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Summary

Influenza pandemics have occurred throughout history and were associated with substantial excess
mortality and morbidity. Mathematical models of infectious diseases permit quantitative
description of epidemic processes based on the underlying biological mechanisms. Mathematical
models have been widely used in the past decade to aid pandemic planning by allowing detailed
predictions of the speed of spread of an influenza pandemic and the likely effectiveness of
alternative control strategies. During the initial waves of the 2009 influenza pandemic,
mathematical models were used to track the spread of the virus, predict the time course of the
pandemic and assess the likely impact of large-scale vaccination. While mathematical modeling
has made substantial contributions to influenza pandemic preparedness, its use as a real-time tool
for pandemic control is currently limited by the lack of essential surveillance information such as
serologic data. Mathematical modeling provided a useful framework for analyzing and interpreting
surveillance data during the 2009 influenza pandemic, for highlighting limitations in existing
pandemic surveillance systems, and for guiding how these systems should be strengthened in
order to cope with future epidemics of influenza or other emerging infectious diseases.

Background

Influenza pandemics have occurred throughout history. Three influenza pandemics in the
20t century were associated with substantial excess mortality and morbidity.[1] The
emergence of a highly pathogenic strain of avian influenza A/H5N1 in 1997[2] led to
increasing concerns about the next pandemic. With limited empirical experience to guide
planning decisions, mathematical modeling has been a key tool to facilitate planning for
pandemic mitigation strategies. These simulation approaches, which explicitly take into
account the ways in which the infection spreads between people,[3] were widely used in the
“peace-time” between pandemics to characterize influenza dynamics and to explore the
potential impact of alternative intervention strategies, and contribute to pandemic planning.

Through the first decade of the 215t Century there was growing anticipation that a new
pandemic would emerge from an avian virus in South-East Asia.[4] It was somewhat
unexpected when in early 2009 a pandemic virus emerged from a swine influenza virus
lineage in North America.[5] Mathematical modeling techniques were used in the "war-
time” as the 2009 influenza pandemic was unfolding to provide information on disease
transmissibility and severity, and aid planning for vaccine allocation.
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In this short review, we provide a general background on mathematical modeling, and
highlight some of the contributions and limitations of mathematical modeling in the
planning of influenza pandemic preparedness and response. We then proceed to discuss the
predictive value of mathematical modeling in the context of the 2009 influenza pandemic.
Our aim here is to give a broad overview of the various applications of mathematical
modeling in pandemic planning rather than to review in detail every modeling study
conducted on this topic.

Mathematical models

The application of mathematical models to describe infectious disease dynamics is a
systematic way of translating assumptions and data regarding disease transmission into
quantitative estimates of how an epidemic evolves through time and space. Similar
approaches are used in classical physics to predict the movement of an object by translating
inertia and gravity (assumptions regarding the laws of physics) and the force and angle at
which an object is thrown (the data) into the trajectory of the object (the prediction).
Epidemics of infectious diseases among humans are driven by transmission of the infectious
agent among humans either directly, via fomites in the environment or via animal vectors.
Disease transmission can also depend on biological characteristics of both the pathogen and
the host, as well as social, behavioral and environmental factors. It is possible to express
these dynamics in terms of mathematical equations.[3] While the dynamics of infectious
diseases can be extremely complex, in many cases relatively parsimonious models can be
used to describe the essential properties of epidemic dynamics.[6]

In the simplest epidemic model, a closed large population of size N is partitioned into three
classes of individuals: Susceptible, Infectious, and Recovered (Figure 1). All individuals are
assumed to be identical in terms of their susceptibility to infection, infectiousness if infected,
as well as mixing behavior associated with disease transmission (the so-called homogenous
mixing assumption). The assumption that all individuals are identical in terms of disease
dynamics permits the grouping of individuals into aggregate “compartments”. The resulting
SIR (Susceptible-Infectious-Recovered) model can be used to describe the number of
individuals in each class at time t (S(t), I(t) and R(t)) based on two further assumptions.
Firstly, the rate at which susceptible individuals become infected during any small time
interval At is assumed to be proportional to the prevalence of infectious individuals.
Secondly, infected individuals recover with long-lasting immunity after an average
infectious duration of 1/a. These assumptions can be translated into the following equations
describing the epidemic dynamics:

