brief derivation
of the standard form of the PBE, and then examine the two-scale regularization in [11]. We
then describe a second distinct regularization and illustrate why it is superior to the original
approach as a framework for developing numerical methods. We then quickly assemble the
cast of basic mathematical results needed for the second regularization, which do not
immediately follow from the results established in [11] for the original regularization. In
Section 3, we describe an adaptive finite element method based on residual-type a posteriori
estimates, and summarize some basic results we need later for the development of a
corresponding convergence theory. In Section 4, we develop the first AFEM contraction-
type result for a class of semilinear problems that includes the PBE, substantially improving
the AFEM convergence result given in [11]. We also include a discussion of our mesh
generation toolchain in Section 5, which plays a key role in the success of the overall
adaptive numerical method. Numerical experiments are conducted in Section 6, where
stability of the regularization scheme and convergence of the adaptive algorithm are both
explicitly demonstrated numerically, in agreement with the theoretical results established in
the paper. We summarize our results in Section 7.

2. The Poisson-Boltzmann Equation (PBE)
The PBE can be derived in various ways based on the statistical description of a system of
charged particles in electrolytes [36,48]. A well-known derivation starts with the Poisson
equation for the electrostatic potential φ = φ(x) induced by a charge distribution ρ = ρ(x):

where ε = ε(x) is a spatially varying dielectric constant and ε0 is the dielectric permittivity
constant of a vacuum. The charge distribution ρ may consist of fixed charges ρf and mobile
charges ρm. The fixed charge distribution ρf represents the partially charged atoms of the
molecules immersed in the aqueous solution; the mobile charges ρm models the charged ions
in the solution. With this perspective, the fixed charge distribution ρf is independent of the
potential φ. The charge distribution ρm of mobile ions, however, depends on the potential φ
following the Gouy-Chapman or Debye-Hückel theories, and can be modeled by a
Boltzmann distribution. The two charge distributions then take the form

(2.1)

Here for ρm, M is number of ion species, cj and qj are the bulk concentration and charge of
the jth ion, k is the Boltzmann constant and T is the absolute temperature; and for ρf, there
are N charges located at xi in the molecule region Ωm and carrying charge qi, where δ(xi) is
the delta function centered at xi. This gives rise to the full or nonlinear PBE:

(2.2)

A number of variations of the PBE can be derived under appropriate assumptions. For
example, for a symmetric 1:1 ionic solution (two ions species with same but opposite
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charge) with M = 2, bulk concentration cj = c and charge qj = (−1)jq for j = 1, 2, equation
(2.2) reduces to:

We now introduce a dimensionless electrostatic potential ũ = qφ/(kT), and the so-called

Debye length , and define the modified Debye-Huckel parameter to be κ = 1/lD.
After scaling the singular charges we can write the final form of the Poisson-Boltzmann
equation as:

(2.3)

where , with zi = 4πqqi/(ε0kT).

As analyzed in [11], since the singular function f does not belong to H−1(Ω), equation (2.3)
does not have a solution in H1, or at least the equation does not have a weak formulation
involving the H1 as the test space. Consequently, standard numerical methods for elliptic
equations are not guaranteed to produce numerical solutions which converge to the exact
solution to the PBE in the limit of mesh refinement, and numerical evidence suggests that in
fact standard methods fail to converge. We now discuss two regularization schemes for the
PBE which have not only been the basis for the new solution and approximation theory
results for the PBE appearing in [11], but also provide a robust framework for constructing
provably convergent numerical algorithms.

2.1. A Natural Regularized Formulation
The first scheme is motivated by the physical interpretation of the solution to PBE and
decomposes the solution into two components, based on the distinct solvent region Ωs and
molecular region Ωm in the model. This spatial decomposition of the domain Ω, as well as
the interface Γ between Ωs and Ωm, is depicted in Figure 1. The component of the solution,
which will have singularities but will be representable in closed-form, is called the self-
energy corresponding to the electrostatic potential. The second component, which will be
much more well-behaved but will not have a closed-form representation, corresponds to the
screening of the potential due to high dielectric and mobile ions in the solution region. This
natural decomposition provides a regularization scheme was proposed and explored
numerically in [21,64]. In this scheme, the singular component us of the electrostatic
potential is identified as the solution of the following Poisson equation, the solution of
which can be readily assembled from the Green’s functions (cf. [46]):

(2.4)

Subtracting (2.4) from (2.3) gives the equation for the regular component u:

(2.5)

HOLST et al. Page 5

Commun Comput Phys. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since κ vanishes in Ωm and ε − εm is nonzero only in region Ωs, the right hand side term ∇ ·
((ε − εm)∇us) belongs to H−1, and a standard H1-weak formulation of (2.5) is well-defined.

A variational argument can be used to show existence and uniqueness of a weak solution to
(2.4) in H1 (see [11] for this argument, and also [23] for a similar argument in the case of an
alternative regularization). A priori L∞ estimates for the solution are established in [11],
which are critical to the development of a priori error estimates for Galerkin (e.g. finite
element, wavelet, and spectral) approximations of the regular component, and are also
critical to the convergence results for both uniform and adaptive finite element methods
developed in [11]. This two-scale decomposition framework is at the heart of the solution
theory, approximation theory, and convergence results for adaptive finite element methods
for the PBE developed in [11].

2.2. An Alternative Regularized Formulation
Since the singular component represents the Coulomb potential in the low dielectric
environment, it is always much larger than the real potential in Ωs, where the dielectric
constant is high and strong ion screening exists. As a result, the regular component is also
much larger in magnitude than the full potential in Ωs, and the decomposition in Section 2.1
can produce an unstable numerical scheme. More precisely, relatively small error in the
numerical solution of regular component could lead to large relative error in the full
potential, as illustrated in the following example.

Example 2.1—Let Ωm be a unit ball with a unit positive charge at the origin. The dielectric
constants are εm = 2 and εs = 80 inside and outside the ball, respectively. Let the modified
ionic strength κ = 0. This so-called Born Ion problem admits an analytical solution for the

full potential  in Ωm and  in Ωs where . Since the

singular component , it follows that the regular component

We assume that the singular component is computed analytically. Suppose that the
numerical solution of u(r) carries a relative error e = 3%|u(r)|, and assume that this is the
only source of numerical error. This implies the relative error of the final full potential is
impacted as

This suggests relative error of 3% in the numerical solution of u(r) will be amplified by 39
times in the relative error of the full potential ũ(r) when u(r) is added to the analytical
solution us(r).

