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Summary
Dichotomization of continuous exposure variables is a common practice in medical and
epidemiologic research. The practice has been cautioned against on the grounds of efficiency and
bias. Here we consider the consequences of dichotomization of a continuous covariate for the
study of interactions. We show that when a continuous exposure has been dichotomized certain
inferences concerning causal interactions can be drawn with regard to the original continuous
exposure scale. Within the context of interaction analyses dichotomization and the use of the
results in this paper can furthermore help prevent incorrect conclusions about the presence of
interactions that result simply from erroneous modeling of the exposure variables. By considering
different dichotomization points one can gain considerable insight concerning the presence of
causal interaction between exposures at different levels. The results in this paper are applied to a
study of the interactive effects between smoking and arsensic exposure from well water in
producing skin lesions.
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1. Introduction
Dichotomization of continuous exposure variables is a common practice in medical and
epidemiologic research. Dichotomization is generally done so as to simplify the analysis of
association between exposure and the outcome. The current statistical literature assessing
the practice of dichotomization is largely negative, pointing out the adverse consequence of
dichotomization for either efficiency (Cox, 1957; Cohen, 1983; Delpizzo and Borghes,
1995; Weinberg, 1995; MacCallum et al., 2002; Senn, 2003; Royston, Altman and
Sauerbrei, 2006; Fedorov, Mannino and Zhang, 2009) or bias (Gustafson and Le, 2002;
Royston et al., 2006). In this paper we extend the existing literature on dichotomization in
two respects: first, we consider not simply the implications for dichotomization for main
effects but instead we focus here on the implications of dichotomization for the analysis of
interactions; second, in contrast to prior literature, we actually provide some positive results.
We show that in interaction analyses, when a continuous exposure has been dichotomized
and one applies standard tests for interaction for the dichotomized exposure, one can in fact
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draw useful conclusions about causal interactions with regard to the underlying continuous
scale.

The remainder of this paper is structured as follows. In section 2 we review certain tests for
interaction analyses generally and for causal interactions specifically. In section 3 we give
two results concerning the conclusions one can draw about interaction with respect to the
underlying continuous exposure when one applies the interaction tests to a dichotomized
version of the exposure. In section 4 we apply the results from section 3 along with a
marginal structural model analysis technique (Robins, Hernán and Brumback, 2000;
VanderWeele, Vansteelandt and Robins, 2010) to draw conclusions about possible causal
interaction between the effects of smoking and exposure to arsenic in well water on the
development of pre-malignant skin lesions. In section 5 we offer some concluding remarks
and discuss possible directions for future research.

2. Interaction Tests for Dichotomous Exposures
In this section we review some definitions, tests and results for interaction analyses when the
two exposures of interest, X1 and X2 say, are both binary. We assume throughout that our
outcome D of interest is also binary. In the following section we will consider the setting in
which one exposure X1 is binary but the other exposure V is continuous; we will consider the
implications of applying the interaction tests for binary exposures presented in this section to
the case when the continuous exposure V has been dichotomized at some arbitrary cutoff h
so that X2 is defined by X2 = 1(V > h) where 1(·) denotes an indicator function.

Let px1x2 = P(D = 1∣X1 = x1, X2 = x2). The standard test for an interaction on the additive
scale is

If this inequality is satisfied then the effects of X1 and X2 together exceed the sum of the
effects of X1 and X2 considered individually i.e. (p11−p00) > (p10−p00) + (p01−p00). If C
denotes some set of covariates we might also consider the conditional version of this
interaction test. If we let px1x2c = P(D = 1∣X1 = x1, X2 = x2, C = c) then the test for a
conditional interaction on the additive scale within stratum C = c is p11c − p10c − p01c + p00c
> 0. Further comments about the causal interpretation of the inequality is given below.

In this paper we will be principally interested in conclusions about causal interactions such
that for some individuals the effects of two exposure interact so that the outcome is present
when both exposures occur but is absent if just one or the other of the exposures occur. In
this section, we will consider causal notions of interaction for binary exposures and how to
test for such interactions. In the following section we will consider more general notions for
causal interaction between continuous exposures and binary exposures.

