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Abstract
Circular domains in phase separated lipid vesicles with symmetric leaflet composition commonly
exhibit three stable morphologies: flat, dimpled, and budded. However, stable dimples (i.e.,
partially budded domains) present a puzzle since simple elastic theories of domain shape predict
that only flat and spherical budded domains are mechanically stable in the absence of spontaneous
curvature. We argue that this inconsistency arises from the failure of the constant surface tension
ensemble to properly account for the effect of entropic bending fluctuations. Formulating
membrane elasticity within an entropic tension ensemble wherein tension represents the free
energy cost of extracting membrane area from thermal bending undulations of the membrane, we
calculate a morphological phase diagram that contains regions of mechanical stability for each of
the flat, dimpled, and budded domain morphologies.

The importance of choosing an appropriate thermodynamic ensemble to account for
different constraints imposed during a given experiment has been well recognized since the
work of Gibbs [1]. For instance, in protein unfolding kinetics, recent single molecule studies
underscore the differences between force-controlled and displacement-controlled ensembles
[2]. Here we examine the effect of loading ensemble on the stability of domain
morphologies in phase separated lipid membranes. In several ternary mixtures of lipids and
cholesterol, two fluid phases coexist below a transition temperature [3], such that lipid
domains form and can be observed with fluorescence microscopy [4–6]. These domains
typically display one of three distinct morphologies with occasional transitions: flat, dimpled
(partially budded), or fully budded. Equatorial views of phase separated giant unilamellar
vesicles (GUVs) are shown in Fig. 1, as examples of the flat, dimpled, and fully budded
domains that are routinely observed [7].

A simple elastic model accounts for the free energy differences responsible for transitions
between flat and spherically budded domains [8–10]. The bending energy of the membrane
competes with an interfacial free energy per unit length (line tension) at the domain phase
boundary, tending to drive the domain toward curved shapes that decrease the boundary
length while preserving domain area. This model predicts that above a critical size (or line
tension) an initially flat domain deforms spontaneously into a completely spherical bud with
an infinitesimal domain boundary, and that partially budded (dimpled) domains are
mechanically stable only with non-zero spontaneous curvature. This latter prediction is
inconsistent with experimental observations of dimpled domains in GUVs with no apparent
spontaneous curvature [11]. Stable dimpled domains are crucial to the mechanical
interactions between domains that arrest coalescence and spatially organize domains in a
phase separated membrane [11].
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In the absence of spontaneous curvature, we hypothesize lateral membrane tension as a
plausible candidate mechanism for stabilization of dimpled domains. This surface tension is
often introduced as a Lagrange multiplier conserving the total area of the (nearly
incompressible) membrane [e.g., 11–13], and is determined by an interplay between
membrane bending and convserved vesicle volume. Accordingly, observing that a
nonspherical vesicle has an “excess” area greater than a spherical vesicle of the same
volume, Yanagisawa, et al. [6] argue that domain budding could be halted once the domain
deformations exhaust all excess area. For what appear optically to be spherical vesicles, this
qualitative explanation does not identify the source of the extra area, nor how membrane
area plays a role in the membrane energetics that govern morphology. Recent work by
Semrau, et al. [13] showed that linear elastic stretching of the membrane provides a form of
mathematical regularization that stabilizes dimpled domains. However, membrane stretching
becomes significant only at tensions larger than ~ 10−2kBT/nm2 [14], which is roughly two
orders of magnitude larger than tension estimates in experiments that observe dimpled
domains [4, 7, 11, 16]. This lower tension regime is dominated by the entropy of
microscopic undulations that store excess membrane area [14]. Accordingly, we refer to this
as the entropic tension regime. For large GUVs, the entropic tension is often assumed to be
constant [3], consistent with the idea that small deformations extract only minimal area from
a large (effectively infinite) reservoir of thermal fluctuations. However, as implied by
previous studies [3], and as we show explicitly here, prescribing a fixed lateral tension does
not produce stable dimples, but rather only adjusts the relative stability of the flat and
budded domain morphologies.

