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Abstract

Functional mapping has been a powerful tool in mapping quantitative trait loci (QTL) underlying dynamic traits of
agricultural or biomedical interest. In functional mapping, multivariate normality is often assumed for the underlying data
distribution, partially due to the ease of parameter estimation. The normality assumption however could be easily violated
in real applications due to various reasons such as heavy tails or extreme observations. Departure from normality has
negative effect on testing power and inference for QTL identification. In this work, we relax the normality assumption and
propose a robust multivariate t-distribution mapping framework for QTL identification in functional mapping. Simulation
studies show increased mapping power and precision with the t distribution than that of a normal distribution. The utility of
the method is demonstrated through a real data analysis.
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Introduction

Since the seminal work of interval mapping [1], quantitative

trait loci (QTL) mapping with molecular markers has been a

standard means in targeting genetic regions harboring potential

genes of interest underlying various traits of interest in biomedical

and agricultural research. TL mapping originated for single trait

analysis, then later was considered for multiple traits for the

improvement of mapping precision and power (e.g., [2]). When a

trait is measured through many developmental stages, e.g., body

height measured over many time points, the trait reveals the

dynamic expression of the underlying genes that are associated

with the trait. These traits, which can be expressed as a function of

time, were termed ‘‘function-valued traits’’ by Pletcher and Geyer

[3] or ‘‘infinite-dimensional characters’’ by Kirkpatrick and

Heckman [4]. Mapping QTLs or genes underlying the dynamics

of a developmental characteristic has been a longstanding

challenging topic in genetic mapping. Recently, Wu and his

colleagues (e.g., [4–6]) have developed a series of mapping

approaches for dynamic traits by integrating mathematical

functions into a QTL mapping framework, opening a new era

for genetic mapping. The so-called functional mapping approach

enables one to propose either parametric or non-parametric

functions to model the developmental mean function of a dynamic

trait. By testing mean differences for different QTL genotype

categories in a genome-wide linkage scan, one can identify

potential genes that govern the dynamics of a trait.

In general, functional mapping assumes a joint multivariate

normal distribution of a developmental trait. The mean of the

multivariate normal is modeled through functions of time, and

trait correlations among different developmental stages are fully

considered. These treatments make functional mapping more

powerful than single trait analysis for a developmental trait [4].

The multivariate normality assumption is commonly assumed for

all the methods developed for functional mapping in the literature.

In real data analysis, this assumption could be easily violated as in

the case for single trait analysis [8]. In a single trait analysis, von

Rohr and Hoeschele [8] showed that deviations from normality

may lead to false positive QTL detection. The authors proposed to

replace the normality assumption with the t-distribution to allow

for heavy tails and skewness of a trait distribution. In human

linkage analysis with the variance components model, Peng and

Siegmund [9] also showed that departure from multivariate

normality for the trait vector could dramatically reduce the

mapping power when multivariate normality is assumed. As an

alternative, the authors proposed to substitute the multivariate

normal with a multivariate t-distribution and showed great power

improvement.

For a developmental trait, the multivariate normality assump-

tion is often a concern, especially for a small sample size. For many

applied problems, the tails of the data distribution are often longer

than a normal distribution assumes. In the presence of extreme

observations, statistical inference based on the normal distribution

is less robust. This could lead to low power or false positives under

a functional mapping framework. The lack of robustness with

respect to outliers and heavy tails that results from using a

Gaussian model makes the multivariate t-distribution a powerful

alternative.

In this work, we relax the multivariate normality assumption in

functional mapping and propose a robust multivariate t-distribu-

tion for the error terms. The proposed method is implemented in a

mapping framework that is different from Peng and Siegmund’s
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treatment [9]. A mixture multivariate t-distribution is proposed

and an expectation-maximization (EM) algorithm is derived to

estimate various parameters of interests. To make the method

more flexible for any developmental traits, a non-parametric B-

spline technique is incorporated to model the developmental mean

function. An antedependence covariance model is applied to

model the non-stationary covariance structure [10]. Extensive

simulations are conducted to evaluate the model performance.

