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Abstract

Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity.
However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains
unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala
synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-
specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and
blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory
results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing
and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein
degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at
amygdala synapses.
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Introduction

The activity-dependent synthesis of new protein is commonly

thought to be critical for the formation of long-term memories [1].

Consistent with this, numerous studies have found that the

transcription of mRNA and subsequent de novo synthesis of proteins

is critical for the formation of memory in Pavlovian fear

conditioning [2–4], a widely used paradigm to study the molecular

neurobiology of learning [5]. Protein synthesis is considered a

necessary step in the transfer of labile short-term memory into a

stable long-term memory during the process of memory

consolidation [6]. Additionally, recent evidence suggests that the

retrieval or recall of established fear memories can induce a second

independent phase of protein synthesis which appears to be

necessary for memory updating [7] or reconsolidation [8,9].

The amygdala is believed to be the primary site for the

formation and stability of long-term of fear memories [10].

Supporting this, a number of intracellular signaling cascades

involved in transcriptional regulation or translational control have

been implicated in the formation of fear memories in amygdala

neurons [5,11,12]. However, it is not currently known if alterations

in protein degradation within the amygdala are important during

memory consolidation and reconsolidation.

In mammals, the pathway controlling the majority of protein

degradation is the ubiquitin-proteasome system. In the UPS,

proteins are targeted for degradation through the covalent

attachment of a small protein called ubiquitin [13]. Once a

polyubiquitin chain has formed, the target protein can then be

recognized by S5a, a subunit on the 26S proteasome which captures

the target protein for degradation [14,15]. This system is important

for a variety of cellular processes including cell-cycle progression,

transcription, apoptosis and more recently has been implicated in

synaptic plasticity [16–20]. For example, activity-dependent

remodeling of the postsynaptic density [PSD] requires new protein

synthesis, but evidence now suggests that proteasome-mediated

protein degradation is also critical for this same remodeling process

[16]. Recently, it has been suggested that protein degradation may

also regulate protein synthesis since synaptic stimulation results in a

proteasome-dependent reduction in synaptic levels of MOV10, a

RNA-induced silencing complex [RISC] factor, which resulted in

greater protein synthesis at synapses [21].

Despite accumulating evidence for the role of the UPS in

synaptic plasticity, relatively few studies have examined its role in

fear memory formation. Recent evidence suggests that protein

degradation through the UPS may regulate protein synthesis in the

hippocampus during the reconsolidation, but not the consolida-

tion, of fear memory and this may occur through the degradation

of PSD scaffolding proteins [22]. However, this finding is in

conflict with earlier work showing that protein degradation was

critically involved in memory consolidation in the hippocampus

[23]. In this case, protein degradation was required for the

removal of transcriptional repressors but it is not known if PSD

scaffolds were targeted as well. As a result, it remains unclear if

protein degradation is required for the consolidation and
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reconsolidation of hippocampal-dependent fear memories and

what potential function it may serve during these processes.

Furthermore, no study has examined how protein degradation is

regulated when required for consolidation or reconsolidation

processes. In order to understand if protein degradation is an

important molecular mechanism in long-term memory formation

and stability, we need more information about how these

alterations in protein degradation relate to established cellular

memory mechanisms.

Here we report the first studies looking at the role of UPS

protein degradation in the consolidation and reconsolidation of

fear memories in the amygdala. We examined whether protein

degradation 1) was increased following fear conditioning acquisi-

tion and memory retrieval, 2) was triggered by NMDA receptor

activity, 3) correlated with established markers of translational

regulation, 4) targeted proteins involved in synaptic structure and

translational control, and 5) was critical for both the consolidation

and reconsolidation processes.

Results

Protein degradation is increased in the amygdala
following fear conditioning

To determine whether degradation-specific UPS activity is

increased in the amygdala during learning and memory

consolidation, we trained rats with a standard auditory fear

conditioning paradigm in which increased protein synthesis in the

amygdala is required for normal memory formation [2–4].

Amygdala homogenates were mixed with either GST-S5a agarose

or GST-agarose and polyubiquitinated proteins were pulled-down

and exposed to an antibody against ubiquitin [Figure 1A]. Fear

conditioning training resulted in a robust increase in polyubiqui-

nated protein in the amygdala [Figure 1B]. ANOVA revealed a

main effect for time after training [F(4,20) = 2.942, p = .046]. Fisher

LSD post hoc tests showed that protein degradation was increased

within 60-min of acquisition and this increase was sustained for at

least another hour relative to naive controls.

Fear conditioning can bidirectionally affect synapse size in the

amygdala depending on the CS-UCS contingency during training

[24]. In our first experiment, animals were exposed to several

pairings of an auditory cue with a footshock in a novel context. It

may be possible that the observed increases in protein degradation

could be driven by any of these 3 stimuli individually, rather than

being driven by the CS-UCS association itself. In order to determine

whether the increases in protein degradation we observed were

specific to the association of the auditory cue with the footshock,

separate groups of animals were exposed to control treatments with

the auditory cue or foot shock individually. These controls allow us

to directly compare trained animals with those that were exposed to

the CS or UCS in the absence of associative learning. Amygdala

tissue from the control animals was collected 60-min after

acquisition and compared with animals that had the auditory CS

paired with the foot shock in normal training. Two additional groups

of animals received the normal training protocol and amygdala

tissue was collected either 6- or 24-hrs later [Figure S1A] to include

time points outside the ‘‘consolidation window’’ of post-training

sensitivity to protein synthesis inhibitors [8]. ANOVA revealed a

main effect for group [F(5,46) = 2.869, p = .025] and Fisher LSD post

hoc tests indicated that the rate of protein degradation was enhanced

within 60-min of acquisition relative to naı̈ve controls. This increase

was specific to CS-UCS learning, as neither white noise nor shock

exposure showed this enhancement. Furthermore, protein degra-

dation returned to baseline levels within 6-hrs of acquisition

[Figure 2A]. To confirm this, we immunoblotted samples with an

antibody recognizing K48 linked polyubiquitinated proteins

[Figure S1B], a degradation-specific polyubiquitin tag [25,26].

Using planned comparisons, we confirmed that K48 polyubiquiti-

nation was enhanced 60-min after fear conditioning relative to all 3

control groups [t(46) = 2.879, p = .006] and the 6- and 24-hr trained

groups [t(46) = 2.284, p = .027]. In all cases, the effect size was slightly

diminished relative to polyubiquitination detected by S5a. This is

consistent with the idea that S5a has the highest affinity for lysine-48

linked chains but can also recognize other linkage sites [27].