Let Ω denote the sample space of individuals and let Dx1x2 (ω) denote the counterfactual
outcome (or potential outcome, Neyman, 1923; Rubin, 1974) for individual ω if, possibly
contrary to fact, X1 had been set to x1 and X2 had been set to x2. Let C denote some set of
covariates. We will say the effects of X1 and X2 on D are unconfounded conditional on C if
for all x1, x2, Dx1x2 is independent of (X1, X2) conditional on c. If the effects of X1 and X2 on
D are unconfounded conditional on C then we have that for all x1, x2, c,
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so that within strata of the covariates C, the observed association between D and (X1, X2)
reflect the actual causal effects of what would happen under intervention on X1 and X2. Note
we assume that the consistency assumption holds that if X1(ω) = x1, X2(ω) = x2 then Dx1x2 =
D(ω) (Robins, 1986; cf. VanderWeele, 2009a).

VanderWeele and Robins (2008) said that a sufficient cause interaction was present between
X1 and X2 if there was some individual ω such that D11(ω) = 1 but D10(ω) = D01(ω) = 0 and
they showed that if there were such an individual then synergism within Rothman's
sufficient cause framework (Rothman, 1976) must be present. Outside of the sufficient cause
framework we might more generally simply refer to this as a “causal interaction.”
VanderWeele and Robins (2008) furthermore showed that if the effects of X1 and X2 on D
were unconfounded conditional on C then

(1)

would imply the presence of a such a causal interaction for some individual with C = c; the
magnitude of the contrast would in fact be a lower bound on the prevalence of such
individuals (VanderWeele et al., 2010). Note that this is in some sense a stronger notion of
interaction than the standard additive interaction, i.e.

(2)

insofar as (1) is a more stringent condition than (2) since in (1) we no longer are adding p00
in the probability contrast. VanderWeele and Robins (2008) also noted that if the effects of
X1 and X2 were monotonic in that Dx1x2(ω) were non-decreasing in x1 and x2 for all ω then
(2) would in fact suffice to draw the conclusion of the presence of a sufficient cause
interaction (VanderWeele, 2008; cf. Rothman et al. 2008); testing (1) would be necessary
without such monotonicity assumptions (VanderWeele and Robins, 2007, 2008). With case-
control data and a rare outcome assumption, (1) and (2) could be tested respectively by:
RERI > 1 and RERI > 0 where RERI (relative excess risk due to interaction, Rothman et al.,

2008) is given by  and where each of the risk ratios can be
approximated by odds ratios by the rare outcome assumption (cf. VanderWeele, 2009b).

3. Interaction Tests for Continuous Exposures that Have Been
Dichotomized

Suppose now that X1 is a binary exposure and that V is a continuous non-negative exposure.
For example, V might denote a continuous measure of arsenic in well water measured in μg/
L. That V is non-negative is not strictly necessary; provided that V is bounded below by
some value K, a non-negative variable V could be constructed simply by adding K to all
values. For ease of exposition we will thus assume throughout that this has been done and
that V is non-negative. Let Dx1v(ω) denote the counterfactual outcome D for individual ω if,
possibly contrary to fact, X1 had been set to x1 and V had been set to v. We might say that
that there is causal interaction between X1 and V comparing exposure levels (x, v) and (x′, v′)
if there is some individual such that Dxv(ω) = 1 but Dx′v(ω) = Dxv′(ω) = 0 e.g. with x = 1, x′
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= 0, we would have a causal interaction if there is some individual ω for whom the outcome
D would occur if exposure X1 were present and if the continuous exposure were at level v
but the outcome would not occur if either the binary exposure were removed or if the
continuous exposure were moved to level v′. We will say that the effects of X1 and V on D
are monotonic if, for all ω, Dx1v(ω) is non-decreasing in x1 and v, respectively.

For some arbitrary cut-off h > 0, define X2 = 1(V > h). For example international standards
often take an arsenic exposure >50 μg/L as an indication of a “high level of well water
arsenic exposure.” Note that if the effects of X1 and V on D are unconfounded conditional on
C then it will also be the case that D1v is independent of (X1, X2) conditional on C.