Example 2.1 indicates that unless the regular component is solved to high accuracy, the full
potential could be of low quality, and numerical algorithms based on the decomposition may
fail. A second decomposition scheme we now examine demonstrates more satisfactory
numerical stability. Proposed in [14], this decomposition splits the potential into three parts
in the molecular region only. The first component is the singular component us defined by
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(2.4). The second component uh is the harmonic extension of the trace of the singular
component us on the molecular surface into the interior of the molecule; it is completely
determined by the singular component us and the geometry of the molecular surface through
the harmonic equation

(2.6)

where Γ is the interface between Ωm and Ωs. Then we set us+uh = 0 in Ωs. By definition of
uh, this extension is continuous across the interface. So the complete decomposition reads

(2.7)

In this decomposition, the regular component u is defined as an interface problem

(2.8)

where nΓ is the unit out normal of the interface Γ, and [·] denotes the jump of enclosed
quantity on the given interface as [v]Γ = limt→0 v(x + tnΓ) − v(x − tnΓ). The second interface
condition (2.8) arises from continuity of flux in (2.3). The singular component us is given by
(2.4), whereas computing uh is trivial using finite element or boundary integral methods.
Therefore, we assume us and uh are known in the following discussion, and are smooth on Γ.
Since the singular component us is only applied in the interior of the molecule region, a
discontinuity appears in the remaining component of the potential on the molecular surface.
The harmonic component uh is introduced to compensate for this discontinuity using
harmonic extension, so that the regular component as defined by equation (2.8) is
continuous on the molecular surface.

Since no decomposition of the potential occurs in Ωs, error in numerical solutions of u are
not amplified in the full potential. While mathematically equivalent to the decomposition in
[11], this alternative three term-based splitting regularization is potentially numerically more
favorable than the original decomposition. The implementations of this scheme using finite
difference interface methods [14,20] have proven that it can significantly improve the
accuracy of the full potential. Mirroring the general plan taken in [11], we will use this
alternative decomposition as the basis for an analysis of the regularized problem, for the
development of an approximation theory, and for the development of a practical, provably
convergent adaptive method.

A final difficultly in solving the regularized form of the PBE in (2.8) (and other forms of the
PBE) is that the computational domain is all of space. It is standard to truncate space to a
bounded Lipschitz domain Ω by posing some artificial (but highly accurate) boundary
condition on ∂Ω. For simplicity, one chooses Ω to be a ball or cube containing the molecule
region. The solvent region is then defined as Ωs ∩ Ω, which will also be denoted by Ωs
without the danger of confusion. There are various approaches to the choosing boundary
condition on ∂Ω; using the condition ũ = g is standard, where g can be obtained from a
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known analytical solution to some simplification of the linearized PBE, and can be chosen to
be a smooth function on the boundary. Far from the molecule region, such analytical
solutions provide a highly accurate boundary condition approximation for the PBE on the
truncated domain. For other possible constructions of g, see [11,7,23] and the references
cited therein. Finally, we end up with the regularized PBE (or RPBE) in a bounded domain
Ω, which becomes the focus for the remainder of the paper:

(2.9)

Our main goals for the remainder of the paper are to:

1. Establish a priori L∞ estimates for (2.9), leading to a standard argument for well-
posedness of the continuous and discrete problems. Most other mathematical
results in the article hinge critically on these a priori estimates.

2. Develop a general approximation theory for (2.9) by establishing a priori error
estimates for Galerkin methods, giving convergence of finite element and other
methods;

3. Develop a practical adaptive finite element method for (2.9) and prove that it is
convergent;

4. Develop practical mesh generation algorithms for the domains arising in (2.9) that
meet the needs of our finite element methods.

We note that there are two distinct interface conditions in (2.9), which appears to give it an
unusual formulation. However, the first interface condition [u] = 0 will be automatically
satisfied by standard constructions of C0 finite element spaces. The second interface
condition will be embedded into the weak form of equation (2.9) in a natural way, so that in
fact both interface conditions are quite easily and naturally incorporated into finite element
(as well as wavelet and spectral) discretizations. Although fairly complicated schemes arise
when considering the regularization approach with finite difference and finite volume
methods, the interface conditions can be enforced with these discretization as well (cf.
[52,39,30,29]).

2.3. A priori L∞-Estimates and Well-posedness
A priori L∞ estimates for the solution u to the regularized PBE (2.9) are the critical
component of the key mathematical results we need to have in place for the development of
a reliable adaptive method, namely: (1) well-posedness of the continuous and discrete
regularized problems; (2) a priori error estimates for Galerkin approximations; (3) a
posteriori error estimates for Galerkin approximations; and (4) auxiliary results for
establishing convergence (contraction) of AFEM. The regularized equation (2.9) governing
u derived in Section 2.2 differs significantly from the decomposition used in [11], and as a
consequence we now derive the a priori L∞ estimates.

In what follows, we use standard notation for the Lp(G) spaces, 1 ≤ p ≤ ∞, with the norm ||
·||p,G on any subset G ⊂ ℝd; we use standard notation for Sobolev norms ||u||k,p,G = ||
u||Wk,p(G) where the natural setting here will be p = 2 and k = 0 or k = 1. For any functions v
∈ Lp(G) and w ∈ Lq(G) for p, q ≥ 1 with , we denote the pairing (v, w)G as (v,
w)G:=∫G vwdx. If G = Ω then we also omit it from the norms (or pairing) to simplify the
presentation.
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To begin, define an affine subset of H1(Ω) as , and then

define , with  denoting the case when g = 0. A weak
formulation of equation (2.9) reads: Find u ∈  such that

(2.10)

where α(u, v) = (ε∇u, ∇v), (b(u), v) = (κ2 sinh(u), v) and 〈gΓ, v〉Γ = ∫Γ gΓvds. It is easy to
verify that the bilinear form in (2.10) satisfies:

(2.11)

where 0 < m ≤ M < ∞ are constants depending only on the maximal and minimal values of
the dielectric and on the domain. The properties (2.11) imply the norm on  is

equivalent to the energy norm ,

(2.12)

To establish a priori L∞ estimates, we further split the solution u to (2.9) into solutions of
two sub-problems. The first sub-problem is a linear elliptic interface problem; estimates on
solutions to this problem are then utilized in the analyzing the second subproblem, which is
a nonlinear elliptic problem without interface conditions. The second sub-problem is then
analyzed using a cut-off function argument that exploits a weak formulation of the

maximum principle. More precisely, let u = ul + un, where  satisfies the linear
elliptic equation

(2.13)

and un ∈  satisfies the nonlinear elliptic equation:

(2.14)

where we note that the sum u = ul + un is then the desired solution to the RPBE (2.10). It is
easy to see that the linear part ul is the solution to the interface problem:

while the nonlinear part un is the solution to the (homogeneous) semilinear equation
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Existence and uniqueness of ul solving (2.13) follows by standard arguments; furthermore, if
the interface Γ to be sufficiently smooth (e.g. Γ is C2), then ul ∈ L∞(Ω) follows immediately
from known regularity results for linear interface problems (cf. [11,4,9,12,43]). This makes
possible a priori L∞ estimates for the nonlinear component, and subsequently the entire
regularized solution. To this end, define

(2.15)

(2.16)

Lemma 2.2 (A Priori L∞ Estimates)—Suppose that the solution ul to (2.13) satisfies ul

∈ L∞(Ω), and let un be any weak solution of (2.14). If αn, βn ∈ ℝ are as defined in (2.15)–
(2.16), then

(2.17)

Proof: The short proof is similar to that in [11,46], which we include for completeness, due
to its critical role in the results throughout the article. We first define

Since βn ≥ 0 and αn ≤ 0, it follows (cf. [46]) that φ ̄, , and can be used as pointwise
non-negative (almost everywhere) test functions. For either φ = φ ̄ or φ = −φ, we have

Note φ ̄ ≥ 0 in Ω and its support set is  = {x ∈ Ω ̄|un(x) ≥ βn}. On , we have

Similarly, −φ ≤ 0 in Ω with support  = {x ∈ Ω ̄|un(x) ≤ αn}. On , we have
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Together this implies both

Using the Poincaré inequality we have finally 0 ≤ ||φ||1,2 ≲ ||∇φ||2 ≤ 0, giving φ = 0, for
either φ = φ ̄ or φ = −φ. Thus αn ≤ un ≤ βn in Ω.

We have therefore shown that any solution u ∈ H1(Ω) to the regularized problem (2.10)
must lie in the set

where α, β ∈ ℝ are

Since this ensures u ∈ L∞(Ω), which subsequently ensures eu ∈ L2(Ω), we can replace the
set  with the following function space as the set to search for solutions to the RPBE:

Our weak formulation of the RPBE now reads:

(2.18)

Note that in general V is not a subspace of H1(Ω) since it is not a linear space, due to the
inhomogeneous boundary condition requirement. However, as remarked above, standard
results for linear interface problems imply existence, uniqueness, and a priori L∞ bounds
for ul solving (2.13), leaving only the equation (2.14) for the remainder un. Therefore, (2.18)
is mathematically equivalent to

(2.19)

where

with u− = αn and u+ = βn from Lemma 2.2. We now have a formulation (2.19) that involves
looking for a solution in a well-defined subspace U of the (ordered) Banach space ,
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and are now prepared to establish existence (and uniqueness) of the solution. The argument
we use below differs significantly from that used in [11,23] for the original regularization.

Theorem 2.3 (Existence and Uniqueness of Solutions to RPBE)—Let the solution
ul to (2.13) satisfy ul ∈ L∞(Ω). Then there exists a unique weak solution un ∈ U to (2.19),
and subsequently there exists a unique weak solution u ∈ V to the RPBE (2.18).

Proof: We follow the approach in [11,23]. We begin by defining J: :

It is straight-forward to show that if u is the solution of the optimization problem

(2.20)

then u is the solution of (2.19). We assemble some quick facts about , and
J.

1)  is a reflexive Banach space.

2) U is nonempty, convex, and topologically closed as a subset of .

3) J is convex on U: J(λu+(1− λ)v) ≤ J(u)+(1− λ)J(v), ∀u, v ∈ U, λ ∈ (0, 1).

By standard results in the calculus of variations (cf. [46]), we have existence of a solution to
(2.20), and hence to (2.19) and (2.18), if we can establish two additional properties of J:

4) J is lower semi-continuous on U: J(u) ≤ lim infj → ∞ J(uj), ∀ uj → u ∈ U.

5)
J is coercive on U: , ∀u ∈ U.

That J is lower semi-continuous (and in fact, has the stronger property of weak lower semi-
continuity), holds since J is both convex and Gateaux-differentiable on U (cf. [46] for this
and similar results). That J is coercive follows from cosh x ≥ 0 and the Poincaré inequality

with C0 = (infx∈Ω ε(x)) · min{1/4, 1/(4ρ2)}, where ρ > 0 is the Poincaré constant. It remains
to show u is unique. Assume there are two solutions u1 and u2. Subtracting (2.19) for each
gives a(u1 − u2, v) + (b(u1 + ul) − b(u2 + ul), v) = 0 . Now take v = u1 − u2;
monotonicity of the nonlinearity defining b ensures that (b(u1 + ul) − b(u2 + ul), u1 − u2) ≥
0, giving 0 ≥ a(u1 − u2, u1 − u2) ≥ 2C0||u1 − u2||1,2 ≥ 0, where C0 is as above. This can only
hold if u1 = u2.

In summary, there exists a unique solution u ∈ V ⊂ H1(Ω) to the RPBE problem (2.18), with
compatible barriers u− and u+ ∈ L∞ satisfying
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Moreover, these pointwise bounds combined with a Taylor expansion give that for any u, w
∈ V and any , the nonlinearity satisfies a Lipschitz condition:

(2.21)

where K = supχ∈ [u−,u+]||κ2 cosh(χ)||∞ < ∞ is a constant depending only on the domain, the
ionic strength of the solvent (embedded in the constant κ), and other physical parameters.

3. Finite Element Methods (FEM)
In this section, we consider (mainly adaptive) finite element methods for the regularized
problem (2.9). For simplicity, we assume Ω be a bounded polygon domain, and we
triangulate Ω with a shape regular conforming mesh . Here h = hmax represents the mesh
size which is the maximum diameter of elements in . We further assume that

Assumption—A1 the discrete interface Γh approximates the original interface Γ to the
second order, i.e., d(Γ, Γh) ≤ ch2.

The mesh generator discussed in Section 5 provides a practical tool for generating meshes
with this type of approximation quality for the interface. Given such a triangulation , we
construct the linear finite element space

Since we may choose g to be a smooth function on ∂Ω, the Trace Theorem (cf. [1,46])
ensures there exists a fixed function uD ∈ H1(Ω) such that uD = g on ∂Ω in the trace sense.

Let  be the affine space with the specified boundary condition, and

 be the finite element affine space of . In particular, we denote
. For simplicity, we assume the boundary condition g can be

represented by uD exactly. In practical implementation, we will construct an interpolant of
uD having sufficient approximation quality such that using the interpolant in place of uD will
not impact the order of accuracy of the algorithm we build below for approximating the
solution u to the regularized problem (2.9). A Galerkin finite element approximation of
(2.10) takes the form: Find uh ∈ VD( ) such that

(3.1)

The primary concerns for this type of approximation technique are the following four
mathematical questions regarding the Galerkin approximation uh:

1. Does uh satisfy discrete a priori bounds in L∞ and other norms, so that the
nonlinearity can be controlled for error analysis?