The utility of the method is demonstrated by reanalyzing a real

data set for the purpose of identify genes underlying the variation

of rice tiller numbers.

Methods

The mixture model and the multivariate t likelihood
function

Consider a backcross design initiated with two inbreed lines

with contrasting phenotypic difference. A genetic linkage map can

be constructed with molecular markers. Suppose there is a putative

segregating QTL, with alleles Q and q, that affects the trait of

interest, but by different degrees. For a backcross population with

n observations, each one is measured over p time points. The

phenotypic vector y~½y(t1), � � � ,y(tp)�T follows a multivariate

distribution with a density function f (y; y,g), where y and g
denote location and scale parameters.

In a QTL mapping study, the location and QTL genotype are

generally unobservable. Suppose the QTL genotypes contributing

to the variation of a dynamic quantitative trait are QQ and Qq.

This missing data problem can be overcome by modeling the

observed phenotypic data with a finite mixture model

yi*p(yi; yj ,g)~pij0f0(yi; y0,g)zpij1f1(yi; y1,g)

where fj(yi; yj ,g) is the probability density function with the location

parameters yj corresponding to QTL genotype j (~1 for QQ and

~0 for Qq); g contains the scale parameters common to all

components; and pijj is the mixture proportion of individual i given

the QTL genotype j. For a backcross design, the mixture proportions

can be obtained via the conditional probabilities of QTL genotypes

given the flanking marker in a standard backcross design [11].

As we mentioned in section Introduction, multivariate normal-

ity is a general concern in functional mapping when extreme

observations or heavy tails are observed. To make the functional

mapping more flexible, we assume the multivariate t distribution

for y. The multivariate t density function for individual i given

genotype j is given by

fj(yi; Vj)~
C

njzp

2

� �
jSj j{1=2

(pnj)
p=2C(nj=2)½1zd(yi,mj ; Sj)=nj �(njzp)=2

ð1Þ

where for genotype j ( = 0, 1), mj~½mj(t1), . . . ,mj(tp)� denotes the

mean vector, Sj is a positive definite covariance matrix, nj is the

degree of freedom, and Vj~(mj ,Sj ,nj) contains all the parameter

of interest corresponding to genotype j. The Mahalanobis distance

between yi and mj with respect to Sj is denoted as

d(yi; mj ,Sj)~(yi{mj)
0
S{1

j (yi{mj)

At a specific time point t, the relationship between the

observation and the mean can be expressed by a linear model

yi(t)~cim1(t)z(1{ci)m0(t)zei(t) ð2Þ

where ci~0 or 1 if the QTL genotype is Qq or QQ, respectively;

and ei(t) is the error term following a t distribution with

mean zero and variance s2(t). The errors at two different time

points t1 and t2, are correlated with correlation coefficient

r(t1,t2).

Assuming independence among individuals, the joint likelihood

function can be expressed as

L(V)~ P
n

i~1
½pij0f0(yijV0)zpij1f1(yijV1)� ð3Þ

where pijj~P(cijj~1), and pij0+pij1~1. The unknown param-

eter vector V consists of two sets of parameters. One set, denoted

as Vl , determines the locations of the QTL with respect to

markers; and the other set, denoted as Vg~(Vm,Vc,Vn),

determines the multivariate t distribution of the trait corre-

sponding to each QTL genotype, where Vm, Vc and Vu define

the mean vectors, the covariance matrices and the degree of

freedom.

Modeling the dynamic mean function
One of the challenges in functional mapping lies in the

complexity of the developmental pattern as well as the intra-

individual variation of a longitudinal trait. Rather than estimating

the discrete means at p time points, functional mapping treats a

developmental trait as a dynamic process which is fitted by a

continuous function [7]. For a typical growth trait, a parametric

logistic function would fit most data well [12] and it has been

broadly applied in many applications (e.g., [5,13]). For other

developmental characteristics such as a process that experiences

programmed cell death, it is infeasible to find a mathematic

function to describe the process, thus a joint modeling approach

may be an option (e.g., [14]). Legendre polynomials have been

shown to be useful in modeling irregular developmental processes

(e.g., [15,16]). With recent statistical advances in nonparametric

regression, a natural and flexible way to model an irregular

developmental process is in a nonparametric fashion in which the

data specify the best fit [17].