Once the continuous exposure has been dichotomized, one might then attempt to apply the
interaction tests (1) and (2) above. However, even if one found that the contrasts in (1) or (2)
were greater than zero, it is not at all clear what one could conclude about causal interactions
based on the underlying continuous exposure scale. If X2 is a dichotomization of V then
counterfactuals of the form Dx1x2(ω) are not well-defined since X2 only indicates whether or
not V > h and an individual's outcome may in fact depend on the precise level of V, not
simply whether or not it is greater than some arbitrary cutoff, h. The two theorems that
follow give results on the conclusions that one can draw about causal interactions on the
underlying continuous scale for V if one applies the interaction tests in (1) and (2) to X1 and
the dichotomized version of V, namely X2.

Theorem 1
Suppose the effects of binary X1 and continuous exposure V on D are unconfounded
conditional on C and that the effect of V on D is monotonic. Let X2 = 1(V > h) and let px1x2c
= E(D∣X1 = x1, X2 = x2, C = c). If

then there exists some individual ω such that X1(ω) = 1, V(ω) = v > h and D1v = 1 but D0h =
D10 = 0. If, moreover, V is independent of X1 conditional on C then there exists some
individual ω such that X1(ω) = 1, V(ω) = v > h and D1v = 1 but D0v = D10 = 0.

The conclusion of Theorem 1 essentially has 0 as the reference value for V i.e. D1v = 1 but
D10 = 0. In the final section we discuss how Theorem 1 could be adapted for other potential
baseline reference values for V. Theorem 1 states that if for X1 and the dichotomized version
of V, one applies the interaction test in (1) for a sufficient cause interaction and if this
contrast, p11c − p10c − p01c, is positive then, provided the two exposures are independent
conditional on C, one could conclude that there were individuals with the exposure X1 (e.g.
smoking) present, with exposure V above the cutoff level h (e.g. arsenic exposure >50 μg/L)
and with the outcome present D = 1 (e.g. skin lesions), for whom the outcome would not
have occurred if either the exposure X1 had been removed or if the continuous exposure had
been reduced to level 0 (e.g. we had removed all arsensic from the well water). We are able
to draw conclusions about causal interaction concerning the underlying continuous scale for
arsenic exposure even though we use interaction tests for the dichotomous exposures and
apply these to dichotomized versions of the underlying continuous exposure.

In certain settings the assumption that the exposures are conditionally independent may be
reasonable. For example, it is often reasonable to assume that a genetic variant (indicated
say by a binary variable X1) and a continuous environmental exposures (indicated by V) are
conditionally independent. Likewise, genetic variants located at loci on different
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chromosomes are generally independent of one another. In the smoking and arsenic
example, as discussed below, exposure to well water arsenic generally unsystematically
distributed and assuming that it is conditionally independent of smoking may be plausible.
In these cases, we could make use of the conclusions of Theorem 1 as discussed above.

In other cases, it may not be reasonable to assume that the exposures are conditionally
independent. Even if the exposures X1 and V are not independent conditional on C, Theorem
1 shows that one can still draw causal conclusions about interaction but only of a somewhat
weaker form. Without the conditional independence assumption, we can still conclude the
presence of an individual with the exposure X1 present, with exposure V above the cutoff
level h and with the outcome present D = 1 for whom: (i) the outcome would not have
occurred if the continuous exposure had been reduced to level 0 and (ii) the outcome would
not have occurred if the exposure X1 had been removed and had the continuous exposure
been brought down at least to the threshold h (simply removing the binary exposure X1 may
not suffice).

The next result considers the sort of conclusions that we can draw if we apply the standard
test for additive interaction in (2) for dichotomous exposure when the underlying continuous
exposure has been dichotomized.