S (t+At) =S (1) -BI(1)S (1) At
I(t+At) =IO +BI(1)S (1) At —al (1) At

The epidemic curve generated by this simple model captures the hallmarks of typical
epidemics: (i) the number of infections increases exponentially during the early phase of a
growing epidemic; and (ii) the epidemic curve is unimodal and peaks when the susceptible
pool has been sufficiently depleted (Figure 1). Despite the apparent simplicity of the SIR
model, many recent studies of pandemic influenza have been built from this basic model
structure. The model can be extended to include variation in transmission dynamics by
factors such as age and spatial location. The equations above describe a deterministic
process, although it is straightforward to allow stochasticity (random variability) in the
dynamics, and this can be particularly important when describing the early stages of an
epidemic.[6]
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Three epidemiologic parameters form the cornerstones of mathematical epidemiology: (i)
the basic reproductive number Ry, which is defined as the average number of secondary
cases generated by an index case when an epidemic begins in a completely susceptible
population (the reproductive number R has the same definition but without requiring a
completely susceptible population); (ii) the mean generation time T4, which is defined as the
average time it takes an index case to infect other individuals after he becomes infected,; (iii)
the growth rate of an epidemic r. The importance of these parameters stems from their
intuitive implications on disease spread: If Ry < 1, then an outbreak will die out without
causing widespread infections. For a given Ry > 1, the outbreak could lead to an epidemic
and a shorter generation time would be associated with higher growth rate. The same results
hold for the reproductive number R when considering a partially susceptible population.
While the definitions of Ro, Tg and r are not model-dependent, model-based statistical
inference of these parameters from epidemic data could be sensitive to the assumed structure
of the model.[7] In the SIR model, the basic reproductive number is Ry = BN/a, the mean
generation time is Ty = 1/a, and the epidemic growth rate is r = (Rg—1)/Tg.

In addition to indicating the epidemic potential of an emerging pathogen, the basic
reproductive number Rg is an important parameter for estimating the proportion of a
population infected throughout an epidemic (the final attack rate) and the degree to which
interventions might be able to control or mitigate an epidemic. For example, the final attack
rate typically increases sharply as Rq increases beyond 1 (Figure 2). An important corollary
of this relation is that it is not necessary to vaccinate the whole population in order to halt a
growing epidemic. For example, under the SIR model, vaccinating a proportion 1-1/Rq
(known as the critical coverage) of the population is sufficient to push the reproductive
number below 1 (Figure 2) and ensure that an epidemic will not take off.[3, 6] Furthermore,
even if the critical coverage is not reached, vaccination could still substantially reduce the
attack rate if Rg is only moderately larger than 1 (Figure 2) because of increased herd
immunity. Timely and accurate estimate of Rq therefore allows a quick assessment of the
potential impact and controllability of an emerging epidemic.

Use of models to guide pandemic preparedness

Estimation of epidemiologic parameters—Combining historical epidemic data (e.g.
pneumonia & influenza mortality) with mathematical modeling, several research groups
have consistently estimated that Ry was mostly in the range of 1.2 to 3 during the 1918,
1957, and 1968 pandemics.[8-10] Similarly, the mean generation time of pandemic
influenza was estimated to be around 2 to 4 days.[11-14] These epidemiologic parameters
provided a reference frame for planning influenza pandemic preparedness and response.
Epidemic models parameterized with these estimates were built and used to assess the
potential effectiveness of different pandemic mitigation strategies.[15]