Here we adopt a nonparametric B-spline technique to model

the time-dependent mean function. As aforementioned, the

phenotype values are recorded at p time points, denoted as

t1ƒt2ƒ . . . ƒtp. At a particular time point t�, we can fit the

dynamic genotypic means corresponding to the QTL genotypes

QQ and Qq by using B-spline functions with different orders.

Denote the B-spline basis function in a matrix as B which can be

defined by the degree and the order of a piecewise polynomial. For

the uniform quadratic B-spline with mth order, the basis matrix is

expressed as

B(t�)~½B0(t�),B1(t�),:::Bm{1(t�)�’

A column vector of the basis matrix B(t�) is called a base function.

For the two QTL genotypes QQ and Qq (corresponding to j~1
and 0 respectively), the base genotypic vector is expressed as

jj~½jj0,jj1,:::jj(m{1)�’. The vector contains the coefficients to be

estimated for genotype j. The B-spline function depends on the

observed time points, the number and the relative positions of the

knots. The criteria to determine the knots are open to discussion

[17]. For the real data analyzed in this study, equidistantly

distributed inner knots are selected since the rice tiller numbers are

Functional Mapping with Robust t-distribution
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observed with the same duration (10 days). Around p
2

� �
inner knots

should be selected, as suggested in Yang et al [17]. We choose 3

evenly distributed knots and with this representation, the dynamic

genotypic mean at time t, mj(t), can be estimated by mj(t)~jj

0
B(t).

It is shown later on simulation study that the estimation on the

mean curves is satisfactory. This serves as a credential for our

choice. Further investigation also indicates that the estimation are

not sensitive to various spline bases.

Modeling the covariance function
Though nonparametric modeling of the time-dependent mean

functions has been extensively studied, research on the modeling

of the covariance structures via non-parametric approaches is

rarely reported due to various difficulties [18]. In the original

functional mapping [5], a stationary covariance function such as

the first-order autoregressive (AR(1)) model was applied. Struc-

tured antedependence (SAD) model was later on adopted in

functional mapping [19] for the purpose of relaxing the

stationarity assumption. The SAD model is a non-stationary

model which has been applied in many studies [20]. The SAD

model with order r for modeling the error term in Eq. (2) is

denoted by

ei(t)~w1ei(t{1)z � � �zwrei(t{r)z i(t) ð4Þ

where i(t) is the ‘‘innovation’’ term assumed to be independent

and distributed as N (0,s2
t ); and wk (k~1, � � � ,r) are the

antedependence coefficients. Therefore, the variance-covariance

matrix of the a developmental process can be expressed as

S~QS QT, ð5Þ

where Se~diagfs2
1,s2

2, . . . ,s2
pg is a diagonal matrix. For the first-

order SAD or SAD(1) model, the matrix Q can be expressed as

Q~

1 0 0 0

w 1 0 0

..

.
P

wp{1 wp{2 � � � w 1

0
BBBBBBBBB@

1
CCCCCCCCCA

In general, the SAD order r can be selected through an

information criterion (see [19]). Since the purpose of this study is

not to compare the performance of various modeling approaches

for the covariance structure, we simply adopt the SAD(1) function

due to its non-stationarity property and simplicity.

Parameter estimation
The Expectation-Maximization (EM) algorithm, originally

proposed by Dempster et al. [21], was applied to obtain the

maximum likelihood estimates (MLEs) of the unknown parameters

contained in Vg~(Vm,Vc,Vn). The detailed algorithm is given in

the Appendix S1. Note that the QTL position is generally

considered as an unknown parameter which can be estimated

Table 1. The MLEs and standard errors (in the parenthesis) of the model parameters and the QTL position derived from 100
simulation replicates.