Theorem 2
Suppose the effects of binary X1 and continuous exposure V on D are unconfounded
conditional on C and that the effects of X1 and V on D are monotonic; suppose also that V is
independent of X1 conditional on C. Let X2 = 1(V > h) and let px1x2c = E(D∣X1 = x1, X2 = x2,
C = c). If

then there exists some v > h and some individual ω such that D1v(ω) = 1 but D10(ω) =
D0v(ω) = 0.

Theorem 2 allows for a similar conclusion as Theorem 1 under the assumption that X1 and V
are conditionally independent given C, namely that there is some level v above the cut-off h
such that we have a causal interaction i.e. an individual for whom D1v(ω) = 1 but D10(ω) =
D0v(ω) = 0. Theorem 2 however requires somewhat stronger assumptions: the monotonicity
of both X1 and V as well as conditional independence of X1 and V given C. The stronger
assumptions are a result of tests for a less constrained condition, namely, in Theorem 2, we
are adding the probability p00c back into the contrast and the condition will thus be satisfied
in a broader range of scenarios.

4. Application to Smoking and Arsenic
To illustrate our results, we apply the tests and conclusions described above to data from the
Health Effects of Arsenic Longitudinal Study (Ahsan et al., 2006; Chen et al., 2006). The
study was established in 2000 as a prospective cohort of 11,746 men and women in
Araihazar, Bangladesh, where 95% of the country's 140 million population rely on well
water. In many parts of the world where groundwater is an important source of drinking
water, long-term exposure to arsenic from drinking water has been considered a public
health hazard. The purpose of the study was to investigate the health effects of arsenic
exposure from drinking water with a focus on skin lesions, skin cancers, cardiovascular
disease and total mortality. Here we use the data to examine interactions between the effects
of levels of arsenic exposure in drinking water measured on a continuous scale (V) and
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current or past tobacco smoking (X1) on premalignant skin lesions (D). The overall
prevalence of skin lesions in this sample is 6.3%.

The hypothesis that cigarette smoking increases susceptibility to the risk of pre-malignant
skin lesion due to arsenic exposure is suggested by previous studies on lung cancer
(Ferreccio et al., 2000; Chen et al., 2004) and bladder cancer (Steinmaus et al., 2003;
Karagas et al., 2004). Cigarette smoking has been associated with a lower methylation
capacity of arsenic, as indicated by a higher ratio of urinary monomethylarsonate to
dimethylarsinate in smokers (Hopenhayn-Rich et al., 1996). Moreover, tobacco smoking
may increase the requirement of folate, a critical cofactor in one-carbon metabolism, a
process through which arsenic is enzymatically methylated (Gamble et al., 2005). Taken
together, cigarette smoking is likely to influence arsenic toxicity.

In the present analysis, confounding variables C for which adjustment is made include sex
(male/female), age (continuous), education (continuous), BMI (continuous), land and TV
ownership (yes/no; markers of socioeconomic status in Bangladesh), fertilizer use (yes/no)
and pesticide use (yes/no).

We will consider different dichotomization points, h, for V so that X2 = 1(V > h); we will test
(1) and (2) with X1 and X2 = 1(V > h). One way to proceed with testing condition (1) and (2)
would be to fit a logistic regression to model the probabilities px1x2c and use the delta
method or bootstrapping to test (1) and (2) respectively (cf. Hosmer and Lemeshow, 1992;
Assmann et al., 1996; VanderWeele, 2009b). Here we will test a marginalized version of (1)
and (2), namely:

(3)

and

(4)

Note that if (3) is satisfied then (1) must be satisfied for some c; likewise if (4) is satisfied
then (2) must be satisfied for some c. We return to reasons why this marginal approach may
be advantageous in the following section. specifically we use a linear marginal structural
model approach (Robins et al., 2000; VanderWeele et al., 2010) so as to directly
parameterize:

Under the assumption that the effects of X1 and V on D are unconfounded conditional on C,
this is

(5)