Together, this indicates that the increases in protein degradation

were specific to the acquisition of the CS-UCS association and fit

within the proposed time frame for the completion of the memory

consolidation process.

Fear conditioning results in increased protein synthesis and

translational regulation in the amygdala [5]. To determine if the

pattern of increased protein degradation parallels increases in

protein synthesis, we quantified the phosphorylation of two protein

kinases [P70S6 kinase and mTOR] related to translational control

during the formation of long-term fear memories [12], and used

this as an indirect marker of protein synthesis. We observed

increases in the phosphorylation of the P70S6 kinase

[F(5,46) = 2.533, p = .042; Figure 2B] and mTOR [F(5,46) = 4.496,

Figure 1. Protein degradation is increased in the amygdala
following the acquisition of auditory and context fear mem-
ories. [A] Amygdala tissue was collected in 30-min increments
following fear conditioning [n = 5 per group]. Tissue was purified with
GST or GST-S5a and polyubiquitinated proteins pull-downed and
exposed to an antibody against ubiquitin. Input represents an aliquot of
total ubiquitinated proteins. [B] There was a rapid increase in the
amount of proteins targeted for UPS degradation following fear
conditioning. * denotes p,.05 from homecage [HC] controls.
doi:10.1371/journal.pone.0024349.g001

Protein Degradation and Fear Memory
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p = .002; Figure 2C] which both differ significantly from controls

at 60-min after training. There were no differences between

groups for total P70S6 kinase [F(5,46) = 0.557, p = .732; Figure

S1C], total mTOR [F(5,46) = 0.437, p = .820; Figure S1D] or b-

actin [F(5,46) = 0.415, p = .836; Figure S1E]. These increases

related to translational control closely parallel the observed

increases in protein degradation, suggesting a potential overlap

between the protein degradation and synthesis processes during

the formation of long-term fear memories.

Increased protein degradation depends on NMDA
receptor activity

Increases in protein synthesis following fear conditioning are

triggered by activation of NMDA receptors [28]. Some evidence

exists suggesting that increases in ubiquitin-proteasome activity

can also be dependent on NMDA receptors [21,25,29]. To see if

increases in protein degradation within the amygdala following

fear conditioning are related to NMDA receptor activity we

infused animals with the NMDA antagonist Ifenprodil prior to fear

conditioning at a dose that blocks memory consolidation [28] and

collected amygdala tissue for GST analysis [Figure 3A]. ANOVA

indicated Ifenprodil completely abolished the degradation increas-

es observed following learning detected both by GST-S5a

[F(2, 19) = 4.480, p = .025; Figure 3B] and a K48-linked poly-

ubiquitin antibody [F(2, 19) = 3.428, p = .054; Figure 3C], but did

not change b-actin expression [F(2, 19) = 0.580, p = .569;

Figure 3D]. These data represent the first in vivo link between

NMDA receptor signaling and the UPS and suggest that increased

protein degradation in the amygdala is induced by a mechanism

that is dependent on NMDA receptor activity.

The UPS targets MOV10 and Shank during memory
formation

We have found that increases in protein degradation following

fear conditioning are NMDA dependent and mirror increases in

the phosphorylation of kinases involved in translational control.

Some in vitro evidence suggests that protein degradation may

directly regulate certain forms of protein synthesis and PSD

remodeling [16,21]. We next asked whether UPS activity was

involved in the regulation of protein synthesis and PSD

remodeling in the amygdala following fear conditioning. Animals

were trained with auditory fear conditioning and we collected

amygdala crude synaptosomal membrane fractions 60-min later.

Since proteolytic-specific polyubiquitination was enhanced only

following associative learning [Figure 2], we compared these

samples with naı̈ve homecage animals. These samples were

purified with GST-S5a and pull-downs were then probed with

antibodies against the RISC factor MOV10, PSD scaffolding

protein Shank [Figure S2] and PSD receptor protein NR2B

[Figure 4A]. ANOVA revealed an increase in the degradation

of MOV10 [F(1, 17) = 4.823, p = .042; Figure 4B] and Shank

[F(1, 17) = 5.750, p = .028; Figure 4C] following fear conditioning,

however, NR2B turnover remained constant. These results

generally support previous studies [16,21,22] and suggest that

following fear conditioning the UPS targets proteins involved in

synapse structure and translational silencing indicating that

Figure 2. Increase in amygdalar protein degradation is specific to learning and mirrors protein synthesis. Amygdala tissue was
collected from naı̈ve animals [HC, n = 8], animals exposed to either the shock [Immed SK, n = 8] or the CS [WN, n = 9], or animals that underwent fear
conditioning and were sacrificed 60-min [n = 9], 6- hr [n = 9] or 24-hrs [n = 9] later and tissue was purified with GST-S5a. [A] An increase in the amount
of polyubiquitinated proteins was only observed 60-min after behaviorally effective training. [B, C] Western blots with antibodies against phospho-
P70S6 kinase and phospho-mTOR show that increases in protein degradation mirror increases in translational control. * denotes p,.05 from
homecage [HC] controls.
doi:10.1371/journal.pone.0024349.g002
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potential functions of the UPS may be a synaptic reorganization

process and control over protein synthesis.

Protein degradation is critical for the formation of long-
term fear memories

To more directly test whether UPS activity is critical for long-

term memory formation in the amygdala we infused rats with a

proteasome inhibitor [blac] at a dose that rapidly reduces

functional proteasome activity [30] [Figure S3] immediately after

training [Figure 5A], when memory is normally sensitive to the

effects of protein synthesis inhibitors. blac resulted in significant

impairments for both the auditory cue [F(3,45) = 5.32, p = .003] and

the context [F(3,45) = 8.735, p,.001] during subsequent drug-free

long-term memory tests [Figures 5B and 5C]. Fisher LSD post hoc

tests demonstrated that protein degradation blockade resulted

in impairments in long-term memory for both cues that was

Figure 3. Increase in amygdalar protein degradation is NMDA-dependent. (A) Infusions of NMDA antagonist Ifenprodil (n = 8) or vehicle
(n = 14) were delivered into the amygdala prior to fear conditioning, and amygdala tissue collected 60-min later and mixed with GST-S5a. Pretraining
inactivation of NMDA receptors did not affect performance during training, but (B) completely abolished the increase in protein degradation.
(C) Ifenprodil resulted in a significant reduction of K48-linked polyubiquitination. (D) There were no significant differences in b-actin, which was used
as a loading control. * denotes p,.05 from untrained controls.
doi:10.1371/journal.pone.0024349.g003

Figure 4. UPS targets proteins involved in translational silencing and synaptic structure in the amygdala. Animals were trained to
auditory and context fear conditioning and amygdala tissue was collected 60-min later [n = 10] and compared to naı̈ve homecage [HC] animals
[n = 10]. In all cases, crude synaptosomal membrane fractions were obtained, mixed with GST-S5a, and probed with antibodies against MOV10, Shank
and NR2B [A]. The amount of polyubiquitinated MOV10 [B] and Shank [C] was increased in trained animals, suggesting potential control over protein
synthesis initiation and synaptic restructuring. * denotes p,.05 from HC controls.
doi:10.1371/journal.pone.0024349.g004
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comparable to deficits caused by protein synthesis inhibition [3,4].