H2 = 0.1 H2 = 0.4

True Parameters n = 100 n = 400 n = 100 n = 400

QTL position

l = 48 48.02(7.06) 48.14(2.19) 47.42(2.94) 47.6(1.53)

Mean Parameters for Qq

j00 = 1.234 1.211(0.14) 1.214(0.06) 1.212(0.06) 1.209(0.03)

j01 = 7.708 7.409(0.27) 7.364(0.15) 7.429(0.13) 7.452(0.08)

j02 = 10.628 11.436(0.37) 11.433(0.20) 11.283(0.32) 11.248(0.16)

j03 = 6.094 6.521(0.36) 6.461(0.22) 6.384(0.22) 6.397(0.11)

j04 = 6.294 6.652(0.36) 6.600(0.18) 6.530(0.19) 6.531(0.09)

Mean Parameters for QQ

j10 = 1.146 1.191(0.14) 1.173(0.07) 1.176(0.06) 1.165(0.03)

j11 = 6.674 7.017(0.32) 6.989(0.14) 6.925(0.16) 6.929(0.07)

j12 = 13.214 12.411(0.44) 12.419(0.20) 12.609(0.26) 12.564(0.13)

j13 = 7.345 6.935(0.42) 6.965(0.17) 7.037(0.18) 7.026(0.10)

j14 = 7.290 6.957(0.39) 6.998(0.17) 7.047(0.18) 7.036(0.10)

Covariance parameters

w = 0.95 0.948(0.02) 0.948(0.01) 0.945(0.02) 0.946(0.01)

s s0:1 = 0.923 s0:4 = 0.154

0.997(0.11) 1.007(0.04) 0.217(0.03) 0.220(0.01)

Degree of freedom

n = 3 3.361(0.59) 3.203(0.25) 3.783(0.75) 3.786(0.42)

Data were simulated and analyzed with the proposed mixture multivariate t model (MVTT).
doi:10.1371/journal.pone.0024902.t001

Functional Mapping with Robust t-distribution
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Table 2. The MLEs and standard errors (in the parenthesis) of the model parameters and the QTL position derived from 100
simulation replicates.

H2 = 0.1 H2 = 0.4

True Parameters n = 100 n = 400 n = 100 n = 400

QTL position

l = 48 46.28(5.41) 48(1.75) 48.4(2.43) 48.04(1.36)

Mean Parameters for Qq

j00 = 1.267 1.239(0.13) 1.225(0.07) 1.238(0.05) 1.23(0.03)

j01 = 8.056 7.657(0.25) 7.667(0.12) 7.691(0.13) 7.67(0.06)

j02 = 10.951 11.799(0.38) 11.782(0.17) 11.792(0.23) 11.825(0.11)

j03 = 6.314 6.684(0.34) 6.700(0.19) 6.709(0.18) 6.722(0.07)

j04 = 6.492 6.757(0.32) 6.785(0.19) 6.786(0.17) 6.796(0.07)

Mean Parameters for QQ

j10 = 1.169 1.212(0.13) 1.193(0.07) 1.209(0.05) 1.198(0.03)

j11 = 6.904 7.361(0.26) 7.279(0.13) 7.286(0.12) 7.269(0.06)

j12 = 13.604 12.716(0.35) 12.733(0.17) 12.804(0.20) 12.766(0.10)

j13 = 7.571 7.211(0.38) 7.180(0.18) 7.203(0.18) 7.181(0.08)

j14 = 7.425 7.132(0.37) 7.146(0.16) 7.144(0.16) 7.133(0.08)

Covariance parameters

w = 0.95 0.945(0.02) 0.946(0.01) 0.940(0.01) 0.939(0.01)

s s0:1 = 0.916 s0:4 = 0.153

0.971(0.05) 0.983(0.02) 0.219(0.01) 0.222(0.01)

Data were simulated and analyzed with a mixture multivariate normal model (MVNN).
doi:10.1371/journal.pone.0024902.t002

Table 3. The MLEs and standard errors (in the parenthesis) of the model parameters and the QTL position derived from 100
simulation replicates.