This array of clues suggests the need for some form of mathematical regularization other
than constant tension to halt the budding of domains. While the linear elastic tension-area
term added by Semrau, et al. [13] is mathematically sufficient, it is physically inappropriate
for vesicles at low tension. Here we resolve this puzzle of the stability of partially budded
domains by a more careful treatment of the effect of thermal fluctuations on tension.
Specifically, in place a membrane at constant tension, we consider the more realistic choice
of a finite reservoir of thermal fluctuations. Incorporating the corresponding tension-area
equation of state into the free energy of the simple elastic model, we calculate the phase
diagram as a function of domain size and excess (thermal) membrane area, showing that the
entropic tension ensemble renders all three domain morphologies stable in parameter ranges
consistent with experiments.

Our model system is an initially flat circular domain embedded in a membrane matrix of a
different phase, subject to a (for now, constant) far-field tension τ. We assume the domain is
much smaller than the average radius of the vesicle, such that the `background curvature' of
the vesicle is negligible. The boundary of the domain experiences a line tension γ due to the
unfavorable interaction at the interface of the two phases. The free energy of the domain-
matrix system as it deforms is the sum of the bending energy of the membrane, the interface
energy from the line tension γ, and the work done by the membrane against tension as the
domain deforms [8, 9, 15], and is given by

(1)

where κ is the bending modulus, H is the mean curvature,  is the domain and matrix
membrane, r is the interface radius of the deformed domain, and rd is the initial radius of the
flat domain.  is the area required to deform the domain and surrounding matrix
membrane from an initially flat state. For simplicity, we assume κ is the same for the two
phases, and we neglect the effects of Gaussian curvature, noting however that it can become
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important when the Gaussian moduli of the two phases differ significantly as compared to κ
[16]. Equation (1) can be written in closed analytic form by assuming that the domain
deforms spherically while the matrix membrane remains flat [8, 9], which, after normalizing
the deformation energy by the bending energy of a sphere, 8πκ, and the lengths by the so-
called invagination length, ξ = κ/γ, takes the non-dimensional form

(2)

where ρd = rd/ρ and ρ = r/ξ are the normalized initial and deformed interfacial radii, and σ =
τξ2/κ is the normalized membrane tension. The model predicts that stable conformations
occur only for the two limits: ρ = ρd (flat) and ρ = 0 (spherical). Note that larger values of
the dimensionless domain size ρd stabilize the spherical domain relative to the flat domain,
while increasing the dimensionless membrane tension σ has the opposite effect.

To confirm that instability of partial buds (0 < ρ/ρd < 1) is not simply an artifact of the
assumptions on the deformed membrane geometry [21], we also performed numerical
minimization of the shape free energy of eqn. (1) by discretizing the domain and matrix with
axisymmetric finite elements [17], and holding fixed the areas of the domain and matrix
using the augmented Lagrange method [18]. Figure 2(a) shows the numerical minimum free
energy as a function of deformed domain radius for systems with select values of domain
size ρd and membrane tension σ. Figure 2(b) shows meridional curves of the finite element
model obtained by quasi-Newton numerical minimization of the free energy at several
prescribed values of the deformed domain radius with σ = 0.25. For typical lipid membranes
with κ = 25 kBT and ξ = 50 nm, the values of ρd and σ used in the calculations correspond to
domain sizes 25 nm ≤ rd ≤ 500 nm and membrane tensions 2.5 × 10−6kBT/nm2 ≤ τ ≤
10−2kBT/nm2, as compared to experimental values of ~ 10−5kBT/nm2 [4]. For comparison,
the results of the simplified analytical model, eqn. (2), are plotted as dashed lines,
demonstrating that the errors of the simplified analytical model are small, and more
importantly, that the instability of the partially budded domains is not an artifact of the
geometric assumptions.