Furthermore, simultaneously blocking both protein degradation

and protein synthesis did not rescue these impairments, as has been

previously suggested in hippocampal LTP [31]. These results

suggest that proteasome-dependent protein degradation is critical

for long-term memory formation and plasticity at amygdala

synapses.

Protein degradation is increased in the amygdala
following memory retrieval

Retrieval of fear memories results in a second phase of protein-

synthesis dependence, a process known as memory reconsolidation

[8]. Since we found that increases in protein degradation paralleled

increases in the activity of proteins involved in translational

regulation following acquisition of auditory and context fear

conditioning, it may be possible that the retrieval of these same

memories will result in increased protein degradation in the

amygdala [22]. To investigate this, we trained animals using context

fear conditioning, which undergoes a protein synthesis dependent

reconsolidation process in the amygdala [32]. The following day,

animals received a brief ‘‘reminder’’ exposure to the training context

and amygdala tissue was purified with GST-S5a [Figure 6A]. A

main effect was found for group during the GST-analysis of protein

degradation [F(5, 46) = 3.534, p = .009]. Fisher LSD post hoc tests

revealed that protein degradation was rapidly enhanced following

retrieval, where it was significantly higher than trained/no retrieval

controls at 60-min [Figure 6B]. This increase rapidly returned to

basal levels by 90-min after retrieval. Additionally, this increase was

due specifically to retrieval in the training context as trained animals

treated the same but placed into a novel environment did not show

any such enhancements in protein degradation. These results

suggest that protein degradation is enhanced in the amygdala

following the retrieval of a context fear memory.

Auditory fear memories also undergo a protein synthesis

dependent reconsolidation process in the amygdala [3,8]. To

investigate whether protein degradation is increased following

retrieval of an auditory fear memory, we trained animals using

standard auditory CS/shock UCS pairings. On the following day,

the animals were given a brief exposure to the auditory CS in a

novel environment after which amygdala tissue was collected and

purified with GST-S5a [Figure 6C]. ANOVA revealed a main

effect for group following retrieval [F(4,49) = 2.935, p,.030]. Fisher

LSD post hoc tests showed that while protein degradation was

increased within 60-min of acquisition of auditory fear condition-

ing and was sustained for at least an hour [Figure 1B], this pattern

was more delayed and transient following retrieval of the same fear

memory where degradation was significantly higher than controls

at 90-min and returned to baseline by 2-hrs [Figure 6D]. This

suggests that protein degradation is increased in the amygdala at

the same times that protein synthesis is increased, supporting a

relationship between the two processes during the reconsolidation

of retrieved fear memories.

The UPS also targets MOV10 and Shank following
memory retrieval

To identify what the potential functional role of protein

degradation is following memory retrieval we trained animals with

auditory or context fear conditioning and collected amygdala tissue

at those times at which the peak increases in retrieval-induced

protein degradation were noted [Figures 6 and Figure S4] and we

fractionated tissue to obtain a crude synaptosomal membrane

sample [Figure 7A]. These fractions were then purified with GST-

S5a. We found that the UPS targeted MOV10 and Shank but not

NR2B following fear conditioning [Figure 3]. To test if the UPS was

targeting these same proteins following memory retrieval, pull-

downs were then probed with an antibody against MOV10, Shank

and NR2B [Figure 7B]. Results indicated a main effect for group on

both MOV10 [F(2, 29) = 8.427, p = .001; Figure 7C] and Shank

degradation [F(2, 29) = 3.647, p = .039; Figure 7D]. Fisher LSD post

hoc tests showed that the degradation of synaptic MOV10 and

Shank were significantly increased following both auditory or

context fear memory retrieval relative to controls. Again, the

turnover rate of NR2B remained constant. These results support

previous studies [16,21,22] and suggest that the increases in protein

degradation in the amygdala following memory retrieval, as well as

during the initial memory formation, are at least partially due to the

targeting of MOV10 and Shank at amygdala synapses.

Protein degradation controls the ‘‘destabilization’’ of
memory following retrieval

Activation of NMDA receptors is critical for the ‘‘destabiliza-

tion’’ of retrieved fear memories in the amygdala [33,34]. When

Figure 5. Protein degradation is critical for the formation of long-term fear memories. [A] Experimental design for B-C. Animals were
trained to auditory and context fear conditioning followed by infusions of blac [n = 11], ANI [n = 12], blac+ANI [n = 14] or vehicle [n = 10] into the
amygdala. The next day, they were then tested to the auditory cue followed by the context 4-hrs later. [B, C] blac and ANI impaired long-term
memory for the auditory and context cues and simultaneous administration of both blac+ANI did not rescue these impairments. * denotes p,.05
from Vehicle controls.
doi:10.1371/journal.pone.0024349.g005
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NMDA receptor activity is blocked, the necessity for protein synthesis

is removed, and protein synthesis inhibitors are ineffective at

disrupting long-term memory. Since we found that the UPS was

targeting proteins involved in translational control, this suggests that

blocking protein degradation following memory retrieval may

prevent the need for new protein synthesis. In order to test this, we

trained animals with auditory or context fear conditioning and, on

the following day, gave them a brief reminder of the CS.

Immediately after the retrieval, animals received an intra-amygdala

infusion of the proteasome inhibitor [blac], the protein synthesis

inhibitor anisomycin [ANI], or a combined cocktail [blac+ANI].

Behavioral performance was assessed on the following day

[Figure 8A]. While there were no differences between groups during

either context [F(3, 24) = 0.446, p = .722] or auditory [F(3, 46) = 1.110,

p = .355] memory retrieval [Figure 8B], there were main effects for

both the long-term context [F(3, 24) = 6.540, p = .002] and auditory

[F(3, 46) = 2.888, p = .046] CS tests [Figure 8C]. Fisher LSD post hoc

tests showed that while blocking protein synthesis alone led to

significant impairments in long-term memory for both the contextual

and auditory cues, blocking protein degradation by itself did not

result in such impairments. Furthermore, simultaneous blockade of

protein degradation and synthesis actually prevented impairments

normally caused by protein synthesis blockade. This result strongly

suggests that changes in protein synthesis are ‘‘downstream’’ of

changes in protein degradation during the reconsolidation of

auditory and context fear memories in the amygdala.