The parameters (β0, β1, β2, β3) can be estimated by fitting a Bernoulli regression with
identity link of D on an intercept, X1, X2 and X1X2 with observations weighted using an
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inverse probability weighting procedure (Robins et al., 2000). Specifically each individual i
is weighted by

where x1i, x2i, ci are respectively the values of X1, X2, C for individual i. If the joint effect of
both exposures are unconfounded conditional on C then the roles of X1 and X2 in the
calculation of weights can also be reversed. The numerator and denominator probabilities
can be estimated by using logistic regressions of X1, X2 on C. Note that the weighted
Bernoulli regression is a linear model for a dichotomous outcome; however, because the
exposures X1 and X2 are binary, the model is saturated and there is no possibility of model
misspecification for the marginal structural model. The weighted Bernoulli regression is fit
using generalized estimating equations and sandwich estimators of standard errors are
employed. The weighted regression gives consistent estimator of the parameters in the
marginal structural model in (5) provided the models for the weights are correctly specified;
see Robins et al. (2000) for further description of fitting marginal structural models. Weights
were truncated at the 1st and 99th percentiles as has been recently recommended as a way to
balance bias and precision (Cole and Hernán, 2008); in the analysis considered below,
without truncation, the weights ranged from 0.30 to 50.14; with truncation, the weights
ranged from 0.32 to 8.87.

If β3 > 0 then (4) is satisfied and consequently (2) is satisfied for some c and we can employ
Theorem 2; if β3 − β0 > 0 then (3) is satisfied and consequently (1) is satisfied for some c
and we can employ Theorem 1. Arsenic concentrations in well water are distributed with
little systematic variation throughout the area of Bangladesh in this study. It may thus
reasonable to assume that arsenic exposure in drinking water and current or past tobacco
smoking are independent conditional on C. The correlation between arsenic and current or
past tobacco smoking are very weak in magnitude (ρ = −0.0079); we nevertheless include
arsenic in the models for the weights for smoking.

We initially take arsenic exposure >100 μg/L as the cutoff so that X2 = 1(V > 100). The
logistic regression model coefficients for each of the covariates in the regression of smoking
on the covariates and arsenic of dichotomized arsenic on the covariates is given in Table 1.
When we use the predicted probabilities obtained from these model to construct inverse
probability weights and fit the marginal structural model we obtain an estimate for β3 of .
035 (95% CI: .0003, .070); both the point estimate and the entire confidence interval are
greater than 0. Under the assumption that the effects of both smoking and arsenic exposure
on skin lesions are unconfounded conditional on C and having monotonic effects, and that
smoking and arsenic exposure are conditionally independent given the covariates we have
by Theorem 2, that there exists some v > 100 and some individual ω such that D1v(ω) = 1
but D10(ω) = D0v(ω) = 0 i.e. there are individuals, and some level of arsenic exposure v >
100, for whom the skin lesions would occur if smoking were present and if arsenic exposure
were at level v but skin lesions would not occur if either smoking were removed or if arsenic
exposure was completely removed. In this example there is some biological plausibility for
the assumption that smoking and arsenic exposure have monotonic effects on skin lesions
and the assumption that the exposures are conditionally independent is also reasonable here.
For this cut-off of arsenic exposure >100 μg/L, the estimate of β3 − β0 is −.012 (95% CI: −.
045, .021); we thus cannot draw conclusions without the monotonicity assumption on both
smoking and skin lesions.
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Figure 1 gives point estimates and 95% confidence intervals for β3 as the cutoff h with X2 =
1(V > h) increases. Results are reported in the Figure per 100 individuals. The estimate of β3
first rises above 0 when h = 18; the entire confidence interval for β3 first excludes 0 when h
= 80. We note that the estimate of β3 − β0 first rises above 0 when h = 146; although here
the point estimate when h = 146 suggests β3 − β0 > 0 (so that we could employ Theorem 1
and draw conclusions without making assumptions about the monotonicity of smoking and
without the conditional independence assumption), the confidence interval for β3 − β0 still
contains 0.

5. Conclusions
In this paper we have provided results concerning the conclusions one can draw about causal
interactions on the underlying continuous exposure scale when a continuous exposure has
been dichotomized. The results extend prior literature on dichotomization from the analysis
of main effect to the analysis of interaction. In contrast to a great deal of the existing
literature on dichotomization, our results are positive rather than negative. Rather than
giving results about the limitations of analysis under dichotomization, our results here
demonstrate what one can conclude about underlying continuous exposures even when
analysis has been conducted on a dichotomized version of the exposure.

