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We lack a comprehensive understanding of evolutionary pattern
and process because short-term and long-term data have rarely
been combined into a single analytical framework. Here we test
alternative models of phenotypic evolution using a dataset of
unprecedented size and temporal span (over 8,000 data points).
The data are body-size measurements taken from historical
studies, the fossil record, and among-species comparative data
representing mammals, squamates, and birds. By analyzing this
large dataset, we identify stochastic models that can explain
evolutionary patterns on both short and long timescales and
reveal a remarkably consistent pattern in the timing of divergence
across taxonomic groups. Even though rapid, short-term evolution
often occurs in intervals shorter than 1 Myr, the changes are
constrained and do not accumulate over time. Over longer
intervals (1–360 Myr), this pattern of bounded evolution yields
to a pattern of increasing divergence with time. The best-fitting
model to explain this pattern is a model that combines rare but-
substantial bursts of phenotypic change with bounded fluctua-
tions on shorter timescales. We suggest that these rare bursts
reflect permanent changes in adaptive zones, whereas the short-
term fluctuations represent local variations in niche optima due to
restricted environmental variation within a stable adaptive zone.
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Evolutionary biologists working at different timescales often
adopt dramatically different perspectives on the pace and

process of phenotypic evolution. For example, the norm for
microevolutionary studies is to observe high levels of heritable
genetic variation (1, 2), strong selective pressures (3, 4), and the
frequent occurrence of substantial phenotypic change on a
timescale of a few to a few dozen generations (5–8). However,
paleontologists working on much longer timescales have recog-
nized an overwhelming prevalence of evolutionary stasis (9–11),
although other patterns are known (12–14). On even longer
timescales, comparative studies of extant species routinely record
substantial divergence (15, 16). These different perspectives have
generated controversy about the ability of microevolutionary
process to explain macroevolutionary patterns (4, 9–10, 17–21).
To resolve this debate we need models that can simultaneously
account for evolutionary change across a range of timescales.
Here, we make a step toward that goal by assembling and ana-
lyzing a dataset of body-size evolution across an unprecedented
temporal span.
Gingerich (7) compiled a large dataset representing a collec-

tion of evolutionary rates measured over 100–107 generations in
the fossil record. Analyzing this dataset, Estes and Arnold (21)
found a striking pattern of bounded fluctuations in phenotype,
which implies that the expected magnitude of phenotypic change
is about the same regardless of whether two samples are sepa-
rated by 10 generations or 1 million generations (see also ref.
22). In other words, short-term, fluctuating evolution occurs, but
the changes fail to accumulate with time. This pattern predicts
that closely related species should be as different as less related
species, a conclusion seriously at odds with comparative studies,
which often detect strong phylogenetic signal for traits related to
organism size (23–26). This incongruence suggests that we need

a more extensive compilation of data to get a full picture of how
evolutionary patterns scale up over time.
Many studies have examined large-scale patterns of body-size

evolution using either fossil (7, 21, 27, 28) or comparative data
(15, 16, 29). Such studies have yielded many important insights,
but no studies have yet combined paleontological and compar-
ative data in the same modeling framework, and the puzzling
inconsistencies that seem to exist between these types of studies
remain. Resolving these inconsistencies is made more challeng-
ing by the different timescales, traits, and taxa analyzed in dif-
ferent studies. To achieve a much needed synthesis, we combine
microevolutionary and fossil time series data with phylogeny-
based comparative data and analyze these data with a set of
evolutionary models that extends the analysis of Estes and
Arnold (21). We base our analysis on a dataset that spans the
broadest range of timescales yet examined (0.2 y to 357 Myr) by
combining historical and contemporary field studies, fossil time
series, and comparative data.

Results and Discussion
Consistent with previous studies (21, 22) we find a complete
absence of a time-span effect up tow1 Myr, but this pattern then
yields to a pattern of increasing divergence on timescales above
1–10 Myr (Fig. 1). Whereas the dominant pattern of bounded,
but fluctuating changes on shorter timescales is consistent with
a common paleobiological concept of stasis (9, 14), the long-term
evolutionary pattern is consistent with observations of phyloge-
netic correlation and cumulative evolutionary change. The union
of these seemingly contradictory patterns generates a remarkably
continuous visual pattern reminiscent of the flared barrel of
a blunderbuss firearm. We show that this “blunderbuss pattern”
is consistent regardless of the method of trait standardization
and whether timescale is expressed in generations or years (SI
Text and Figs. S1 and S2). Because biases introduced by in-
cluding different taxa and traits at different timescales may cloud
our interpretation of the pattern, we examined subsets of data on
divergence in the body size of mammals, squamates, and birds, as
well as molar dimensions in primates (Fig. 2). The general pat-
tern and timing are strikingly consistent across traits and taxa.
Although the continuity of pattern is clear, it is less obvious what
evolutionary processes can account for divergence across all
timescales.
To describe these patterns more precisely, we fitted four sto-