Retrieval-induced protein degradation is dependent
upon NMDA receptor activity

Blocking NMDA receptors prior to memory retrieval prevents

protein synthesis inhibitors from disrupting long-term memory

storage [33]. This has led to the idea that activation of NMDA

receptors controls the requirement for protein synthesis following

memory retrieval [34]. We found that UPS activity was upstream

of protein synthesis. Given that NMDA receptor activity appears

necessary for increases in protein degradation following acquisition

of fear conditioning, we reasoned that there might be a similar

requirement following retrieval. To examine this we blocked

NMDA receptor activity prior to auditory fear memory retrieval

and collected amygdala tissue for GST-analysis [Figure 9A].

Consistent with previous experiments, Ifenprodil significantly

reduced the amount of polyubiquitination in the amygdala

following retrieval [F(1, 13) = 6.115, p = .028; Figure 9B]. Collec-

tively, these results suggest a pathway whereby NMDA receptor

activity signals increases in UPS activity, which controls changes in

protein synthesis during the time period following retrieval. This

Figure 6. Protein degradation is increased in the amygdala following the retrieval of auditory and context fear memories. [A]
Experimental design for B. Animals were trained to context fear conditioning on Day 1. The following day, they received a 90-sec reminder to the
training context and amygdala tissue was collected in 30-min increments [n = 9 per group]. A separate group of animals was placed into a novel
environment and tissue collected 60-min later [n = 7]. Tissue was then purified with GST-S5a. [B] There was a rapid increase in the amount of proteins
targeted for degradation, which returned to basal levels within 2-hrs. [C] Experimental design for D. Animals were trained to auditory fear
conditioning on Day 1. The following day, they received a 30-sec reminder to the auditory cue and amygdala tissue was collected in 30-min
increments [n = 9-10 per group]. Tissue was then purified with GST-S5a. [D] There was a delayed increase in the amount of proteins targeted for
degradation, which returned to basal levels within 2-hrs. * denotes p,.05 from controls.
doi:10.1371/journal.pone.0024349.g006

Protein Degradation and Fear Memory

PLoS ONE | www.plosone.org 6 September 2011 | Volume 6 | Issue 9 | e24349



provides the first demonstration of a link between memory

destabilization mechanisms at the time of retrieval, which controls

changes in protein synthesis necessary for memory updating

during the reconsolidation process [7].

Discussion

Here we present the first comprehensive examination of protein

degradation in the formation and stability of long-term memory in

the amygdala. We found that protein degradation was rapidly

enhanced during the consolidation of fear memories. This increase

in degradation was NMDA receptor dependent, paralleled

increased translational regulation, and targeted at least two

proteins involved in translational silencing and synaptic structure.

Furthermore, blocking protein degradation in the amygdala

following fear conditioning resulted in significant impairments in

long-term memory, suggesting that this process is critical for

memory consolidation. Protein degradation was also enhanced in

the amygdala following the retrieval of two different fear

memories, both of which undergo a protein synthesis dependent

reconsolidation process. This increase in degradation following

retrieval was more transient than that which followed acquisition,

was NMDA-dependent, and also targeted proteins involved in

translational control and synaptic structure. Finally, blocking

protein degradation after retrieval prevented impairments in long-

term memory normally induced by protein synthesis blockade.

Collectively, these results suggest that activity-dependent regula-

tion of the UPS is critical in the time period following memory

acquisition or retrieval and is necessary for long-term memory

storage in the amygdala.

A number of studies have previously suggested that protein

synthesis is critical for long-term memory formation in the

amygdala [3,4]. Whether UPS activity is of universal importance

in the formation of long-term memory remains to be determined

due to a number of conflicting studies using hippocampal-

dependent memory tasks [22,23,35]. Until now, no study has

examined UPS activity in memory formation in the amygdala, the

site thought to be critical for the synaptic changes underlying fear

conditioning [10]. We found that protein degradation through the

UPS was just as important as protein synthesis for memory

formation in the amygdala and was likely initiated by a similar

mechanism. Furthermore, this increase in protein degradation was

related to enhanced polyubiquitination of the synaptic scaffolding

protein Shank and RISC factor MOV10, suggesting that protein

degradation might be involved in several different aspects of

learning-induced synaptic plasticity. What the functional role is of

enhanced protein degradation in the amygdala following fear

conditioning will be of interest in future studies.

In the present study, we have observed increases in both protein

polyubiquitination and phosphorylation following fear condition-

ing but not following control treatments in which the auditory cue

or footshock were presented individually. While this suggests that

increased protein degradation and translational regulation may be

critical for memory consolidation following the acquisition of a

CS-UCS association, it does not rule out the possibility that

animals in the control treatments did not learn some information

Figure 7. UPS targets proteins involved in translational silencing and synaptic structure in the amygdala following memory
retrieval. [A] Experimental design for B-D. Animals were trained to auditory or context fear conditioning on Day 1. The next day, animals were
exposed to a brief retrieval and amygdala tissue collected 60-min [context, n = 10] or 90-min [auditory, n = 10] later. Two separate groups received
auditory or context fear conditioning on Day 1 and were sacrificed on Day 2 without receiving retrieval [n = 6 per group]. Amygdala tissue was
fractionated to obtain a crude synaptosomal membrane fraction, purified with GST-S5a, and probed with antibodies against MOV10, Shank and NR2B
[B]. The amount of polyubiquitinated synaptic MOV10 [C] and Shank [D], was increased following fear memory retrieval. * denotes p,.05 from No
React controls.
doi:10.1371/journal.pone.0024349.g007
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about the auditory cue. It is possible that presentations of the

auditory cue by itself could produce learning that is independent of

protein degradation and protein synthesis. Consistent with this,

recent evidence suggests that unpaired presentations of an

auditory cue and footshock do affect synapse size in the lateral

amygdala, though not in the same ways that paired presentations

do [24]. Thus, in the present study, it is possible that animals

receiving auditory cue presentations without footshock did

undergo synaptic changes without the protein degradation or

protein synthesis alterations that characterize associative learning.