Predicting the speed of global spread and the effectiveness of travel
restrictions—Mathematical models have been used to study the global spread of
infectious agents as early as the 1980s. Longini et al pioneered this method in which each
population was represented as an SIR system and epidemic dynamics of different
populations were linked together by international travel.[16] Recent modeling studies of
global spread of infectious agents used essentially the same model structure but with more
populations simulated in order to increase the realism of the models.[17-19] These modeling
studies concluded that for plausible ranges of Rg and T for pandemic influenza, the novel
virus would spread around the world within a few months of emergence in the origin
population. Furthermore, travel restrictions would have almost no effect in slowing
international spread of pandemic influenza because only a small number of imported cases
would be sufficient to spark an epidemic in seeded populations. Because the number of
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infections would grow exponentially in the origin population and non-symptomatic infected
individuals could transmit the disease, the only way to stop international seeding would be
to completely prohibit travel from and to the origin population, which is infeasible.

Assessing the effectiveness of containment and mitigation strategies—The
need for influenza pandemic preparedness in the past decade has been a strong driving force
for the development of large-scale agent-based epidemic simulations[11, 13-15, 20, 21]
which represent a substantial advance in infectious disease modeling. Unlike compartmental
models which partition a population based on demographics, disease status, etc., and track
the number of individuals in these compartments over time, agent-based simulations model
the population as a network in which each node represents a single person (“an agent”) and
each edge represents a possible route of disease transmission between two persons (Figure
3). Agent-based simulations can easily take into account household demographics,
individually targeted interventions (e.g. case isolation, antiviral prophylaxis of contacts) and
spatial heterogeneity which are often difficult and cumbersome to simulate using
compartmental models.

Using large-scale stochastic agent-based simulations parameterized with detailed
demographic and spatial data, Ferguson et al and Longini et al concluded that early detection
together with aggressive containment measures, including large-scale antiviral prophylaxis
and quarantine, could in theory contain the pandemic virus at its origin of emergence
(assumed to be a rural area) if Rq is smaller than 1.6-1.8.[11, 14] However, given the high
uncertainty associated with transmissibility of the pandemic virus and the risk of multiple
introductions,[22] the probability of sustained containment is unlikely to be high and
mitigation strategies would be necessary for all countries. These modeling studies have
played an important role in advising countries to devise national influenza pandemic
preparedness and response plans.[23]

Agent-based simulations of influenza pandemics have suggested that the most effective
mitigation of an influenza pandemic would likely require combinations of influenza antiviral
treatment and prophylaxis and non-pharmaceutical interventions of quarantine, isolation,
school closure, community social distancing, and workplace social distancing.[15] Indeed,
mathematical analyses of historical epidemic data from the 1918 influenza pandemic
suggested that prolonged non-pharmaceutical interventions had a significant effect in
reducing disease transmission.[24, 25] Among these interventions, school closure has
received most attention and is present in pandemic influenza preparedness plans of many
countries.[26, 27] To generate evidence on the effectiveness of school closure, several
modeling studies assessed changes in transmission dynamics of seasonal influenza during
scheduled school holidays or reactive school closure.[28-31] However, their findings were
mixed, and even if school closure is indeed effective, simulations suggested that it would
have to be implemented with high compliance for a prolonged period in order to have a
significant reduction in attack rate. Consequently, there is still little consensus on the
effectiveness and feasibility of school closure in reducing community transmission during an
influenza pandemic.[30]