chastic models to the data. The first model describes bounded
evolution (BE) and was designed to fit the pattern of short-term
fluctuations observed in the data. This model assumes that the
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amount of trait divergence over any time interval is an independent
draw from a normal distribution with mean zero and variance, σ2P.
Because this model does not allow for increasing divergence on
longer timescales, we combined it with three other time-dependent
stochastic models that capture this aspect of divergent evolution.
The first of these unbounded model components is the well-known
Brownian-motion (BM) model, which is often used to describe
phylogenetic correlations. In this model the variance in trait means
among replicate lineages increases linearly with time. In the single-
burst (SB) model, we assume that the optimum can undergo
a single large normally distributed change after a random (expo-
nentially distributed) time interval. A special case of this model, in
which the change was immediate, had the best fit to the data in
Estes and Arnold (21). Finally, in the multiple-burst (MB) model,
we allow multiple normally distributed changes in the optimum to
occur over time according to a Poisson process.
The multiple-burst model was the best-fitting model, although

all unbounded models capture the expansion of variance that
occurs after 1 Myr of stationary fluctuations (Figs. 1 and 3 and
Table 1). The multiple-burst model was preferred over the
Brownian-motion model primarily because it better explained
the overdispersion of divergence values found in the data at in-
termediate time intervals (106–108 y) in both the fossil data and
the phylogenetic data. The three models including unbounded
components (BM, SB, and MB) all estimate σ̂pz0:10; which
means that 1 SD in the central band of data corresponds to an
w10% difference in linear size traits. Some of this change
reflects measurement error, but much of it probably reflects
evolutionary change (SI Text). The time-dependent component
of the models leads to noticeable departures from the central
band only after w1 Myr of evolution (Table 1 and Fig. 3). For
example, the expected waiting time to a displacement of the

optimum in the multiple-burst model is >10 Myr (107.3976). This
result implies that the distribution of divergence changes very
little over the first million years, with only a modest 10% increase
in the width of the 95% prediction interval for the central band
occurring over this interval. By contrast, the prediction interval
doubles after 5 Myr. For each displacement of the optimum, the
estimated burst-size distribution predicts a size ratio between
ancestor and descendant population means of 1.28.
The patterns we observe are not simple consequences of

sampling bias introduced by using different data sources.
Whereas fossil data could be biased by the hesitancy of pale-
ontologists to assign ancestor–descendant relationships to highly
divergent samples, we observe the opposite pattern in the data-
set. When we fitted models to microevolutionary and fossil data
alone and compare these with models fitted to phylogenetic data,
we find that the fossil series begin to diverge more rapidly than
the phylogenetic data, with otherwise remarkably similar pa-
rameter estimates (Table 1, Table S1, and Fig. 3). This pattern is
not expected if fossil series are biased against evolutionary
change, but may be explained, for example, by increasing prob-
ability of extinction in more rapidly evolving lineages. Alterna-
tively, this pattern could be a consequence of the known
tendency of molecular phylogenies to estimate older divergence
times than the fossil record (30, 31).
The transition from bounded evolution to steadily increasing

divergence is illuminated by using linear regressions to model
the relationship between absolute divergence and time. We
compared a segmented regression with a single breakpoint to a
model with separate regressions for each of the three subsets of
data (Fig. 4 and SI Text). A segmented regression with a break-
point at 66,000 y has a lower Akaike’s information criterion
(AIC) than a model in which independent regressions are fitted
to each of the three major subsets of the data. This success
indicates that the change in slope is not an artifact arising from
differences in data sources, but instead indicates a pattern

Fig. 1. The “blunderbuss pattern”, showing the relationship between
evolutionary divergence and elapsed time. Divergence is measured as the
difference between the means of log-transformed size in two populations
(ln za and ln zb) standardized by the dimensionality, k. Intervals represent the
total elapsed evolutionary time between samples. Microevolutionary data
include longitudinal (allochronic) and cross-sectional (synchronic) field
studies from extant populations. Paleontological divergence is measured
from time series, including both stratigraphically adjacent (autonomous)
populations and averaged longer-term trends (nonautonomous). We sup-
plement these data with node-averaged divergence between species with
intervals obtained from time-calibrated phylogenies. Pairwise comparisons
between species (small points) are also presented to give a visual sense of the
range of divergence values across taxonomic groups. Dotted lines indicate
the expected 95% confidence interval for the multiple-burst model fitted to
the microevolutionary, fossil, and node-averaged phylogenetic data.