H2 = 0.1 H2 = 0.4

True Parameters n = 100 n = 400 n = 100 n = 400

QTL position

l = 48 47.84(11.22) 47.16(3.83) 47.98(5.17) 48.12(1.55)

Mean Parameters for Qq

j00 = 1.234 1.259(0.23) 1.227(0.12) 1.209(0.10) 1.213(0.04)

j01 = 7.708 7.458(0.41) 7.343(0.21) 7.383(0.18) 7.370(0.09)

j02 = 10.628 11.461(0.56) 11.466(0.29) 11.469(0.31) 11.470(0.14)

j03 = 6.094 6.550(0.61) 6.481(0.29) 6.520(0.23) 6.517(0.14)

j04 = 6.294 6.659(0.59) 6.593(0.27) 6.661(0.24) 6.625(0.13)

Mean Parameters for QQ

j10 = 1.146 1.203(0.23) 1.196(0.12) 1.170(0.17) 1.175(0.04)

j11 = 6.674 6.996(0.43) 7.017(0.22) 7.025(0.20) 7.011(0.09)

j12 = 13.214 12.340(0.61) 12.397(0.30) 12.393(0.31) 12.369(0.14)

j13 = 7.345 6.895(0.70) 6.930(0.33) 6.926(0.27) 6.907(0.14)

j14 = 7.290 6.958(0.68) 6.954(0.32) 6.963(0.26) 6.942(0.13)

Covariance parameters

w = 0.95 0.948(0.05) 0.946(0.03) 0.944(0.036) 0.945(0.02)

s s0:1 = 0.923 s0:4 = 0.154

2.575(0.92) 2.662(0.48) 0.542(0.61) 0.520(0.10)

Data were simulated with the proposed mixture multivariate t model, but analyzed with the mixture multivariate normal model (MVTN).
doi:10.1371/journal.pone.0024902.t003

Functional Mapping with Robust t-distribution
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together with other mean and variance parameters. This,

however, could dramatically increase the complexity of an

estimation algorithm. As commonly treated in QTL mapping

studies, we do not directly estimate the QTL-segregating

parameters. Instead, we use a grid search approach to estimate

the QTL location by searching for a putative QTL at every 1 or

2cM on an interval bracketed by two flanking markers. This

linkage scan is done for the entire linkage map. The log-likelihood

ratio test statistic for a QTL at a testing position is displayed

graphically, to generate a log-likelihood ratio plot called the LR

profile plot. The genomic position corresponding to a peak of the

profile is the MLE of the QTL location.

Hypothesis testing
Once the MLEs of parameters are obtained at each testing

position, we are interested in testing whether there exists a QTL at

a marker interval that governs the developmental process. The

hypotheses for such a test can be formulated by

H0 : Vm0~Vm1

H1 : the above equality does not hold

�
ð6Þ

The null hypothesis H0 states that the data can be fitted by only

one curve in the reduced model, while the alternative hypothesis

H1 states that there exist two different curves to fit the data in the

full model. The likelihood ratio test (LRT) has been the standard

test in testing the QTL effect. Denote V̂V0 and V̂V1 as the MLEs of

the unknown poarameters under H0 and H1, respectively. The

LRT test statistic can be computed as the log-likelihood ratio of

the reduced model to the full model, i.e., LR~{2½logL(V̂V0){

logL(V̂V1)�. The genome-wide significance threshold can be

determined through an empirical approach based on permutation

tests proposed by Churchill and Doerge [22].

Following the overall genetic test described above, we can

further test if a QTL triggers an effect on a certain time interval

½t1,t2� using a regional test approach based on the areas under the

curve (AUC). The hypothesis for such a test can be formulated as

H0 : AUC1~AUC0

H1 : AUC1=AUC0,

�
ð7Þ

where AUCj for genotype j is calculated as AUCj~
Ð t

2’
t
1’

jj

0
B(t)dt.

The significance of the test can be assessed through permutation

tests [22].

Results

Simulation
We simulated a backcross population with a 100cM long

linkage group, composed of 6 equidistant markers, under the

assumption that QTL governs the whole developmental process. A

putative QTL that affects a developmental process was assumed to

be located 48cM away from the first marker on the linkage group,

in between the 3rd and 4th markers. The Haldane map function

was used to convert the map distance into the recombination

fraction. A developmental trait with 9 equally spaced time points

was generated under various combinations of heritability levels

Table 4. The MLEs and standard errors (in the parenthesis) of the model parameters and the QTL position derived from 100
simulation replicates.