Optimizing antiviral strategies—Muaintaining a stockpile of antiviral drugs is a major
component of many influenza preparedness plans.[23] For example, before the 2009
influenza pandemic, the United States had stockpiled enough antivirals to treat 25% of its
population.[32] Besides their use for treatment of ill individuals, antivirals can also be used
for prophylaxis.[33] A series of mathematical modeling studies assessed the potential
effectiveness and logistical requirement of different targeted antiviral prophylaxis strategies
(e.g. household-based, school-based, spatially-targeted, risk-targeted, etc) in order to inform
countries on the best use of their large antiviral stockpiles.[11-14, 17, 20, 21, 34, 35] These
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studies consistently showed that compared to treatment-only strategies, targeted prophylaxis,
if implemented throughout the epidemic, would be an efficient use of antiviral stockpiles in
terms of reducing the epidemic size. While demonstrating the potential effectiveness of
large-scale antiviral intervention, mathematical modeling studies also provided quantitative
assessments on the potential risk of drug-induced antiviral resistance.[19, 36—40]
Specifically, these studies emphasized that if a drug-induced resistant strain with low fitness
cost emerged during the early phase of a pandemic, this strain would subsequently replace
the wild-type as the dominant pandemic strain. This could jeopardize effective treatment of
severe cases. To try to reduce this risk of resistance, novel strategies have been proposed
based on mathematical models, including the idea of stockpiling a secondary antiviral and
using it as an adjunct to the primary antiviral in the early stages of a pandemic.[19, 37]

Optimizing vaccination strategies—\Vaccine is the long-term solution for reducing
morbidity and mortality associated with a novel influenza strain. However, in order for
vaccines to provide protection against pandemic infections, the vaccine strain must be
antigenically similar to the pandemic strain. Consequently, vaccine production cannot begin
until the pandemic strain has been isolated. Because the lead-time for vaccine production is
typically 4—6 months or more,[41] pandemic vaccines will likely be in severe shortage as the
pandemic unfolds. This has motivated the proposal to stockpile pre-pandemic vaccines made
before a pandemic and composed of potential pandemic strains; the antigenic match between
these vaccines and the actual pandemic virus are expected to be moderate at best, although
they may be able to confer some degree of protection.[42]

A series of modeling studies have emphasized that even low-efficacy or low-coverage
targeted vaccination during the early stages of a pandemic could have a substantial impact
on reducing disease transmission because Rg is likely to be relatively low.[13, 15, 21, 43—
46] To optimize the use of a limited amount of pandemic or pre-pandemic vaccines, several
groups used mathematical modeling to assess the public health benefit of different
vaccination strategies.[44, 45, 47-51] Because schoolchildren comprise the core group for
influenza transmission, most studies concluded that vaccinating them would substantially
reduce transmission because of the nonlinear effect of herd immunity. These studies have
played an important role in influencing countries (including the US) to include
schoolchildren in their recommendations for both seasonal and pandemic influenza
vaccination.[52, 53]

Assessing the logistical requirement of interventions—Mathematical models of
epidemics can be easily extended to take into account operational constraints in order to
assess logistical feasibility of interventions. For example, earlier modeling studies of
bioterrorist attack with smallpox and anthrax emphasized that the availability of manpower
to perform contact tracing and antiviral dissemination was an important factor in limiting the
effectiveness of response strategies [54, 55]. During the 2009 influenza pandemic, a study
was conducted in Hong Kong to assess the efficacy of convalescent plasma (collected from
lab-confirmed cases) in treating severe cases [56]. Motivated by the potential efficacy of this
therapeutic approach, a mathematical modeling study illustrated that in a moderately severe
pandemic and with blood transfusion capacity similar to that in Hong Kong, a population-
wide program which collects plasma from a small percentage of recovered adults could
harvest sufficient convalescent plasma to treat a substantial proportion of severe cases in
real-time [57].

Use of models during the 2009 influenza pandemic

Some predictions made by mathematical modeling in “peace-time” are robust against
uncertainties regarding strain-specific transmission dynamics and were applicable during the
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initial waves of pandemic (H1N1) 2009 (pdmH1NZ1). For example, travel restrictions and
border screening were predicted to be ineffective in slowing down international spread of
pdmH1N1 except for very isolated populations and were not recommended by the World
Health Organization (WHO), and accordingly most countries did not aggressively attempt to
prevent entry of the pandemic strain.[17, 58-61] Furthermore, most health authorities were
well prepared for the likelihood of local epidemics within a few months of the WHO global
pandemic alert in April 2009. These modeling predictions had likely influenced the WHO to
not issue travel alerts during the 2009 pandemic (unlike during the 2003 epidemic of Severe
Acute Respiratory Syndrome)[62] and were eventually consistent with the rate of
international spread of the pdmH1N1 virus.