Fig. 2. Divergence patterns are similar across major groups of vertebrates.
Taxonomic levels are denoted by color. For comparative data, smaller points
indicate pairwise divergence measures and larger points are node-averaged
divergence. Data for primates are first molar lengths and widths only.
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common to both phylogenetic and paleontological data (Fig. 4,
Fig. S3, and SI Text).
One potential explanation for a central, bounded band of di-

vergence that lasts 1 Myr is that the tendency to study rapid
evolution on microevolutionary timescales might mask a pattern
of ever-increasing divergence in the data. In particular, evolu-
tionary responses to disturbances such as introductions, anthro-
pogenic disturbance, or island isolation may be especially rapid
and bias microevolutionary data toward higher divergence val-
ues. To test for such bias, we examined the evolution of body size
according to whether a particular study represented disturbance-
mediated evolution or in situ divergence (defined in ref. 8).
Disturbance-mediated evolution is clearly more prevalent in field
and historical studies (Fig. 5) and also appears elevated in two
fossil time series that are arguably influenced by novel selective
factors: the transition of Bison antiquus to Bison bison, which is
hypothesized to have been driven by community change and
anthropogenic selection (31), and the evolution of a dwarf form
of Cervus elaphus on the Isle of Jersey (32). Clearly, we can often
identify the many causal processes that generate divergence in
body size, and these are likely to be overrepresented in our mi-
croevolutionary dataset. Although these types of causal phe-

nomena may be overrepresented in intervals spanning 1–100 y,
these same phenomena are likely to occur naturally over time-
scales of 1,000–100,000 y, and yet we see little accumulation of
divergence across these timescales.
We have taken a phenomenological approach to modeling the

stable, central band of data apparent in Fig. 1 and have not
attempted to account for that band with alternative models.
Nevertheless, because that band is similar to a stable band an-
alyzed by Estes and Arnold (21), we can conclude that none of
the several alternative models considered by Estes and Arnold
(21) can fully account for the band in Fig. 1. Those models in-
clude Brownian motion of the trait mean, Brownian and white-
noise motion of an intermediate optimum (including a stationary
optimum as a special case), steady directional movement of an
intermediate optimum, and shifts of the trait mean between al-
ternative adaptive peaks. All of these models fail either because
they require unrealistic values for microevolutionary processes
or because bounded evolution is difficult to achieve under any
set of parameter values. We conclude that some unspecified
process of bounded evolution is responsible for the band we
observe in our data (Fig. 1). This process may include short-term
movements of adaptive peaks corresponding to more or less

A B C

Fig. 3. Best-fitting time-dependent stochastic models determined by fitting by maximum likelihood. Each model was fitted to the complete dataset, as well
as to a subset including only microevolutionary and fossil data and a subset including only node-averaged phylogenetic data. Lines show the 95% confidence
intervals for the model fits using the estimated parameters presented in Table 1. (A) Multiple-burst (MB) model. (B) Single-burst (SB) model. (C) Brownian-
motion (BM) model. Also included is the expected 95% confidence interval for a Brownian-motion model of body mass evolution fitted to the mammalian
phylogenetic data, accounting for simulated measurement error (SI Text). Although the confidence intervals for both the MB and the BM model appear very
similar, the MB is a better fit to the overdispersed distribution of divergence values that occurs at intervals >1 Myr (SI Text).

Table 1. Parameter estimates and AIC scores for four model fits to the complete dataset and
subsets

All datasets: microevolutionary, fossil, and phylogenetic

Model Parameter estimates Inverse of rate parameters AIC

Bounded evolution σ̂p ¼ 0:2026 −2940.53
Brownian motion σ̂p ¼ 0:1072 σ̂bm ¼ 5:82× 10− 5 −7877.97
Single-burst σ̂p ¼ 0:0965 σ̂D ¼ 0:418 1=λ̂ ¼ 107:4438 −9018.03
Multiple-burst σ̂p ¼ 0:0958 σ̂D ¼ 0:272 1=λ̂ ¼ 107:3976 −9142.54