2. Does uh satisfy quasi-optimal priori error estimates, so that the finite element
method will converge under uniform mesh refinement?
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3. Can one ensure AFEM (non-uniform mesh refinement) convergence limk→∞ uk =
u, where uk is the Galerkin approximation of u at step k of AFEM?

4. Can one produce uh at each step of the (uniform or adaptive) refinement algorithm
using algorithms which have optimal (linear) or nearly optimal space and time
complexity?

The first two questions were answered affirmatively in [11] for the first regularized
formulation. We give only a brief outline below as to how the arguments for answering the
first two questions can be modified to establish the analogous results for the second
regularized formulation here. The third question was partially answered in [11] for the first
regularization, but we give an improved, more complete answer to this question below and
in Section 4, which is one of the main contributions of the paper. Regarding the fourth
question, due to the discontinuities in the dielectric and the modified Debye-Huckel
parameter, one must take care to solve the resulting nonlinear algebraic systems using robust
inexact global Newton methods, combined with modern algebraic multilevel-based fast
linear solvers in order to produce an overall numerical solution algorithm which is reliable
and has low-complexity. We do not consider this question further here; see [26,3,2,23] for a
complete discussion in the specific case of the PBE.

3.1. Discrete L∞ Estimates and Quasi-Optimal A Priori Error Estimates
For completeness, we quickly answer the first two questions by stating a result, giving only
a very brief outline of how the result is established for the new regularization, based on
modifying the analogous arguments in [11]. We then focus entirely on the new AFEM
contraction results which require a more complete discussion. To state the theorem, the
following assumption is needed.

Assumption—A2 For any two adjacent nodes i and j, assume that

where eij is the edge associated with these nodes, φi and φj are the basis functions
corresponding to nodes i, j respectively, and |τ| is the volume of τ ∈ .

Theorem 3.1—If Assumption A2 holds and h is sufficiently small, the solution to (3.1)
satisfies:

where C is independent of h. Moreover, the quasi-optimal a priori error estimate holds:

Proof: The proofs of both inequalities are similar to the proofs of the corresponding results
in [11], with adjustment to handle the new stabilized splitting. The second result hinges
critically on the Lipschitz property (2.21), which in turn relies on the first result together
with the continuous L∞ estimates established in Lemma 2.2.
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3.2. Adaptive Finite Element Methods (AFEM)
Adaptive Finite Element Methods (AFEM) build approximation spaces adaptively; this is
done in an effort to use nonlinear approximation so as to meet a target quality using spaces
having (close to) minimal dimension. AFEM algorithms are based on an iteration of the
form:

which attempts to equi-distribute error over simplices using subdivision driven by a
posteriori error estimates. Given an initial triangulation , and a parameter θ ∈ (0, 1], our
particular AFEM generates a sequence of nested conforming triangulations , h > 0, driven
by some local error indicator η(uh, τ), which gives rise to a global error indicator η(uh, ).
Schematically, the adaptive algorithm consists of a loop of the following main steps:

1. uh:= SOLVE( ).

2. {η(uh, τ)}τ∈ := ESTIMATE(uh, ).

3. := MARK({η(uh, τ)}τ∈ , , θ).

4. :=REFINE( , , ℓ).

In practice, a stopping criteria is placed in Step (2) to terminate the loop.

We will handle each of the four steps as follows:

1. SOLVE: We use standard inexact Newton + multilevel to produce U ∈ VD( ) on
triangulation  (cf. [24]). To simplify the analysis here, we assume that the discrete
solution U is calculated exactly (no round-off error). Given a triangulation , this
defines the procedure:

2. ESTIMATE: Given a triangulation  and a function U ∈ VD( ), we compute the
elementwise residual error indicator:

3. MARK: We use the standard “Dörfler marking”:

Given θ ∈ (0, 1], we construct a marked subset of elements

such that:

(3.2)

The residual-type error indicator η(U, ) over sub-partition  ⊆  will be defined
precisely in Section 3.3,

4. REFINE: We use standard non-degenerate bisection-to-conformity methods with
known complexity bounds on conformity preservation (cf. [47]). In particular,
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given a triangulation , and marked subset  ⊆ , and an integer ℓ ≥ 1, we
produce

a conforming refinement of  with each simplex in  refined at least ℓ times.

3.3. Residual A Posteriori Estimates
To make precise the residual-type indicator, we first introduce some standard notation for
the relevant mathematical quantities, and then employ and establish some of its properties.

 = Initial conforming simplex triangulation of Ω ⊂ ℝd.

 = Conforming refinement of  at the previous step of AFEM.

hτ = The diameter of simplex τ ∈ .

nF = The normal vector to face F of τ ∈ .

ωτ = ∪ {τ̃ ∈ |τ ∩ τ̃ ≠ ∅, where τ ∈ }.

ωF = ∪ {τ̃ ∈ |F ∩ τ̃ ≠ ∅, where F is a face of τ ∈ }.

We can now define the following error indicators:

(3.3)

(3.4)

where ḡΓ is the piecewise average on each face F ⊂ Γh. For any subset  ⊂ , the
cumulative indicators are defined as:

From these definitions follows the monotonicity properties:

(3.5)

(3.6)

for any refinement  of . We have then the following global upper bound from [24,50];
the lower-bound is also standard and can be found in e.g. [50].

Lemma 3.2 (Upper and lower bounds)—Let u and uh be the solutions to (2.10) and
(3.1), respectively. If the mesh conditions in Assumptions A1 and A2 hold, then there exists
constants C1 and C2, depending only on  and the ellipticity constant, such that the
following global upper and lower bounds hold:
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(3.7)

(3.8)

where .

Proof: Similar to [11, Theorem 7.1], the proof follows the idea of [50] by noticing

where we have used Theorem 3.1. The remaining proof is the same as [11, Theorem 7.1]

Note for the convergence analysis here, we do not need the lower bound (3.8).

4. Convergence of AFEM
We now develop a convergence analysis of the AFEM iteration by showing contraction. We
must establish two additional key auxiliary results first: an indicator reduction result, and a
quasi-orthogonality result, which generalize two analogous results for the linear case in [10]
to a class of nonlinear problems that includes the Poisson-Boltzmann equation.

4.1. An Indicator Reduction Lemma
Here we establish a nonlinear generalization of the indicator reduction result from [10,
Corollary 4.4]. First we prove a local perturbation result for the nonlinear equation (cf. [10,
Proposition 4.3]). We then establish an indicator reduction result.