Protein synthesis is critical for the reconsolidation of fear

memories following retrieval [8]. Currently, the only mechanism

known to control memory ‘‘destabilization’’ or initiate this

requirement for protein synthesis in the amygdala is NMDA

receptor activity [33,34]. Our study indicates that protein

degradation also controls the need for new protein synthesis in

the amygdala following memory retrieval. Of particular interest

was the finding that destabilization of context fear memory

following retrieval was controlled by UPS activity in the amygdala.

Protein degradation has been shown to underlie context memory

destabilization in the hippocampus following retrieval [22].

Supporting this, the UPS also targets Shank in both structures

following retrieval. Collectively, these results suggest that a

retrieved context fear memory is simultaneously destabilized,

Figure 8. Protein degradation controls the destabilization of retrieved fear memories in the amygdala. [A] Experimental design for B-C.
Animals were trained to auditory or context fear conditioning on Day 1. The next day, they received a brief retrieval followed by infusions of blac
[auditory n = 13, context n = 7], ANI [auditory n = 12, context n = 7], blac+ANI [auditory n = 12, context n = 7] or vehicle [auditory n = 13, context n = 7]
into the amygdala. The next day, they were then tested to for long-term memory to their acquired cue. [B] There were no differences between
groups during either context or auditory memory retrieval. [C] While blac had no effect on either memory by itself, it rescued the memory
impairments normally caused by ANI when co-infused. * denotes p,.05 from Vehicle controls.
doi:10.1371/journal.pone.0024349.g008
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and ‘‘reconsolidated’’, in the amygdala and dorsal hippocampus.

Whether destabilization in one structure is dependent upon

increases in protein degradation in the other structure currently

remains unknown. Future research should address this question.

Memory consolidation and reconsolidation share a number of

common mechanisms, though some differences have been

reported [3,11,22,36]. In the present study, we found that protein

degradation was critical for both processes, suggesting that they

share UPS activity as a common mechanism. Additionally, in both

processes the proteolytic-targeting of MOV10 and Shank was

observed. Recent evidence suggests that protein degradation is

critically involved in the reconsolidation, but not the consolidation,

of context fear memory in the hippocampus [22]. This apparent

discrepancy suggests that the amygdala and hippocampus may

rely on different mechanisms for initial consolidation, but share

similar mechanisms for reconsolidation-related processes. Future

research will need to address this in more detail.

Though protein degradation was enhanced following the

acquisition and retrieval of fear memories, we found a number

of differences in the temporal dynamics of this process. Following

acquisition, protein degradation was rapidly increased and

sustained for several hours before returning to basal levels by

6-hrs, fitting within the generally understood ‘‘consolidation

window’’ [8]. However, following the retrieval of auditory or

context fear memory, the increase in protein degradation was

more transient and returned to control levels by 2-hrs after

stimulus exposure. This supports previous work in suggesting that

the reconsolidation process may be shorter than the consolidation

process [22]. However, despite this difference in process length,

the UPS appeared to target the same proteins. This suggests that

differences in mechanisms for memory consolidation and

reconsolidation may be due to the speed at which the process

occurs. Additionally, the peak in protein degradation in the

amygdala occurred at different times following the retrieval of

auditory or context fear memories. This discrepancy in the

temporal dynamics of protein degradation following retrieval may

be due to the influence of other brain regions. For instance,

context fear memory depends on hippocampal projections while

auditory fear memory depends on projections from the auditory

thalamus and auditory cortex [37–39]. Furthermore, these

Figure 9. Retrieval-induced increase in protein degradation is dependent on NMDA-receptor activity. (A) Infusions of NMDA antagonist
Ifenprodil (n = 8) or vehicle (n = 7) were delivered into the amygdala prior to fear memory retrieval, and amygdala tissue collected 90-min later and
mixed with GST-S5a. (B) Pre-retrieval inactivation of NMDA receptors did not affect retention during CS retrieval, but (C) completely impaired the
increase in protein degradation. * denotes p,.05 from Vehicle controls.
doi:10.1371/journal.pone.0024349.g009
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projections terminate in different nuclei of the amygdala [40]. In

the present study, we did not examine differences in protein

degradation between amygdala nuclei. Supporting this, increases

in hippocampal protein degradation occur within 60-min of

retrieval [22], suggesting that the hippocampus may be influencing

the peak time point of degradation in the amygdala following

context retrieval.

Learning-induced synaptic plasticity is critical for memory

formation and stability in the amygdala. Protein synthesis has long

been thought of as a critical component in this process [1]. Here

we demonstrate that protein degradation through the UPS is also

critically involved. Following both memory acquisition and

retrieval, there are NMDA-dependent increases in proteolytic

polyubiquitination which are critical for the long-term storage of

the memories. Importantly, the UPS appears to target proteins

involved in several different processes, including translational

control and synaptic structure, suggesting that it may play a

substantial role in the consolidation and reconsolidation processes

in the amygdala. These results set the framework for future studies

to examine the complex role of the UPS in long-term memory

formation and stability in amygdala-dependent memory tasks.

Methods

Animals
Male Long Evans rats obtained from Harlan [Madison, WI]

weighing ,300–350 grams served as subjects. All animals were

housed individually in shoebox cages with free access to water and

rat chow. The colony room was maintained under a 14:10-hr

light/dark cycle. Experiments took placed during the light portion

of the cycle. All procedures were approved by the University of

Wisconsin-Milwaukee Institutional Animal Care and Use Com-

mittee (Protocol ID 09-10 #23) and conducted within the ethical

guidelines of the National Institutes of Health.

Surgery
All animals were handled for several days prior to surgery. Rats

that underwent surgery were implanted with bilateral cannulas

aimed at the amygdala [anteroposterior [AP], 22.8; Lateral [L],

+/2 5.0; Ventral [V], 27.2]. Coordinates were chosen based on a

rat brain atlas [38]. Before surgery, each rat was anesthetized with

an intraperitoneal [IP] injection of sodium pentobarbital [1.5 mg/

rat] followed by a second IP injection of ketamine hydrochloride

[100 mg/kg]. Animals were then prepared with bilateral stainless

steel 26-guage cannulas [Plastics One, Roanoke, VA] which were

anchored to the skull using stainless steel screws and acrylic

cement. Obdurators [33 gauge] were inserted into the guide

cannulae to prevent blockage.

After completion of testing, animals were killed with an

intraperitoneal injection of sodium pentobarbital [100 mg/kg].