Multiple-burst model fit to subsets of the data

Dataset Parameter estimates

Microevolutionary and fossil σ̂p ¼ 0:0874 σ̂D ¼ 0:249 1=λ̂ ¼ 106:1642

Phylogenetic σ̂p ¼ 0:0857 σ̂D ¼ 0:217 1=λ̂ ¼ 107:3375

In all models, SDs are in units of the natural log size difference. The inverse of the rate parameters (1/λ) for the
exponential distribution and Poisson distribution in the single-burst and multiple-burst models, respectively, can
be interpreted as the average number of years until a displacement. The lowest AIC score was for the multiple-
burst model.
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regular, recurring fluctuations in the local environment (cf. Fig. 5
and ref. 33) as well as bounded displacements of adaptive peaks
within adaptive zones. The process resembles Simpson’s de-
piction of the bounded evolution of lineages as they radiate
within an adaptive zone (34, 35). Under this interpretation, the
slower time-dependent component of divergence commonly es-
timated from phylogenetic comparative data (14, 15) could then
be due to the accumulation of rare, dramatic changes in the
niche (or “primary”) optimum (18, 34, 36, 37). However, this
interpretation does not address the issue of what controls the
macroevolutionary dynamics of niches and results in departures
from bounded evolution over longer timescales (19, 21, 37, 38).
It is tempting to turn to climate for an explanation of evolu-

tionary bursts and suppose that the 1-Myr boundary on bounded
evolution reflects limits on long-term rates of climatic and en-
vironmental change. However, substantial changes in global cli-
mate over timescales of <<1 Myr appear to result in bounded
divergence characteristic of microevolutionary timescales, rather
than dramatically hastening phenotypic evolution (39). Although
habitat tracking by migration may mitigate the effects of such
climate shifts, the data nonetheless do not strongly support
a primary role for climate in driving phenotypic change.
What then, allows divergence to accumulate above 1 Myr, but

not below? A particularly elegant explanation is provided by
Futuyma’s ephemeral-divergence model. Futuyma argues that
although continuous, rapid evolution often occurs in local pop-
ulations, the mosaic of niches and diverse adaptive optima of
wide-ranging species prevents local evolutionary changes from
spreading across the entire range (9, 40–44). Consequently, the
variance of the stationary fluctuations, σ2P, that we estimate in our

models could be interpreted as measuring the among-population
geographic variation that results from ephemeral divergence in
phenotypes responding to local selective pressures. Selective
pressures that cause displacement of the optimum at the species
level could reflect the same kind of disturbances that we observe
occurring at the population level, but spread across a species’
entire range. Such significant, range-wide changes in selective
optima may be sufficiently rare to explain the observed pattern of
bounded evolution on timescales <1 Myr. Note that range-wide
changes in adaptive optima can be accomplished by two means:
either by the global spread of a selective factor across a species’
range or by the contraction of the species’ range itself (9, 41).
Consequently, any process that reduces the range of a species,
including speciation and taxon cycles, can potentially result in
a displacement in phenotype by subsampling from the set of
previously occupied adaptive niches (e.g., sampling from the
distribution estimated by σ2P). Species life spans are typically
identified as spanning 1–5 Myr (28, 45–47) and taxon cycles have
been described as spanning from 10,000 y to 10 Myr (48, 49),
providing a suggestive correspondence to the rate of accumula-
tion in phenotypic evolution that we observe in the data.
Our results are qualitatively consistent with recent analyses of

body-size evolution that have fitted phenomenological models
to data on a more limited timescale and with more taxonomic
constraint than the data that we examine here. Gillman (27)
identified the striking regularity with which body-size range
increases with time on macroevolutionary timescales, but did not
observe this phenomenon’s relationship to bounded microevo-
lutionary divergence due to limited sampling on short timescales.
Other studies used various large comparative datasets to com-
pare the fit of Brownian motion, an Ornstein–Uhlenbeck pro-
cess, and an early-burst model in which a Brownian motion rate

A

B

Fig. 4. Linear regressions of interval on the logarithm of absolute di-
vergence, ln(jdivergencej + 0.001). A positive linear relationship is predicted
from Brownian-motion models of evolution. (A) AIC scores for the fit of the
microevolutionary, fossil, and node-averaged phylogenetic data to linear
regressions. The fit of a single linear regression to the entire dataset is the
most poorly fitting model (green dashed line, AIC = 79,520). We then per-
formed a segmented regression to find the optimal breakpoint by fitting the
model iteratively while increasing the breakpoint from 0 to 8.5 log10 y with
a step size of 0.01 (solid black line). The AIC for this model reaches a mini-
mum with a breakpoint of 104.82 years (AIC = 79,059). Subsetting by datasets
and fitting a regression independently to each did not improve the fit rel-
ative to the segmented regression (red dashed line, AIC = 79,062). (B) Best-fit
segmented regression model provides a better fit to the data (solid line) than
a model where independent linear regressions are fitted to each dataset
(dashed lines). Datasets and the corresponding regression lines are indicated
by color (microevolutionary, yellow; fossil, green; and phylogenetic, blue).