Let us first introduce a type of nonlinear PDE-specific indicator:

For any subset  ⊂ , let η(D, ):= maxτ∈ {η(D, τ)}. By the definition, it is obvious that
η(D, ) is monotone decreasing, i.e.,

(4.1)

for any refinement  of .

We now establish (see also [27]) a nonlinear generalization of the local perturbation result
appearing as in [10, Proposition 4.3]. This is the key result in generalizing the contraction
results in [10, Proposition 4.3] to the semilinear case.
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Lemma 4.1 (Nonlinear Local Perturbation)—Let  be a conforming partition satisfies
Assumptions A1 and A2. For all τ ∈  and for any pair of discrete functions v, w ∈ [u−, u+]
∩ VD( ), it holds that

(4.2)

where Λ̄1 > 0 depends only on the shape-regularity of , and the maximal values that b can
obtain on the L∞-interval [u−, u+].

Proof: By the definition (3.3) of η, we have

Notice that

On the other hand, we also have

Therefore, we get the desired estimate for η.

Based on Lemma 4.1, we have the following main estimator reduction (see also [27]), which
generalizes the linear case appearing in [10, Corollary 4.4].

Lemma 4.2 (Nonlinear Estimator Reduction)—Let  be a partition which satisfies
the mesh conditions in Assumptions A1 and A2, and let the parameters θ ∈ (0, 1] and ℓ ≥ 1
be given. Let  = MARK({η(v, τ)}τ∈ , ,θ), and let  = REFINE( , , ℓ). If

 with Λ̄1 from Lemma 4.1 and λ = 1 − 2−(ℓ/d) > 0, then for all v ∈ [u−, u+] ∩
VD( ), v* ∈ [u−, u+] ∩ VD( ), and any δ > 0, it holds that

Proof: We follow the proof in [10, Corollary 4.4] closely. We first apply Lemma 4.1 with v
and v* taken to be in VD( ). This gives
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after applying Young’s inequality with δ > 0. We now sum over the elements τ* ∈ , using
the fact that for shape regular partitions there is a small finite number of elements in the
overlaps of the patches ωτ*. This gives

where we have also used the equivalence (2.12).

Now let v ∈ [u−, u+] ∩ VD( ), a short argument from the proof of Corollary 4.4 in [10]
gives

(4.3)

Finally, the monotonicity properties η(D, ) ≤ η (D, ), combined with (4.3) yields the
result.

4.2. Quasi-Orthogonality for Nonlinear Problems
Following [27], we now establish a quasi-orthogonality result that represents the last
technical result needed to generalize the convergence framework from [10] to the nonlinear
case.

Lemma 4.3 (Quasi-orthogonality)—Let u be the exact solution to equation (2.10), and
uh be the solution to (3.1) on a partition  which satisfies the conditions in Assumptions A1
and A2. Assume that there exist a σh > 0 with σh → 0 as h → 0 such that

(4.4)

Then there exists a constant C* > 0, such that for sufficiently small h, we have

(4.5)

where Λh = (1 − C*σhK)−1 > 0 with K = supχ∈[u−,u+] ||κ2 cosh(χ)||∞.

Proof: We compute the energy norm:

By the definition of u and uh, we have

In particular, this holds for vh = uh − uH. By this relation, we obtain
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Therefore, by Young’s inequality and the assumption (4.4) we have

for δ > 0 to be chosen later, and m the coercivity constant. For σh sufficient small, we have

Define now the constant  and take . We assume σh is
sufficiently small so that . This gives (4.5) with Λh = (1 − C*σhK)−1.

We note (4.4) can be established by “Nitsche trick” under regularity assumptions (cf. [37]).

4.3. The Main Convergence Result for AFEM
To establish this result, we will follow [27] and use a combination of the frameworks in
[10,38] rather than from [11]. This is because these frameworks are the first to handle
dependence of the oscillation on the discrete solution itself. The quasi-orthogonality result is
explicit in [38], but somewhat hidden in [11]. The framework in [10] uses only
orthogonality rather than quasi-orthogonality, but has a number of improvements over [38]
and [11] in several respects, including a one-pass algorithm using only the residual indicator.

The previous sections focused on establishing some supporting results involving a nesting of
three spaces XH ⊂ Xh ⊂ X, where these were abstract spaces in some cases, or specific finite
element subspaces of H1. In what follows, we now consider the asymptotic sequence of
finite element spaces produced by the AFEM algorithm, and will use the results of the
previous sections with the subscript h in uh and other quantities replaced by an integer k
representing the current subspace generated at step k of AFEM. To simplify the presentation
further, we also denote

where D represents the set of problem coefficients and nonlinearity. We also denote Vk:=
VD( ) for simplicity. The supporting results we need have been established in §4.1 and §4.2.

Theorem 4.4 (Contraction)—Let { , Vk, uk}k≥0 be the sequence of finite element
meshes, spaces, and solutions, respectively, produced by AFEM(θ,ℓ) with marking
parameter θ ∈ (0, 1] and bisection level ℓ ≥ 1. Let  satisfy the conditions in Assumptions
A1 and A2, and h0 be sufficiently fine so that Lemma 4.3 holds for { , Vk, uk}k≥0. Then,
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there exist constants γ > 0 and α ∈ (0, 1), depending only on θ, ℓ, and the shape-regularity of
the initial triangulation , such that

Proof: We combine the frameworks in [10,38] using the quasi-orthogonality result in
Lemma 4.3 rather than the approach in [11] for nonlinearities. Our notation follows closely
[10]. The proof requires the following tools:

1. Dörfler marking property given in equation (3.2).

2. The global upper-bound in Lemma 3.2.

3. Estimator reduction Lemma 4.2.

4. Quasi-orthogonality Lemma 4.3.

In addition, some results above used indicator monotonicity properties (3.5)–(3.6) and
monotonicity of data ηk(D). Starting with the quasi-orthogonality result in Lemma 4.3 we
have

which gives

Employing now Lemma 4.2 for some δ > 0 to be specified later we have

where λ ∈ (0, 1) as defined in Lemma 4.2. Take now δ > 0 sufficiently small so that we can
ensure γ < 1 by setting:

(4.6)

Using (4.6) in the last term leads to

We now use the marking strategy in equation (3.2) to give

(4.7)

HOLST et al. Page 21

Commun Comput Phys. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To allow for simultaneous reduction of the error and indicator, we follow [10] and split the
last term into two parts using an arbitrary β ∈ (0, 1):

We now the first and third terms using the upper bound from Lemma 3.7 and the expression
for γ in (4.6), and combine the second and fourth terms as well, giving:

This can be written in the form

where

By Lemma 4.3, we have Λk+1 = (1 − C* σk+1K)−1 with σk+1:= σhk+1, so that

By the assumptions in Lemma 4.3, we can take the initial mesh so that σk+1 ≥ 0 is as small
as we desire, or that Λk+1 is as close to one as we desire. Therefore, we can simultaneously
pick σk+1 > 0 and δ > 0 sufficiently small so that . Either this choice of δ > 0 ensures

 as well, or we further reduce δ so that:

This completes the proof.