H2 = 0.1 H2 = 0.4

True Parameters n = 100 n = 400 n = 100 n = 400

QTL position

l = 48 48.3(4.05) 48.24(1.93) 48.1(2.69) 47.9(1.34)

Mean Parameters for Qq

j00 = 1.267 1.233(0.15) 1.248(0.07) 1.246(0.06) 1.236(0.03)

j01 = 8.056 7.685(0.26) 7.704(0.13) 7.721(0.15) 7.712(0.08)

j02 = 10.951 11.798(0.38) 11.799(0.17) 11.730(0.26) 11.740(0.14)

j03 = 6.314 6.692(0.40) 6.731(0.18) 6.698(0.18) 6.685(0.09)

j04 = 6.492 6.734(0.38) 6.800(0.17) 6.779(0.16) 6.766(0.08)

Mean Parameters for QQ

j10 = 1.169 1.220(0.14) 1.193(0.07) 1.204(0.06) 1.196(0.03)

j11 = 6.904 7.312(0.26) 7.255(0.13) 7.266(0.13) 7.254(0.07)

j12 = 13.604 12.740(0.36) 12.737(0.18) 12.810(0.25) 12.796(0.13)

j13 = 7.571 7.192(0.37) 7.157(0.16) 7.201(0.17) 7.193(0.09)

j14 = 7.425 7.151(0.35) 7.120(0.15) 7.149(0.15) 7.142(0.09)

Covariance parameters

w = 0.95 0.946(0.02) 0.947(0.01) 0.939(0.01) 0.940(0.01)

s s0:1 = 0.916 s0:4 = 0.153

0.959(0.05) 0.969(0.02) 0.209(0.01) 0.212(0.01)

Degree of freedom

n 190.416(107.47) 206.02(97.05) 94.466(90.36) 75.988(70.40)

Data were simulated with a mixture multivariate normal model, but analyzed with the proposed mixture multivariate t model (MVNT).
doi:10.1371/journal.pone.0024902.t004

Functional Mapping with Robust t-distribution
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(H2 = 0.1 vs 0.4) and sample sizes (n = 100 vs 400). The covariance

was simulated assuming a first-order SAD structure.

In the simulation, we evaluated how well the parameters (including

the QTL position as well as the mean and covariance parameters) can

be estimated, how robust the multivariate t statistic is when data

generate from a multivariate normal, and how poor the performance

of multivariate mixture normal will be if the model is misspecified.

Several simulation scenarios were considered. Tables 1 and 2 list the

results assuming that the data generating and data analyzing models

were the same. Tables 3 and 4 list the results assuming the data

generating and analyzing models were not the same. In all simulation

scenarios, we observed that increases in sample size and heritability

always lead to more accurate parameter estimations. For example, in

Table 1, the standard error for the mean parameter j00 of genotype

Qq reduces from 0.14 to 0.06 while the sample size increases from

100 to 400 under a heritability level of 0.1. Meanwhile, given a

sample size 400, the standard error decreases from 0.06 to 0.03 as H2

increases from 0.1 to 0.4, a two-fold decrease.

For a multivariate t distribution, the degree of freedom (n)

controls the shape of the distribution. A small value for n indicates

that the normal assumption might be inappropriate for the data.

Assuming n~3, we simulated data assuming a multivariate t
distribution. Table 1 (denoted as MVTT) shows that the parameters

can be reasonably estimated with good precision. When both

sample size and heritability level increase, the precision for the QTL

position estimation is improved with reduced standard error. The

same simulated data were further analyzed assuming a multivariate

normal distribution for the error term. The results are tabulated in

Table 3 (denoted as MVTN). It is clear that when the error

distribution is misspecified, large standard errors were observed for

all the parameters. In particular, the QTL position is poorly

estimated with large standard errors under a small sample size and

low heritability level. For example, the standard error increases

from 2.94 to 5.17 under n~100 and H2~0:4, when data were

analyzed with the proposed and the multivariate normal model.