In the results given above we have let the minimum value of the continuous exposure be
zero. One could however, restrict the sample to individuals with exposure values above
some other minimum (any level below the cutoff h) and apply the results replacing the level
zero in the theorems with whatever minimum has been chosen. By considering different
dichotomization points of the continuous exposure and also different minimum values of the
continuous exposure, one can gain insight on whether the underlying interaction involving
the continuous exposure is dose-dependent. Such conclusions may generate useful public
health information on how reducing the exposure to certain levels may result in large
reductions in the outcome due to interaction between exposures. However, such an approach
is also subject to severe multiple testing problems. Bonferonni corrections are likely to be
highly conservative as the tests for different cutoff will be highly dependent. Future work
could consider alternative approaches for inference across ranges of cutoffs.

An interesting feature of the approach taken in our application is that we were able to avoid
modeling of the relationship between the outcome and the continuous exposure. The actual
outcome “model” was in fact saturated (with an intercept, two main effects and an
interaction term) since the two exposures in the model were dichotomous or had been
dichotomized. Confounding was addressed through weighting rather than outcome
modeling. The outcome model itself thus could not be misspecified, though conclusions
could be sensitive to the models for the weights. This ability to avoid misspecification of the
outcome model is potentially desirable as conclusions about the presence of interactions can
be sensitive to misspecification of the functional relationship between exposure and
outcome; misspecification of a main effect of a continuous exposure in an outcome model
can lead to erroneous conclusions about interactions; further discussion of issues of
misspecification in the context of interaction analyses are given elsewhere (Vansteelandt et
al., 2008; Maity et al., 2009; VanderWeele et al., 2010). This feature of being able to avoid
misspecification of the outcome model in interaction analyses is a potential argument in
favor of dichotomization. Of course, the price one pays for such dichotomization is
somewhat less precise conclusions, as discussed in the paragraph below.

The results we have described here are subject to a number of limitations. First, the results
we have provided for drawing inference about causal interaction with regard to the
underlying continuous scale give sufficient, but not necessary conditions, for the presence of

VanderWeele et al. Page 8

Biometrics. Author manuscript; available in PMC 2012 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



causal interaction. If conditions (1) and (2) in Theorems 1 and 2 are not satisfied we cannot
conclude the absence of causal interaction. Second, when the conditions are satisfied all we
can conclude is the presence of a causal interaction which involves some level of the
continuous exposure above the cutoff for dichotomization; we cannot say precisely what
level or levels of the continuous exposure manifest such causal interaction. Third, the results
required reasonable strong assumptions; they required monotonicity assumptions for one of
both exposures; even Theorem 1 which tests the stronger of the two probability contrast
conditions required a monotonicity assumption for the continuous exposure (though not for
the binary exposure). Theorem 2 required a conditional independence assumption; and
Theorem 1 gave stronger conclusions with the conditional independence assumption than
without. The theorems also required that control had been made for some set of covariates
that would suffice to control for confounding of the effects of the exposures on the outcome.
This is a fairly standard assumption in causal inference but one which may be violated and,
with observational data, will generally at best hold approximately. Future work could
consider sensitivity analyses techniques for assessing the sensitivity of one's conclusions
about interaction to potential unmeasured confounding.

Future research might also extend the current results in two further directions. First, future
research might consider cases in which both exposures are continuous and have been
dichotomized and whether analogous results hold in this setting. Second, one might also
attempt to develop more general results in which a continuous exposure has not been
dichotomized but rather broken up into some number k categories and consider whether
conclusions about causal interactions could be drawn on the underlying continuous scale.