5. Feature-Preserving Mesh Generation for Biomolecules
Mesh generation from a molecule is one of the important components in finite element
modeling of a biomolecular system. There are two primary ways of constructing molecular
surfaces: one is based on the ‘hard sphere’ model [41] and the other is based on the level set
of a ‘soft’ Gaussian function [22]. In the first model, a molecule is treated as a collection of
‘hard’ spheres with different radii, from which three types of surfaces can be extracted: van
der Waals surface, solvent accessible surface, and solvent excluded surface [15,22,28,41].
The molecular surface can be represented analytically by a list of seamless spherical patches
[15,49] and triangular meshes can be generated using such tools as MSMS [42]. In contrast,
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the ‘soft’ model treats each atom as a Gaussian-like smoothly decaying scalar function in ℝ3

[6,17,22]. The molecular surfaces are then approximated by appropriate level sets (or iso-
surfaces) of the total of the Gaussian functions [6,17]. Because of its generality, robustness,
and capability of producing smooth surfaces, we will utilize the ‘soft’ model (or level set
method) in our molecular mesh generation.

We now briefly outline the algorithms of constructing triangular and tetrahedral meshes
from a molecule that is given by a list of centers and radii for atoms (e.g., PQR files [16] or
PDB files with radii defined by users [5]). More details can be found in our earlier work
[58]. Figure 2 shows the pipeline of our mesh generation toolchain. Note that our tool can
also take as input an arbitrary 3D scalar volume or a triangulated surface mesh that has very
low quality.

5.1. Molecular Surface Generation
In our mesh generation toolchain, a molecular surface mesh is defined by a level set of the
Gaussian kernel function computed from a list of atoms (represented by centers ci and radii
ri) in a molecule as follows [6,22,60]:

(5.1)

where the negative parameter Bi is called the blobbyness that controls the spread of
characteristic function of each atom. The blobbyness is treated in our work as a constant
parameter (denoted by B0) for all atoms. Our experiments on a number of molecules show
that the blobbyness at −0.5 produces a good approximation for molecular simulations.

Given the volumetric function F(x), the surface (triangular) mesh is constructed using the
marching cube method [31]. Figure 3(A) shows an example of the isosurface extracted using
this method. From this example, we can see that: (a) the isosurfacing technique can extract
very smooth surfaces, but (b) many triangles are extremely “sharp”, which can cause poor
approximation quality in finite element analysis. In addition, meshes generated by
isosurfacing techniques are often too dense. Therefore, improving mesh quality yet keeping
the number of mesh elements small are two important issues that we will address in this
section.

5.2. Surface Mesh Improvement and Decimation
Surface mesh post-processing includes quality improvement and mesh coarsening
(decimation). The mesh quality can be improved by a combination of three major
techniques: inserting or deleting vertices, swapping edges or faces, and moving the vertices
without changing the mesh topology [19]. The last one is the main strategy we use to
improve the mesh quality in our toolchain. For a surface mesh, however, moving the vertices
may change the shape of the surface. Therefore, when we move the vertices, important
features (e.g., sharp boundaries, concavities, holes, etc.) on the original surface should be
preserved as much as possible. To characterize the important features on the surface mesh,
we compute so-called local structure tensor [18,53,57] as follows:

(5.2)
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where ( ) is the normal vector of the ith neighbor of a vertex v and M′ is the total
number of neighbors. The normal vector of a vertex is defined by the weighted average of
the normals of all its incident triangles. The local structure tensor basically captures the
principal axes of a set of vectors in space. Let the eigenvalues of T(v) be λ1, λ2, λ3 and λ1 ≥
λ2 ≥ λ3. Then the local structure tensor can capture the following features: (a) Spheres and
saddles: λ1 ≈ λ2 ≈ λ3 > 0; (b) Ridges and valleys: λ1 ≈ λ2 ≫ λ3 ≈ 0; (c) Planes: λ1 ≫ λ2 ≈ λ3
≈ 0.

The quality of a mesh can be improved by maximizing the minimal angles. The angle-based
method developed by Zhou and coauthors [61] utilizes this idea by moving a vertex
(denoted by x) towards the bisectors of the angles formed by adjacent vertices on the
surrounding polygon. This method works quite well for 2D planar meshes and has been
extended in [55] for improving quadrilateral mesh quality as well. However, vertices on a
surface mesh can move with three degrees of freedom. If only the angle criterion is
considered, the surface mesh may become bumpy and some molecular features may
disappear. In other words, while the mesh quality is being improved, the geometric features
on a surface mesh should be preserved as much as possible. To this end, we take advantage
of the local structure tensor by mapping the new position x̄ generated by the angle-based
method to each of the eigenvectors of the tensor calculated at the original position x and
scaling the mapped vectors with the corresponding eigenvalues. Let e1, e2, e3 denote the
eigenvectors and λ1, λ2, λ3 be the corresponding eigenvalues of the local structure tensor
valued at x. The modified vertex x̂ is calculated as follows:

(5.3)

The use of eigenvalues as a weighted term in the above equation is essential to preserve the
features (with high curvatures) and to keep the improved surface mesh as close as possible
to the original mesh by encouraging the vertices to move along the eigen-direction with
small eigenvalues (or in other words, with low curvatures). Figure 3(B) shows the surface
mesh after quality improvement, compared to the original mesh as shown in Figure 3(A).
Before quality improvement, the minimal and maximal angles are 0.02° and 179.10°
respectively. These angles become 14.11° and 135.65° after the improvement (two
iterations).

The surface meshes extracted by isocontouring techniques (e.g., the marching cube method)
often contain a large number of elements and are nearly uniform everywhere. To reduce the
computational cost, adaptive meshes are usually preferred where fine meshes only occur in
regions of interest. The idea of mesh coarsening in our pipeline is straightforward – delete a
node and its associated edges, and then re-triangulate the surrounding polygon. The local
structure tensor is again used as a way to quantify the features. Let x denote the node being
considered for deletion and the neighboring nodes be vi, i = 1, ···, M, where M is the total
number of the neighbors. The maximal length of the incident edges at x is denoted by

 where d(·, ·) is the Euclidean distance. Apparently L(x) indicates the
sparseness of the mesh at x. Let λ1(x), λ2(x), λ3(x) be the eigenvalues of the local structure
tensor calculated at x, satisfying λ1(x) ≥ λ2(x) ≥ λ3(x). Then the node x is deleted if and only
if the following condition holds:

(5.4)
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where α and β are chosen to balance between the sparseness and the curvature of the mesh.
In our experiments, they both are set as 1.0 by default. The threshold T0 is user-defined and
also dependent on the values of α and β. When α and β are fixed, larger T0 will cause more
nodes to be deleted. For the example in Figure 3(C), the coarsened mesh consists of 8, 846
nodes and 17, 688 triangles, about seven times smaller than the mesh as shown in Figure
3(B).