Rapid global dissemination of pdmH1N1 implied that containment strategies would not be
sensible, and shortly after announcing the advent of the 2009 influenza pandemic, the WHO
recommended that countries should focus on strategies for local mitigation but not
containment.[63]. Several groups consistently concluded that large-scale vaccination
targeted at schoolchildren during the early phase of a pandemic would be the most efficient
use of vaccines across a wide range of plausible scenarios.[47, 50, 64, 65] However, given
that vaccine production required at least 4—6 months, initial waves of the pandemic would be
largely over in most countries by the time pandemic vaccines became available. Therefore,
large-scale vaccination at that stage would probably have limited value in reducing
morbidity and mortality and a more relevant question was the optimal use of vaccines
following an initial wave. A recent modeling study suggested that the optimal vaccination
strategy would in general depend on the stage of epidemic at which vaccination begins.[48]

Mathematical modeling was also used in the “war-time” during the 2009 influenza
pandemic to inform situational awareness and public health decision making. In one
example, a mathematical modeling approach was used to interpret surveillance data on
influenza-like illness.[66] Although in the initial phase the model was unable to predict the
course of the epidemic, once the epidemic peaked the model was able to accurately predict
how long the epidemic would last, and the final attack rate. In the UK, an age-structured
mathematical model fitted to influenza-like illness reports was able to track the course of the
epidemic through time and provide timely predictions on the timing and size of the winter
2009-10 wave [65]. The results were subsequently validated on serologic data which
showed substantial attack rates among children in certain areas of the UK in the spring 2009
wave [67].

Because influenza pandemic preparedness plans were formulated based on epidemiological
understanding of past pandemics, estimation of Ry and T was a top public health priority
when the 2009 pandemic began in order to help policymakers quickly putting their
preparedness plans into perspective. Shortly after the emergence and global spread of
pdmH1NL1, its Rg and Ty were estimated to fall within the ranges of previous pandemic
influenza viruses,[68—70] implying that this pandemic was not likely to be any more severe
than its predecessors. The next but more formidable challenge was to estimate infection
attack rate and severity (e.g. case-fatality) in order to assess the burden that the pandemic
would pose on the healthcare and economic system. While existing influenza pandemic
surveillance systems typically tracked the number of lab-confirmed pdmH1N1 cases or
patients presenting to the local healthcare system with influenza-like illness,[71] this
represented only the tip of the iceberg of the actual number of infections because not all
infected cases would seek care.[72] Without an accurate count of the number of infections in
different age groups, mathematical modeling studies conducted during the early stage of the
2009 pandemic failed to predict the age distribution of pdmH1N1 infections which skewed
towards school-aged children to a greater extent than predicted based on typical modeling
assumptions.[65, 73] Accurate estimates of attack rates, severity and other important

Exp Biol Med (Maywood). Author manuscript; available in PMC 2012 August 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wu and Cowling

Page 7

epidemiologic characteristics of pdmH1N1 only became available months after the
pandemic began.[67, 74-77]

Discussion

While influenza pandemics occur infrequently, the possibility of many millions of deaths
worldwide in a severe pandemic means that they present a significant threat to public health.
While the 2009 pandemic was only of mild to moderate severity, the next pandemic may be
more serious and countries will continue to update their pandemic plans to insure against the
impact of a low-probability but severe pandemic. Mathematical models provide a systematic
framework that can be used to analyze and interpret infectious disease data, as well as to
predict the course of epidemics and the impact of potential interventions.