Under a small sample size, the multivariate t distribution is more

robust than a multivariate normal.

Next we simulated data under the multivariate normal

assumption and analyzed the data with the corresponding data

generating model (denoted as MVNN) and the proposed t
distribution model (denoted as MVNT). We used the results in

Table 2 as a reference to compare the performance of the

multivariate t model in Table 4, since the results in Table 2 was

obtained with the true model. Under a small sample size (n~100)

and low heritability level (H2~0:1), not surprisingly the results

with the multivariate t model are better for the multivariate

normal model. For example, the standard error for the QTL

position estimate is 4.35 in MVNT, while it is 5.41 in MVNN.

Moreover, the bias in MVNN is also larger (1.72 vs 0.3). This

result demonstrates the robustness of the t modeling under small

samples. As sample size and heritability level increase, the results

are very comparable. In real applications, due to various source of

noise and for better estimation of the QTL position, a safe strategy

is to apply the mixture multivariate t model in functional mapping.

Figure 1. The LR profile plots averaged over 100 simulation replicates under different sample sizes (100 and 400) and heritability
levels (0.1 and 0.4). The arrow sign indicates the simulated true QTL position.
doi:10.1371/journal.pone.0024902.g001
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In functional mapping, the likelihood ratio (LR) statistic is used

as the indicator of a QTL signal. The larger the LR value at a

genomic position, the stronger the evidence of a QTL at that

position. The LR test statistics for the above four scenarios are also

compared across the simulated genetic linkage group, averaged

over 100 simulation replicates. Figure 1 explicitly displays the

difference in LR values under the different combinations of sample

size and heritability level. When data were generated assuming a

multivariate normal distribution, the results obtained with the t
model (dashed curve) are very similar to those obtained with the

normal model (solid curve). However, when data were generated

assuming the multivariate t distribution, the t model (dotted curve)

clearly outperforms the normal model (dash-dotted curve). This

evidence indicates the superiority and robustness of the multivar-

iate t mixture model in functional mapping.

A case study
We applied the method to a real data set to identify QTLs

governing the variation of rice tiller number development to show

the utility of the approach. A detailed description of the data can

be found in Huang et al. [23] and Yan et al. [24]. In brief, semi-

dwarf IR64 and tall Azucena, two inbred lines, were crossed to

generate an F1 progeny population. A doubled haploid (DH)

population of 123 lines was constructed through doubling haploid

chromosomes of the F1 gametes. For this population, 40 isozyme

and RAPD markers, and 135 RFLP markers were genotyped to

construct a genetic linkage map of length 2005cM covering 12 rice

chromosomes. Tiller numbers were measured every 10 days from

10 days after transplanting until all lines had headed. Nine

developmental measurements were recorded for each rice. A plot

of the original data can be found in Fig. 2 of Cui et al. [14].

We performed a genome-wide linkage scan at every 2cM interval

to locate potential QTLs that trigger effects for the programmed cell

death of rice tillers. Figure 2 shows the genom-wide log-likelihood

ratio profile plots, where the results obtained with the multivariate t
and the multivariate normal models are indicated by the solid and

dashed curves, respectively, with the respective 5% genom-wide

permutation threshold indicated by the horizontal solid and dashed

lines (obtained with 1,000 permutations). The plot indicates one

QTL located in chromosome 3 between marker RZ519 and

Pgi{1. The QTL was also reported in our previous analysis

[14,15]. The other peaks did not pass the genome-wide significance

threshold. A test of multivariate normality for the phenotype data

without considering the marker data shows evidence of departure

from normality, indicating that a multivariate t model may be more

appropriate for the data. The LR values for the two models across

the 12 chromosomes are very comparable, with the multivariate t
model generating slightly higher LR values in many positions.