Mesh coarsening can greatly reduce the mesh size to a user-specified order. However, the
nodes on the “holes” are often not co-planar; hence the re-triangulation of the “holes” often
results in a bumpy surface mesh. The bumpiness can be reduced or removed by smoothing
the surface meshes. We employ the idea of anisotropic vector diffusion [40,56] and apply it
to the normal vectors of the surface mesh being considered. This normal-based approach
turns out to preserve sharp features and prevent volume shrinkages [13] better than the
traditional vertex-based approach. Figure 3(C) shows the result after the mesh coarsening
and normal-based mesh smoothing.

5.3. Tetrahedral Mesh Generation
Once the surface triangulation is generated with good quality, Tetgen [44,45] can produce
tetrahedral meshes with user-controlled quality. Besides the triangulated surface, our
toolchain will have three other outputs for a given molecule: the interior tetrahedral mesh,
the exterior tetrahedral mesh, and both meshes together. For the interior tetrahedral mesh,
we force all atoms to be on the mesh nodes. The exterior tetrahedral mesh is generated
between the surface mesh and a bounding sphere whose radius is set as about 40 times larger
than the size of the molecule being considered. Figure 4 demonstrates an example of mesh
generation on the mouse Acetyl-cholinesterase (mAChE) monomer.

6. Numerical Examples
Two numerical examples with increasingly complexity of molecular surface are presented to
show the stability of the decomposition scheme and the convergence of the adaptive
algorithm. In both examples, the Laplace equation for harmonic component is solved with
finite element method. The gradient of the harmonic component is then computed and
supplied for calculating the interface conditions of the regularized Poisson-Boltzmann
equation. It is also possible to directly compute the harmonic component and its gradient
from the solution representation for the Poisson equation of the harmonic component via
surface integrals on the molecular surface.

Example 1
The first numerical example is devoted to the comparison of two decomposition schemes
discussed in the subsection 2. We use the model problem in Example 2.1 because it admits
an analytical solution for comparison. The computational domain is chosen to be a sphere
with radius r = 5Å. Figure 5 plots the computed regular potential component and the full
potential from the first decomposition scheme as well as their relative errors with respect to
the analytical solutions, respectively. Chart B shows that the finite element solution of this
regular component has an relative error below 3% over the entire domain. Because of the
large magnitude of this regular potential, the absolute error is considerably large, see Chart
A and in particular Chart C, where the analytical singular component is added to get the full
potential. The amplification of the relative error as analyzed in section 2 is seen from a
comparison of Chart B and Chart D. This confirms that the first decomposition scheme is
numerically unstable.

The numerical solutions via the second decomposition scheme demonstrate the desirable
numerical stability, as shown in Figure 6. The regular potential ur in Chart A is solved with
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the same mesh for Figure 5, and shows a very good agreement with the analytical solution.
The relative error is well below 1.5% over the entire domain, and is well below 0.1% in the
interior of the molecule. Compared to Figure 5, it is seen that the magnitude of the regular
component of the stable decomposition is much smaller. Because the harmonic and regular
components are both solved numerically, it is worthwhile to examine the summation of
these two numerical solutions and compare the total with the exact solution; this is plotted in
Chat B. The discontinuity indicates that the decomposition is only applied inside the
biomolecule, and that the harmonic component is much larger than the regular component.
This further suggests that the overall relative numerical error inside the biomolecule will be
larger than that in the solvent region. Interesting enough, most intermolecular electrostatic
interactions are occurred through the solvent, and thus the stable decomposition can still
provide the electrostatic potential of high fidelity for describing these interactions. We then
refine this mesh globally by bisecting all the edges; the relative error is reduced 0.5% in
most of the domain except in the vicinity of the dielectric interface where the error does not
show a noticeable decrease, see Chart D. This is because the middle point of an edge on the
interface maybe not located on the interface and therefore violates the assumption on the
discretization of the molecular surface, thus the approximations to the interface and to the
interface conditions are not improved with this globally refinement. To satisfy this
assumption we apply this global refinement first and then move the middles points of all the
interface edges back to the interface. This new refinement approach successfully scales
down the numerical error near the interface, see Chart E.

Both two decomposition schemes give rise to an elliptic interface problem, whose solution is
of C0 only and can be appreciated from Chart A of Figures 5 and 6.

Example 2
This second numerical experiment is conducted on an insulin protein [51] (PDB ID: 1RWE).
This protein has two polypeptide chains, one has 21 amino acid residues and the other has
30 residues, and has 1578 atoms in total. Because there is no analytical solution available for
accuracy assessment we solve the Poisson-Boltzmann equation on four progressively refined
meshes and use the solution on the finest mesh as the reference to measure the accuracy of
other three solutions. In Table 1 we show the computed electrostatic solvation energy
(ΔGele) and the corresponding relative error in the solution (eΔGele) for each solution. This
energy is defined as

where ρsol is the electrostatic potential of the solvated molecule while ρvac is the potential
for the molecule in vacuum, where the dielectric constant is assumed to the same as the
interior of the molecule. It turns out that ρvac is essentially the singular component inside
molecule, and thus the solvation energy can be directly computed as

Assume that the solution on the finest mesh is convergent, we computed the relation error in
the solution energy for three coarser meshes. The diminishing of this relative error confirms
the convergence of the numerical method for computing electrostatics of realistic
biomolecules.
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7. Summary
In this article, we considered the design of an effective and reliable adaptive finite element
method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). In Section 2, we
began with a very brief derivation of the standard form of the Poisson-Boltzmann equation.
We examined the two-scale regularization technique described in [11], and briefly reviewed
the solution theory (a priori estimates and other basic results) developed in [11] based on
this regularization. We then described a second distinct regularization and explained why it
is superior to the original approach as a framework for developing numerical methods. We
then quickly assembled the cast of basic mathematical results needed for the second
regularization. In Section 3, we described in detail an adaptive finite element method based
on residual-type a posteriori estimates, and summarized some basic results we needed later
for the development of a corresponding convergence theory. We presented this new
convergence analysis in Section 4, giving the first AFEM contraction-type result for a class
of semilinear problems that includes the Poisson-Boltzmann equation.