Animals were transcardially perfused with saline followed by 10%

buffered formalin solution. Heads, with cannulas intact, were

placed in 10% formalin solution for at least 24 h. The brains were

then extracted from the skull and placed in a 20% sucrose formalin

solution until they were ready to section. Frozen sections [40 mm]

were collected throughout the amygdala, mounted on slides, and

stained with cresyl violet. Injection sites were then determined with

the aid of a rat brain atlas [41].

Apparatus
Auditory fear conditioning was conducted in a set of four

Plexiglas and stainless-steel observation chambers [Context A]

housed in sound-attenuating chambers. The floor was comprised

of 18 stainless steel bars 5 mm in diameter spaced 12 mm apart

and connected to a shock generator. Ventilation fans produced

62–64 Db of background noise. Each chamber was equipped with

a speaker centered in the middle of one end of the chamber.

Before testing of each animal, Context A was cleaned with a 5%

ammonium hydroxide solution.

Fear to the auditory conditional stimulus [CS] was tested in

chambers [Context B] that had floors made of Plexiglas. Fans

provided a background noise of ,58 dB. Each chamber was

enclosed in a sound attenuating box and illuminated with a white

light. Before testing of each rat, the chambers in Context B were

wiped down with a 5% acetic acid solution.

Drug preparation and infusion procedure
In all cases, rats received bilateral infusions into the amygdala.

The total volume of the infusion [0.5 ml/side] was given over 60 s,

and the injection cannula remained in place an additional 90 s to

ensure diffusion away from the injector tip. The injection cannulae

were cut to extend approximately 0.5 mm beyond the guide

cannula. Rats were returned to their home cages after infusions.

Anisomycin [ANI; 125 mg/ml] and clasto-lactacystin b-lactone

[blac; 32 ng/ml] [both from Sigma, St. Louis, MO] were dissolved

in 2% DMSO in HCL, diluted in artificial CSF [aCSF]. A small

amount of NaOH was added to bring the pH to ,7.4. Ifenprodil

[Sigma Chemical] was dissolved in DH2O. The dosages used were

1 mg/ml for pre-training infusions and 2 mg/ml for pre-retrieval

infusions. Theses dosages were determined based on prior research

examining fear memory acquisition [28] and retrieval [33] in the

amygdala. blac was prepared as described.

Behavioral Procedures
One week after surgery, animals received 3 days of acclimation

to the transport and handling and injection procedure. Each rat

was gently restrained in a towel for several minutes. During this

time, the infusion pump to be used during the experiment was

activated to habituate the animals to the sound it produces. For

experiments using rats without cannulae, animals received 3 days

of acclimation to only the transport procedure. There were two

training procedures depending upon the experiment. For context

fear conditioning, training involved a 2 min baseline followed by

five shock [1 mA/1s] presentations separated by a 60 s intertrial

interval. After a 2 min postshock period, animals were removed

from the training context [Context A]. For auditory fear

conditioning, training involved a 6-min baseline followed by four

white noise [72dB, 10 s]-shock [1 mA/1s] pairings separated by a

90 s intertrial interval. After a 4 min postshock period, animals

were removed from the training context. For the immediate shock

condition, animals were placed into Context A and immediately

presented with shock and removed. For CS only conditioning,

animals were trained to auditory fear conditioning as described

above except the shocks were omitted.

Memory retrieval for the auditory CS involved placing the

animals in a shifted environment [Context B] and after a 6 min

baseline, the animals were provided with a 32 s non-reinforced

presentation of the white noise that was paired with shock during

training. After a 28 s post-CS period, the animals were removed

from the shifted context. Memory retrieval for the context

involved placing the animals back into the original training

environment [Context A] for 90-sec in the absence of shock. For

the drug infusion experiments, animals were given infusions

immediately following the end of their training or retrieval session.

For posttraining and postretrieval infusions, the animals were

removed from the chamber and immediately brought into an

adjacent room where they received infusions of blac, ANI,

blac+ANI or vehicle. Twenty-four hours later, the animals were
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tested to the auditory and/or context cues. For the auditory test,

rats were placed in Context B and after a 6-min baseline, received

a 5-min CS presentation in the absence of shock. For the context

test, rats were returned to the original conditioning chambers for

8-minutes to assess conditioned fear to the context. Percent time

spent freezing during the tests was the measure of learning.

For experiments examining the effects of NMDA-receptor

inhibition of protein degradation, animals were trained to auditory

fear conditioning as described. For pre-training infusions, animals

were infused with Ifenprodil bilaterally into the amygdala 5–10

min prior to acquisition. Animals were then trained and tissue

collected 60-min later for GST-analysis/immunoblotting. For pre-

retrieval infusions, animals were infused with Ifenprodil bilaterally

into the amygdala 5–10 min prior to retrieval. Animals were given

a retrieval session as described and tissue collected 90-min later for

GST-analysis. For quantification of proteasome-inhibition by blac,

naı̈ve animals with bilateral cannulae aimed at the BLA were

infused with blac or vehicle and tissue collected for GST-analysis/

immunoblotting 10-, 30-, or 60-min later.

Conditional fear responses
The activity of each rat was recorded on digital video, and the

amount of movement was determined by frame-by-frame changes

in pixels using the FreezeScan 1.0 software [Clever Sys, Inc.,

Reston, VA]. The automatic scoring parameters are chosen such

that the scored activity matches hand-scoring methods previously

used in this lab to measure freezing. Analyses used percent time

spent freezing in response to the CS and context.

Criterion for exclusion
Rats were excluded from behavioral experiments only if: 1]

histological confirmation of cannula placement revealed misplaced

cannula on one or both sides of the amygdala or 2] the animals

average freezing level was 2 of more standard deviations from the

group mean.

Whole cell tissue preparation
Amygdala tissue was dissected out by blocking the brain in a rat

brain matrix [Harvard Apparatus, Holliston, MA] and making a

single coronal cut at the anterior tip of the amygdala and one at

the posterior end of the amygdala. Both sides of the whole

amygdala were dissected out from the blocked tissue by making a

cut along the external capsule and a diagonal cut along the optic

tract. The tissue sample was homogenized in buffer [all in 100 ml

DDH20; 0.605 g Tris-HCl, 0.25 g sodium deoxycholate, 0.876 g

NaCl, 0.038 g EDTA, 0.0042 g NaF, 1 mg/ml PMSF, 1 mg/ml

leupeptin, 1 mg/ml aprotinin, 10 ml 10% SDS, 1 Mm sodium

orthovanadate] and immediately placed on dry ice. Samples were

stored at 280uC until needed. Samples were thawed and then

centrifuged at 4000 rpm for 20 min at 4uC; the supernatant was

removed and measured using a Bradford protein assay kit

[BioRad, Hercules, CA].