Note that the closed analytical form of eqn. (2) clarifies the scaling of the energy sources,
where the quadratic term represents the combined energy of bending and surface tension,
while the linear term represents the line energy of the domain boundary. Since the quadratic
term enters with a negative sign, it is clear that to find a stable dimple the energy requires
additional terms with higher-order dependence on ρ, so as to produce a local energy
minimum at some intermediate radius (0 < ρ/ρd < 1). The failure, in this regard, of the
constant surface tension ensemble foreshadows the need to consider mechanisms that alter
surface tension as a function of membrane deformation.

At finite temperature, a finite amount of excess area is stored in the thermal undulations of
the membrane. This excess area can be accessed by the deforming membrane at
exponentially increasing membrane tension. For a membrane with actual area , the thermal
undulations are superimposed on the projected, or measurable area, , so that .

Experimentally, for vesicles near the surface area to volume ratio of a sphere, changes in
vesicle volume with fixed area control , whereas changes in vesicle area with fixed
volume control . To model the coupling between entropic tension and membrane
deformation, imagine the domain and matrix membrane are at zero temperature and initially
flat, but are coupled to a “thermal reservoir” at temperature T > 0 that has a projected area

 and total area , as shown in the schematic of Fig. 3. A straightforward but tedious
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calculation gives the entropic equation of state for the surface tension of the thermal
reservoir as [19]

(3)

where a0 ≈ 0.7 nm2 is the area per lipid molecule for a typical lipid bilayer [20]. As the
zero-temperature domain-matrix system deforms at constant projected area, it pulls in an
area  from the thermal reservoir. The projected area of the thermal reservoir, , remains
unchanged, but its actual area decreases from  to . Integrating eqn. (3), we obtain
free energy of the reservoir as

(4)

which collapses to the constant tension ensemble for .

The contributions from membrane bending and phase boundary line tension remain
unchanged from eqn. (2), and the normalized total free energy of membrane deformation in
the entropic ensemble is

(5)

where  is the system size (~the number of lipids),  is the excess
area fraction stored in the membrane undulations, and  is the domain area
fraction.

The free energy of eqn. (5) is then a function of three independent variables: the system size
N, the domain area fraction α, and the relative excess membrane area ε, noting that when the
reservoir is at zero tension ε achieves a maximum value proportional to ln(N). The entropic
reservoir supplies the higher-order dependence on ρ necessary to overcome the bending
energy's negative ρ2 dependence to yield stable dimples. Accordingly, the set of equilibrium
shapes includes various combinations of flat, dimpled, and budded domains depending on
location within the three-dimensional (N,α,ε) phase-space.

To illustrate, we plot in Fig. 4 two 2D slices through the 3D phase diagram for system sizes
N = 4.5 × 108 and N = 7 × 107, corresponding to larger, , and smaller,

, vesicles, respectively. Both of these 2D phase diagrams show regions where
each of the flat, dimpled, and fully budded morphologies are stable. In addition, regions of
metastable morphologies appear where transitions between two or even three (for N = 7 ×
107) conformations may occur.

Figure 4(a) shows a slice through this three parameter (N,α,ε) phase diagram containing one
and two phase regions, while Fig. 4(b) contains all phases except the flat-dimple coexistence
regime. As an illustration of the energy landscape in the tri-stable region of Fig. 4(b), we
plot the normalized free energy  along with the individual contributions from bending, line
tension, and entropic surface tension in Fig. 4(c) for N = 7 × 107, α = 0.01, and ε = 0.026. In
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this region the dimple state is the global energy minimum, while the flat and budded
morphologies are local minima. Figure 4(c) shows how the Gaussian form of  offsets
the negative curvature of  to yield a local energy minimum at an intermediate value
of ρ/ρd in . For this case, the energy barrier between the dimpled and flat states is ≈ 6.6
kBT, while the barrier between the dimpled and fully budded states is ≈ 640 kBT.