The use of mathematical models in the interpandemic period provided valuable information
on epidemiologic characteristics of past pandemic influenza viruses. Building on such
understanding of past pandemics, mathematical modelers built simulation models to show
that a pandemic virus would inevitably reach all countries within a few months once it
spreads in a city linked to the international air travel network. These computer simulations
have also provided a systematic platform to assess the effectiveness of different pandemic
containment and mitigation strategies that would otherwise be difficult or impossible to
evaluate in empirical settings. In particular, these modeling studies have provided well-
documented guidelines on the plausible outcomes of large-scale antiviral intervention and
vaccination which were and will remain major components of national influenza pandemic
plans.

While mathematical models have demonstrated their value in “peace-time”, in general they
were not able to facilitate accurate prediction of epidemic size and severity in real-time
during the 2009 influenza pandemic. One critical limitation was the difficulty in interpreting
available surveillance data in most settings, and in particular information on the proportion
of infections leading to mild or severe illness, which were needed for accurate model
formulation and parameterization.[43, 65] In particular, if serologic data had been available
during the early stages of the pandemic, these would have been invaluable for estimating
age-specific attack rates and severity as well as eliciting potential differences in
susceptibility among different age groups against the pandemic virus.[43, 65, 67] Such data
could have greatly reduced the uncertainties associated with the use of laboratory-confirmed
case counts or influenza-like illness rates adjusting for symptomatic proportions and bias in
healthcare seeking behavior.[67, 74]

In conclusion, although mathematical modeling has shown limitations as a “war-time” risk-
assessment tool during the 2009 pandemic, it has nonetheless played an important role in
pandemic response. Its use has provided a systematic framework for revealing the
weaknesses of existing pandemic surveillance systems and guiding how these systems
should be strengthened in order to cope with future epidemics of influenza or other
emerging infectious diseases. Table 1 gives a brief overview of the contributions and
limitations of mathematical modeling on informing influenza pandemic preparedness and
response that we have discussed in this review, which cover only a subset of all
mathematical modeling studies on this topic. We envision that mathematical modeling will
remain an important tool for infectious disease control in the future.
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Figure 1.
Schematic of the Susceptible-Infectious-Recovered model (left) and the typical epidemic
curve that it generates (right).
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Figure 2. The nonlinear dependence of the final attack rate and critical coverage on Rg
Knowing Rg, we can use the Susceptible-Infectious-Recovered model to estimate the final
attack rate as well as the level of vaccination coverage required to prevent an epidemic
(left). Similarly, the model can be used to estimate the potential reduction in attack rate
provided by different levels of vaccination coverage (right).
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Figure 3. A schematic of transmission network for agent-based simulations

In general, a network is consisted of nodes (the circles) and edges (the links between
circles). In agent-based simulations, each node represents a single person (“an agent”) and
each edge represents a possible route of disease transmission between two persons. As such,
there can be multiple types of edges and edges can form and disappear over time. In this
example, solid edges represent family membership while dashed edges represent peer-group
membership. In this hypothetical population of 12 individuals, there are 4 families (A-B-C-
D, E-F-G, H-1, and K-L-J) and 2 peer-groups (B-G-H and K-E). The transmission network
for homogeneous mixing models (e.g. the basic SIR model) would correspond to a network
with one edge between every pair or nodes.
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Some contributions and limitations of mathematical modeling on influenza pandemic preparedness and

response.

Contributions

Limitations

1
2

Transmissibility and mean generation time of influenza

Rate of global spread and limited effectiveness of travel
restrictions

Potential effectiveness of containment and mitigation
strategies

Optimal use of antivirals and control strategies for drug-
induced antiviral resistance

Optimal pandemic and pre-pandemic vaccination strategies
Logistical requirement of mitigation and treatment strategies

Strategies for strengthening influenza surveillance

1 Accurate severity estimates early in the pandemic

2 Accurate epidemic forecasts during the early
pandemic stages

3 Remaining uncertainty over the public health and
economic burden posed by the pandemic

4 Remaining uncertainty over the explanation for
seasonality of annual influenza epidemics

5 No consensus on the effectiveness and feasibility of
school closure
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