Synaptosomal membrane preparation
The amygdala was dissected out as described above. Crude

synaptosomal membrane fractions were obtained as described

previously with a small scale modification [42]. Briefly, samples

were homogenized in TEVP with 320 mM sucrose and centri-

fuged at 1000 x g for 10-min, 4uC. The supernatant was collected

and centrifuged at 10,000 x g for 10-min, 4uC. The resulting pellet

was denatured in Lysis buffer [all in 100 ml DDH20; 0.605 g Tris-

HCl, 0.25 g sodium deoxycholate, 0.876 g NaCl, 1 mg/ml PMSF,

1 mg/ml leupeptin, 1 mg/ml aprotinin, 10 ml 10% SDS] and

centrifuged at 15,000 x g for 5-min, 4uC. The supernatant was

collected and measured using a Bradford protein assay kit

[BioRad, Hercules, CA].

GST-Pull Down
For GST-Pull Downs, 25- [synaptosomal] or 50-mg [whole cell]

of each sample were diluted in a TBS Wash Buffer [25 Mm Tris,

75 Mm NaCl, 5% Glycerol, 1% Triton, 1 mg/ml PMSF, 1 mg/ml

aprotinin, pH 7.5]. These diluted samples were then mixed with

GST-S5a agarose [Enzo Life Sciences, Plymouth Meeting, PA,

USA] or an equivalent amount of GST-agarose. Samples were then

incubated for 2hrs at 4uC. Following incubation, samples were

centrifuged at 500 x g and the supernatant collected. All samples

were then extensively washed in TBS Wash Buffer and boiled in

SDS-loading buffer at 95uC for 4-min. Following boiling, samples

were briefly centrifuged at 500 x g and the supernatant collected.

Western Blotting
Samples were loaded on 5–9% SDS-PAGE. Proteins were

transferred from the gel to a membrane using a semidry transfer

apparatus [Bio-Rad]. Membranes were incubated in blocking

buffer for 1-hr and then incubated overnight at 4uC in primary

antibody for ubiquitin, NR2B, [both 1:1000; Cell Signaling,

Danvers, MA, USA], phospho-mTOR, mTOR [both 1:500, Cell

Signaling], phospho-P70S6K, P70S6K, K48 polyubiquitin [all

1:1000, Chemicon], Shank, [1:500; NeuroMab, Irvine, CA, USA]

or MOV10 [1:500; Bethyl Laboratories, Montgomery, TX, USA].

After primary antibody exposure, the membranes were incubated

in secondary antibody [dilution 1:2000 – 1:5000; Santa Cruz

Biotechnology, Santa Cruz, CA, USA] for 60-min. Membranes

were washed thoroughly, placed in a chemiluminescence solution

for 3-min [Santa Cruz Biotechnology], and exposed to autora-

diographic film [Hyperfilm MP]. Images were taken and

densitometry performed using NIH Image J. For ubiquitin, optical

density was taken from all captured proteins along the entire

molecular standards ladder.

Statistical analysis
For behavioral experiments, the average percent time spent

freezing was calculated for each group. For the auditory retrieval

experiment, due to differences in the success of the context shift at

the time of retrieval, the average time spent freezing during the

baseline period was subtracted away from the average time spent

freezing during the CS period for both the retrieval and testing

sessions. This was done to equate groups prior to drug treatment.

For quantitative protein assays, mean optical densities were

calculated for each group. Data was analyzed using Analysis of

Variance [ANOVA]. Fisher Least Significant Differences [LSD]

post hoc testes were used where appropriate.

Supporting Information

Figure S1 Fear conditioning increases the amount of
K48 linked polyubiquitinated proteins. (A) Animals were

presented with either 4 pairings of the auditory cue with shock or 4

presentations of the auditory cue by itself. Only animals receiving

pairings of the stimuli showed fear to the auditory cue (CS-UCS

presentations) and the context (Post CS period). (B) Samples were

ran on 7.5% SDS-PAGE and developed against K48 polyubiqui-

tin. K48 polyubiquitination was increased only 60-min after fear

conditioning. (C, D) There were no changes in total P70S6 kinase

or total mTOR. (E) There were no differences in b-actin, which

was used as a loading control. * denotes p,.05.

(TIF)
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Figure S2 Antibody recognizes a distinct band for Shank
at ,160 kDa. 50 mg of amygdala whole cell lysate was loaded on

5% gels and exposed to an antibody against Shank. The antibody

recognized a distinct band at 160kDa (Shank 1), as well as some

alternative splicing products.

(TIF)

Figure S3 blac results in a rapid and persistent
accumulation of polyubiquitinated proteins. Naı̈ve ani-

mals were infused with blac into the amygdala and tissue collected

10- (n = 6), 30- (n = 6) or 60-min (n = 6) later. Separate animals

were infused with vehicle (n = 6). (A) Samples were purified with

GST-S5a. blac resulted in a rapid and persistent accumulation of

polyubiquitinated proteins in the amygdala (F(3, 21) = 5.876,

p = .004), suggesting effective inhibition of proteasome activity.

(B) Much of this protein accumulation was due to inhibited

degradation of K48-linked polyubiquitinated proteins (F(3, 21)

= 4.576, P = .013). * denotes p,.05 from Vehicle controls.

(TIF)

Figure S4 Synaptic protein degradation is increased
following fear memory retrieval. Animals were trained with

auditory or context fear conditioning and amygdala tissue

collected 60- or 90-min later. Tissue was fractionated to obtain

a crude synaptosomal membrane sample and these fractions were

then purified with GST-S5a. A main effect for group was found for

the amount of polyubiquitination following retrieval (F(2, 29)

= 3.459, p = .045). * denotes p,.05 from No React controls.

(TIF)

Acknowledgments

We would like to thank Mary Lonergan and Dr. Ava Udvadia for technical

assistance. We would also like to thank NeuroMab for the Shank antibody.

Author Contributions

Conceived and designed the experiments: TJ FH. Performed the

experiments: TJ CW JK. Analyzed the data: TJ FH. Wrote the paper:

TJ FH.

References

1. Davis HP, Squire LR (1984) Protein synthesis and memory: a review. Psycho
Bull 96(3): 518–559.

2. Bailey DJ, Kim JJ, Sun W, Thompson RF, Helmstetter FJ (1999) Acquisition of
fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behav

Neurosci 113(2): 276–282.