For the phase diagrams shown in Fig. 4, the range of 0.01 < ε < 0.03 translates to a range of
lateral tensions 0.66 kBT/nm2 > τ > 2×10−6 kBT/nm2, with experimental values on the order
of ~ 10−5 kBT/nm2 (the nominal rupture tension of a membrane is ~ 5 kBT/nm2).

The existence of stable regions for each of the morphologies over this range is consistent
with the fact that all three morphologies are observed in experimental systems. It is
noteworthy that both α and ε are control parameters that can be manipulated in experiments.
For instance, ε can be adjusted either by micropipette aspiration [14] or by controlled
thermal expansion of the membrane. On the other hand, increases in α occur passively as
pairs of domains spontaneously coalesce into a single larger domain. As complete phase-
separation into two simply connected domains is the thermodynamic ground state, it is
expected in experiment to observe generally an “upward” flow through the phase diagrams
in Fig. 4, although trajectories are not entirely vertical due to the conserved vesicle volume.
As an example of a possible trajectory, one can imagine an initially small, flat domain
coalescing with a flat domain, crossing the horizontal preference line in the phase diagram to
yield a budded domain. That domain might coalesce with another causing traversal into the
dimpled region of the phase diagram. Indeed, such sequences of coalescence that link to
domain morphology have been observed experimentally [7].

We close by acknowledging that the static model of domain mechanical stability and
corresponding morphological phase diagrams are an initial step toward an understanding of
domain dynamics in vesicles in vitro and cell membranes in vivo. A more complete picture
will require an accounting of the effects of the coupled 2D lipid hydrodynamics and 3D
solvent hydrodynamics, the chemical kinetics of phase coalescence, and the potential roles
of proteins in lipid organization.
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FIG. 1.
Domain morphologies on vesicles. (a) A phase-separated GUV showing domains (red) that
are flat with respect to the vesicle (blue). (b) Dimpled domains on a GUV. (c) A dimple-to-
full bud transition indicated by the red arrows. Scale bars are 10 μm. [7]
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FIG. 2.
Energies and shapes of deformation. (a) Normalized free energy of a budding membrane as
a function of normalized domain radius ρ relative to the flat radius ρd, in the constant
membrane tension ensemble, for a few values of domain size ρd and normalized surface
tension σ. The solid lines are the numerical results; the dashed lines correspond to the
simplified analytical model. Sketches at ρ/ρd = 0, 0.5, and 1 show corresponding analytical
shapes. (b) Meridional curves from axisymmetric finite element numerical minimization of
free energy for σ = 0.25. The domain is in red, and the matrix is in blue. Clockwise from

upper left: equilibrium deformed configurations for .
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FIG. 3.
Schematic of the entropic tension ensemble. The thermal reservoir (left) at a finite
temperature T has an actual area  and a projected area , while the deformed
domain-matrix system (right) is at T = 0. The small pipe represents a perfect thermal
insulator that permits the flow of lipid from one region to the other, where the total amount
of lipid in the ensemble is conserved, resulting in equal tension in both regions.
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FIG. 4.
Morphological phase diagrams for (a) N = 4.5×108 and (b) N = 7×107. The letters `F', `D',
and `B' represent the flat, dimpled, and fully budded domains. Regions with more than one
letter indicate metastability, with the letters ordered in increasing free energy. Solid lines are
“hard” phase boundaries, across which morphologies appear or disappear. Dashed lines are
“preference” boundaries, indicating changes in the energetic ranking of metastable
morphologies. The vertical grey lines are the excess area fraction in the reservoir at zero
tension. (c) The free energy G/8πκ as a function of ρ/ρd for N = 7 × 107, , and ε
= 0.026. The (lowest-energy) equilibrium state at ρ/ρd ≃ is a dimple (close-up view in inset),
while flat and full buds are metastable.
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