We gave a detailed discussion of our mesh generation toolchain in Section 5, including
algorithms designed specifically for Poisson-Boltzmann applications. These algorithms
produce a high-quality, high-resolution geometric model (surface and volume meshes)
satisfying the assumptions needed for our AFEM algorithm. These algorithms are feature-
preserving and adaptive, designed specifically for constructing meshes of biomolecular
structures, based on the intrinsic local structure tensor of the molecular surface. Numerical
experiments were given in Section 6; all of the AFEM and meshing algorithms described in
the article were implemented in the Finite Element Toolkit (FETK), developed and
maintained at UCSD. The stability advantages of the new regularization scheme were
demonstrated with FETK through comparisons with the original regularization approach for
a model problem. Convergence and accuracy of the AFEM algorithm was also illustrated
numerically by approximating the solvation energy for a protein, in agreement with
theoretical results established earlier in the paper.

In this article, we have examined an alternative regularization which must be used in place
of the original regularization proposed in [11], due to an inherent instability built into the
original regularization. We showed that an analogous solution and approximation theory
framework can be put into in place for the new regularization, providing a firm foundation
for the development of a large class of numerical methods for the Poisson-Boltzmann
equation, including methods based on finite difference, finite volume, spectral, wavelet and
finite element methods. Each of these methods can be shown to be convergent for the
regularized problem, since it was shown in this article to allow for a standard H1 weak
formulation with standard solution and test spaces. Our primary focus in this article then
became the development of an AFEM scheme for the new regularized problem, based on
residual-type a posteriori error indicators, a fairly standard and easy to implement marking
strategy (Dörfler marking), and well-understood simplex bisection algorithms. We showed
that the resulting AFEM scheme is reliable, by proving a contraction result for the error,
which established convergence of the AFEM algorithm to the solution of the continuous
problem. The AFEM contraction result, which is one of the first results of this type for
nonlinear elliptic problems, follows from the global upper boundedness of the estimator, its
reduction, and from a quasi-orthogonality result that relies on the a priori L∞ estimates we
derived. This new AFEM convergence framework is distinct from the analysis of nonlinear
PBE with the previous regularization approach from [11], is more general, and can be
applied to other semi-linear elliptic equations [27]. The contraction result creates the
possibility of establishing optimality of the AFEM algorithm in both computational and
storage complexity.
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We note that for computational chemists and physicists who rely on numerical solution of
the Poisson-Boltzmann equation, discretizations based on the stable splitting as described in
the current paper are the only reliable numerical techniques under mesh refinement for the
Poisson-Boltzmann equation that we are aware of (both provably convergent and stable to
roundoff error). While one must take care with evaluation of the singular function us, since
this generally involves pairwise interactions between charges and mesh points, the
alternative to using these types of splitting discretizations is to lose reliability in the quality
of the numerical solution. While we focused on (adaptive) finite element methods in this
article, we emphasize that the splitting framework can be easily incorporated into one’s
favored (finite difference, finite volume, spectral, wavelet, or finite element) numerical
method that is currently being employed for the PBE.
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Figure 1.
Illustration of the solvent region Ωs, the molecular region Ωm, the interface Γ, and the two
distinct dielectric constants εs and εm in the two regions.
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Figure 2.
Illustration of our mesh generation toolchain. The inputs can be a list of atoms (with centers
and radii), a 3D scalar volume, or a user-defined surface mesh. The latter two can be thought
of as subroutines of the first one.
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Figure 3.
Illustration of the surface generation and post-processing. (A) A 3D volume is first
generated using the Gaussian blurring approach (equation (5.1)) from the molecule (PDB:
1CID). Shown here is part of the surface triangulation by the marching cube method. (B)
The surface mesh after two iterations of mesh quality improvements. (C) After coarsening,
the mesh size becomes about seven times smaller than the original one. The mesh is also
smoothed by the normal-based technique.
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Figure 4.
Illustration of biomolecular mesh generation. (A) The PDB structure of the mouse
Acetylcholinesterase (mAChE) monomer. (B) The surface mesh generated by our approach.
The active site is highlighted in yellow. (C) A closer look at the mesh near the active site.
(D) The tetrahedral mesh between the molecular surface and the bounding sphere (not
shown).
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Figure 5.
Solution of the Poisson-Boltzmann equation via the first decomposition scheme. (A):
Computed regular component ur of the electrostatic potential (blue) versus the analytical
solution (red). (B): Relative error in percentage of computed regular component ur of
electrostatic potential. (C): Computed full electrostatic electrostatic potential (blue) versus
the analytical solution (red). (D): Relative error in percentage of the computed full
electrostatic potential.
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Figure 6.
Solution of the Poisson-Boltzmann equation via the second decomposition scheme. (A):
Computed regular component ur of the electrostatic potential (blue) versus the analytical
solution (red). (B): Computed regular component ur plus the harmonic component uh of the
electrostatic potential (blue) versus the analytical solution (red). (C): Relative error in
percentage of the computed regular component of the electrostatic potential on an initial
mesh. (D): Relative error in percentage of the computed regular component of the
electrostatic potential; globally refined mesh. (E): Relative error in percentage of the
computed regular component of the electrostatic potential; mesh locally refined on
molecular surface and the boundary.
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Figure 7.
Left: The electrostatic potential mapped on the molecular surface of the insulin protein.
Right: The surface mesh of insulin protein in the finite element model.

HOLST et al. Page 38

Commun Comput Phys. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

HOLST et al. Page 39

Ta
bl

e 
1

Th
e 

el
ec

tro
st

at
ic

 so
lv

at
io

n 
en

er
gy

 Δ
G

el
e a

nd
 th

e 
co

rr
es

po
nd

in
g 

re
la

tiv
e 

er
ro

r e
ΔG

el
e f

or
 p

ro
gr

es
si

ve
ly

 re
fin

ed
 m

es
he

s, 
co

nf
irm

in
g 

co
nv

er
ge

nc
e 

of
 th

e
di

sc
re

tiz
at

io
n 

te
ch

ni
qu

e 
ba

se
d 

on
 th

e 
ne

w
 re

gu
la

riz
at

io
n.

le
ve

l o
f m

es
h

# 
of

 te
tr

ah
ed

ra
# 

of
 n

od
es

# 
of

 n
od

es
 o

n 
Γ

ΔG
el

e
e Δ

G
el

e

1
28

09
28

45
11

9
76

81
−
14
76
.9

0.
07

57

2
34

04
10

54
68

5
10

25
7

−
14
03
.6

0.
02

24

3
47

40
11

76
03

6
14

98
2

−
13
80
.3

0.
00

54

4
62

62
21

10
03

93
19

81
6

−
13
72
.9

-

Commun Comput Phys. Author manuscript; available in PMC 2012 January 1.