3. Parsons RG, Gafford GM, Baruch DE, Riedner BA, Helmstetter FJ (2006)
Long-term stability of fear memory depends on the synthesis of protein but not

mRNA in the amygdala. Eur J Neurosci 23: 1853–1859.
4. Schafe GE, LeDoux JE (2000) Memory consolidation of auditory pavlovian fear

conditioning requires protein synthesis and protein kinase A in the amygdala.

J Neurosci 20(RC96): 1–5.
5. Helmstetter FJ, Parsons RG, Gafford GM (2008) Macromolecular synthesis,

distributed synaptic plasticity, and fear conditioning. Neurobiol Learn Mem
89(3): 324–337.

6. McGaugh JL (2000) Memory—a century of consolidation. Science 287:
248–251.

7. Lee JLC (2008) Memory reconsolidation mediates the strengthening of memory

by additional learning. Nat Neurosci 11: 1264–1266.
8. Nader K, Schafe GE, LeDoux JE (2000) Fear memories require protein synthesis

in the amygdala for reconsolidation following retrieval. Nature 406: 722–726.
9. Sara SJ (2000) Retrieval and reconsolidation: towards a neurobiology of

remembering. Learn Mem 7(2): 73–84.

10. Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian
fear conditioning occurs in the basolateral amygdala. Neuron 23(2): 229–232.

11. Tronson NC, Taylor JR (2007) Molecular Mechanisms of Reconsolidation. Nat
Rev Neurosci 8: 1–14.

12. Parsons RG, Gafford GM, Helmstetter FJ (2006) Translational control via the
mammalian target of rapamycin pathway is critical for the formation and

stability of long-term fear memory in amygdala neurons. J Neurosci 26(50):

12977–12983.
13. Hershko A, Ciechanover A (1998) The Ubiquitin System. Annu Rev Biochem

67: 425–479.
14. Layfield R, Tooth D, Landon M, Dawson S, Mayer J, et al. (2001) Purification

of poly-ubiquitinated proteins by S5a-affinity chromatography. Proteomics 1(6):

773–777.
15. Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J (2010) Assembly,

structure and function of the 26S proteasome. Trends Cell Biol 20(7): 391–401.
16. Ehlers MD (2003) Activity level controls postsynaptic composition and signaling

via the ubiquitin-proteasome system. Nat Neurosci 6(3): 231–242.

17. Hegde, AN (2010) The ubiquitin-proteasome pathway and synaptic plasticity.
Learn Mem 17: 314–327.

18. Mabb AM, Ehlers MD (2010) Ubiquitination in postsynaptic function and
plasticity. Annu Rev Cell Dev Biol 26: 179–210.

19. Tai HC, Schuman EM (2008) Ubiquitin, the proteasome and protein
degradation in neuronal function and dysfunction. Nat Rev Neurosci 9(11):

826–838.

20. Bingol B, Sheng M (2010) Deconstruction for reconstruction: the role of
proteolysis in neural plasticity and disease. Neuron 69(1): 22–32.

21. Banerjee S, Neveu P, Kosik KS (2009) A coordinated local translational control
point at the synapse involving relief from silencing and MOV10 degradation.

Neuron 64(6): 871–884.

22. Lee S-H, Choi J-H, Lee N, Lee H-R, Kim J-I, et al. (2008) Synaptic protein
degradation underlies destabilization of retrieved fear memory. Science 319:

1253–1256.

23. Lopez-Salon M, Alonso M, Vianna MR, Viola H, Mello e Souza T, et al. (2001)

The ubiquitin-proteasome cascade is required for mammalian long-term

memory formation. Eur J Neurosci 14(11): 1820–1826.

24. Ostroff LE, Cain CK, Bedont J, Monfils MH, LeDoux JE (2010) Fear and safety

learning differentially affect synapse size and dendritic translation in the lateral

amygdala. Proc Natl Acad Sci U S A 107(20): 9418–9423.

25. Bingol B, Wang CF, Arnott D, Cheng D, Peng J, et al. (2010) Autopho-

sphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic

spines. Cell 140(4): 567–578.

26. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, et al. (2008)

Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies.

Cell 134(4): 668–678.

27. Wang Q, Young P, Walters KJ (2005) Structure of S5a bound to monoubiquitin

provides a model for polyubiquitin recognition. J Mol Biol 348(3): 727–739.

28. Rodrigues SM, Schafe GE, LeDoux JE (2001) Intra-amygdala blockade of the
NR2B subunit of the NMDA receptor disrupts the acquisition but not the

expression of fear conditioning. J Neurosci 21(17): 6889–6896.

29. Bingol B, Schuman EM (2006) Activity-dependent dynamics and sequestration

of proteasomes in dendritic spines. Nature 441: 1144–1148.

30. Rinetti GV, Schweizer FE (2010) Ubiquitination acutely regulates presynaptic
neurotransmitter release in mammalian neurons. J Neurosci 30(9): 3157–3166.

31. Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV (2006) A balance

of protein synthesis and proteasome-dependent degradation determines the
maintenance of LTP. Neuron 52: 239–245.

32. Mamiya N, Fukushima H, Suzuki A, Matsuyama Z, Homma S, et al. (2009)

Brain region-specific gene expression activation required for reconsolidation and
extinction of contextual fear memory. J Neurosci 29(2): 402–413.

33. Mamou CB, Gamache K, Nader K (2006) NMDA receptors are critical for

unleasing consolidated auditory fear memories. Nat Neurosci 9(10): 1237–1239.

34. Wang SH, de Oliveira Alvares L, Nader K (2009) Cellular and systems

mechanisms of memory strength as a constraint on auditory fear reconsolidation.

Nat Neurosci 12(7): 905–912.

35. Artinian J, McGauran AM, De Jaeger X, Mouledous L, Frances B, et al. (2008)

Protein degradation, as with protein synthesis, is required not only during long-

term spatial memory consolidation but also reconsolidation. Eur J Neurosci
27(11): 3009–3019.

36. Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for

hippocampal memory consolidation and reconsolidation. Science 304: 839–843.

37. Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear.

Science 256(5057): 675–677.

38. Phillips RG, LeDoux JE (1992) Differential contribution of the amygdala and
hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):

274–285.

39. Romanski LM, LeDoux JE (1992) Equipotentiality of thalamo-amygdala and
thalamo-cortico-amygdala circuits in auditory fear conditioning. J Neurosci

12(11): 4501–4509.

40. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:
155–184.

41. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates: Edition 4.

San Diego: Academic.

42. Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking

of Striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci

21(15): 5546–5558.

Protein Degradation and Fear Memory

PLoS ONE | www.plosone.org 12 September 2011 | Volume 6 | Issue 9 | e24349