The estimated QTL position on chromosome 3 and the

corresponding marker interval as well as the MLEs of the model

parameters are tabulated in Table 5. The tiller number develop-

mental trajectories of the detected QTL are shown in Figure 3, with

tiller number trajectories for all individuals indicated in the

background. The gap between the two trajectories over the

developmental stages is quite clear, indicating a developmental

mean difference in tiller number between individuals carrying the

Figure 2. The LR profile plot across the 12 rice chromosomes, fitted with the proposed multivariate t mixture model (solid curve)
and a multivariate normal mixture model (dash-dotted curve). The genomic position corresponding to the peak of the curve is the MLE of
the QTL location (indicated by the arrows). The 5% genome-wide threshold value for claiming the existence of a QTL is given as the horizonal dotted
and dash-dotted lines for the two models. The marker positions on the linkage groups are indicated as ticks [23].
doi:10.1371/journal.pone.0024902.g002
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two different genotypes. Individuals carrying genotype QQ have

high mean tiller numbers during the observed developmental stage,

hence are preferable for selection in breeding.

Discussion

Functional mapping has been shown to be a powerful approach

and also a standard means in mapping QTLs underlying the

dynamics of quantitative traits [7]. However, most current

methods in functional mapping assume a multivariate normal

distribution for the time-course error term, which could be easily

violated in reality. In this work, we extended the current functional

mapping approach assuming a robust multivariate t distribution

for the error term, built upon the maximum likelihood framework

while implemented with a full EM algorithm to estimate the model

parameters. Extensive simulations show that the proposed model

outperforms the mixture multivariate normal model when the

underlying distribution is from a multivariate t distribution. Even if

the underlying distribution is normal, the proposed t modeling

approach performs as well or even better than the normal model

(especially under a small sample size). Given its robustness, the

proposed t model should be adopted in a regular functional

mapping study, especially when the sample size is small.

In the original functional mapping study, a developmental mean

process is generally modeled with a mathematical function such as

the logistic function for a growth trait [5]. In this study, we

modeled the developmental mean process using a nonparametric

spline technique, given its flexibility in modeling patterns of data

distribution which does not follow any particular mathematical

form (e.g., [17,25]). The correlation structure was modeled by the

non-stationary SAD model, which was studied in Zhao et al. [19]

for functional mapping. Since the focus of this work is not on the

modeling of the mean and the correlation structure, we simply

adopted these approaches and did not compare the impact of

different modeling approaches on the power of QTL identifica-

tion. This investigation will be considered in our future work.

In real data analysis, there is not much significant deviation

between the LR profile plot of the mixture t and the normal

model. This is due to the fact that the data distribution is quite

close to the multivariate normal. The same data were analyzed

before with different models to approximate the developmental

mean process [14,15]. The QTL showing genome-wide signifi-

cance in this study is consistent with the one found in our previous

work, while some other QTLs in chromosome 1 reported in Cui

et al. [15] did not pass genome-wide significance in this analysis.

This is largely due to differences in the modeling of the mean

process. As previous investigation shown, the power and precision

in QTL identification are quite sensitive to the way the mean and

covariance structures are modeled [14,15,19]. In reality, the true

mean and covariance function are generally unknown. This raises

a very practical issue in functional mapping. What we can do to

improve mapping power and precision is by modeling the error

distribution with more robust approaches such as the one

proposed in this work. We expect that the method developed

can enhance the full power of functional mapping in understand-

ing the genetic architecture of dynamic traits.

Supporting Information

Appendix S1 Derivation of the EM algorithm.

(PDF)
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Figure 3. Two dynamic variation curves of tiller numbers
corresponding to the two genotypes, QQ and qq. All tiller number
trajectories under study are shown in grey background.
doi:10.1371/journal.pone.0024902.g003

Table 5. The QTL location and MLEs of the estimated parameters with the SAD(1) covariance structure.

QTL position Marker Interval Mean parameters for QQ

(l) j10 j11 j12 j13 j14

262cM RZ519–Pgi-1 1.244 8.007 13.324 7.634 7.530

Mean parameters for qq

j00 j01 j02 j03 j04

1.106 6.377 10.149 5.685 5.941

Covariance parameters degree of freedom

w = 0.725 s2 = 1.004 n = 9.313

doi:10.1371/journal.pone.0024902.t005
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