Appendix

Proof of Theorem 1
Let Suppose for binary exposure X1 and dichotomized exposure X2 = 1(V > h), inequality (1)
is satisfied then

where the third equality following by consistency, the less-than-or-equal-to inequality
follows by monotonicity, and the second to last and fourth to last equalities follow by
unconfoundedness. If there were no individual ω with X1(ω) = 1, V(ω) > h, C(ω) = c and
D(ω) = 1 but D10(ω) = D0h(ω) = 0 then we would have that P(D−D10−D0h∣X1 = 1, V > h, c)
≤ 0. Thus if p11c − p10c − p01c > 0 then there must be some individual with X1(ω) = 1, V(ω)
> h, C(ω) = c and D(ω) = 1 but D10(ω) = D0h(ω) = 0.

Suppose now also X1 and V are independent conditional on C. In the proof above, the term,
∫v>h P(D∣X1 = 0, V = v, c)p(v∣X1 = 0, V > h, c)dv, could be expressed as
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and we would thus have that 0 < p11c − p10c − p01c implies 0 < P(D − D10 − D0v∣X1 = 1, V >
h, c) from which it would follow that if p11c − p10c − p01c > 0 then there must be some
individual with X1(ω) = 1, V(ω) > h, C(ω) = c and D(ω) = 1 but D10(ω) = D0v(ω) = 0.

Addendum to Proof of Theorem 1
Note that if there are a sufficient number of subjects with the minimal level of the exposure,
V = 0, instead of testing p11c−p10c−p01c > 0 i.e. p11c − P(D∣X1 = 1, V ≤ h, c) − p01c > 0, one
could alternatively test p11c − P(D∣X1 = 1, V = 0, c) − p01c > 0. This second term can be
rewritten as P(D∣X1 = 1, V = 0, c) = P(D10∣X1 = 1, V = 0, c) = P(D10∣X1 = 1, V > h, c). Thus
the proof of Theorem 1 and the conclusion of Theorem 1 that there must be some individual
with X1(ω) = 1, V(ω) > h, C(ω) = c and D(ω) = 1 but D10(ω) = D0v(ω) = 0 would apply
(without the conditional independence assumption) if p11c − P(D∣X1 = 1, V = 0, c) − p01c >
0 is satisfied rather than p11c − p10c − p01c > 0. The latter condition implies the former since
by monotonicity of V, P(D∣X1 = 1, V = 0, c) ≤ P(D∣X1 = 1, V ≤ h, c) but estimates of P(D∣X1
= 1, V = 0, c) may in practice be imprecise if there are few subjects with V = 0 in which case
testing p11c − p10c − p01c > 0 may be more practical.

Proof of Theorem 2
We have that

(A1)

where the third equality follows by consistency and the fourth by unconfoundedness. For the
first term in (A1) we have that

where the third equality follows by monotonicity. For the second term in (A1) we have
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where the third equality and also the inequality both follow by monotonicity. Thus the
expression in (A1) is equal to

Suppose that for all v > h there is no individual for whom D1v(ω) = 1 but D10(ω) = D0v(ω) =
0 then amongst those with D0v = 0 we would have that D1v(ω) = 1 implies D10(ω) = 1 and
thus we would have that

Consequently, if p11c − p01c − p10c + p00c > 0 then there must be some v > h and some
individual ω such that D1v(ω) = 1 but D10(ω) = D0v(ω) = 0.
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Figure 1.
Magnitude of interaction estimates (and 95% confidence interval) for different arsenic
concentration dichotomization cutoffs.
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Table 1
Covariate coefficients and standard errors (s.e.) for logistic regression models for smoing
and dichotomized arsenic exposure

Covariate Model for Smoking s.e. Model for Arsenic s.e.

Intercept -0.5507 0.2627 -0.3106 0.1677

Male 1.9436 0.0409 -0.0424 0.0262

Age 0.0900 0.00363 0.00124 0.00218

Education -0.1062 0.00874 0.00945 0.00572

BMI -0.1643 0.0111 -0.0237 0.00683

TV -0.0954 0.0691 0.2023 0.0454

Own Land -0.0950 0.0619 -0.0501 0.0401

Fertilizer Use 0.1202 0.0872 0.0491 0.0574

Pesticide Use -0.1718 0.0935 0.0822 0.0672

Arsenic -0.1170 0.0637 N/A N/A
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