Fig. 5. Divergence identifiable as natural in situ variation vs. disturbance-
mediated community change demonstrates that the majority of cases of
rapid evolution over microevolutionary timescales are from identifiable
causes such as introductions, anthropogenic disturbances, and island iso-
lation. Highlighted examples include (clockwise, starting from left) in situ
evolution of Geospiza fortis in response to natural climate variation, di-
vergence in Nucella lapillus in response to an introduced predator, in-
troduction of Gambusia affinis to Nevada and Hawaii, island–mainland
divergence in Crotalus mitchelli, Holocene dwarfing of Bison antiquus to B.
bison, dwarfing of Cervus elaphus on Jersey Island, and the introduction of
Passer domesticus to North America and New Zealand. Most fossil time series
cannot be assigned to either group, but are expected to record primarily in
situ evolution of wide-ranging species. Dotted lines indicate the 95% con-
fidence interval for simulated measurement error given equal means, av-
erage within-population variance, and a distribution of sample sizes
matching those found in the data (SI Text).
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parameter declined exponentially with time (15, 16). The early-
burst model fitted best on large groups such as mammals or birds
taken as a whole (16). This success indicates that the rate of
evolution may be faster early in a radiation, but within subclades
the early-burst model was usually outcompeted by the other
models. Although Ornstein–Uhlenbeck models often are the
best-fitting models in these studies in some clades and subclades,
the restraining force is generally very weak (15, 16). Conse-
quently, the qualitative picture of linearly increasing variance
we observe over most macroevolutionary timescales is consistent
with these results (15, 16, 27). Our analysis and treatment of the
data do not allow us to make inferences about the possible role
of speciation and extinction events. Those processes may or may
not be important components in generating the patterns we
observe. In other words, our models and conclusions allow for
the possible existence of a correlation between evolutionary
change and speciation and extinction events (29).
We believe the path forward will involve explicit microevolu-

tionary interpretations of the phenomenological stochastic models
used in this and similar studies (15, 16, 29). In addition, combining
data across micro- and macroevolutionary timescales should facil-
itate interpretation of model results in terms of adaptive landscapes
and ecological processes. Finally, understanding how landscape
dynamics scale across species ranges is a neglected step that needs
to be taken. We may need more sophisticated models that bridge
between population- and range-wide evolution to understand the
striking patterns of divergence that we have documented.

Materials and Methods
Measurement of Divergence and Interval. We log-transformed all trait meas-
urements so that divergence between any two samples is a unitless measure
of the proportional change in a phenotypic trait in factors of e. Divergence
between the means of two samples a and b is then measured as

d ¼ ðln zb − ln zaÞ=k;

where za and zb are untransformed observations in each sample. Although
the difference in mean log-scaled trait values is unitless, it is not di-
mensionless. Consequently, we divided by k, where k is the dimensionality of
the data (e.g., k = 3 for mass, k = 2 for area, and k = 1 for linear measure-
ments). We calculated divergence from time series data, tree-based com-
parative data, and longitudinal and cross-sectional microevolutionary
studies and calculated the total time for evolution as the total duration of
independent evolutionary change separating population samples (SI Text).
To minimize potential biases in trait representation across different data-
sets, we examine only a single trait class: morphometric traits correlated
with body size on the log-linear scale. Therefore, the entire dataset
approximates the evolution of a single trait: body size. Alternative stand-
ardizations are analyzed in SI Text (Fig. S1).

For each measure of divergence, we calculated a corresponding time in-
terval. A generation timescale for these intervals is natural in the sense that
many evolutionary models predict evolutionary change in generations. On
the other hand, long-term trends in divergence may reflect responses to
natural events that occur on timescales that cut across differences in gen-
eration time (e.g., tectonic processes, climate change). Consequently, di-
vergence is of interest on both timescales. Preliminary analysis indicated that
divergence patterns are more coincident on the absolute timescale and that
estimation of generation times apparently adds some systematic bias to the
overall pattern (Fig. S2). Consequently, we primarily present figures using
the absolute timescale and provide generation scaling in SI Text.

Database. We compiled datasets that measure evolutionary divergence in
size-related traits from three types of data: (i) contemporary field and his-
torical studies, (ii) fossil time series, and (iii) phylogenetic comparative data.
For the first two categories, we have drawn from the original databases of
Gingerich (7) and Hendry et al. (8), which also include the entirety of the
size-related data used in Estes and Arnold (21). We also added 29 additional
microevolutionary and paleontological studies to the dataset (SI Text and
Table S2). We have supplemented these with comparative data by using
databases of bird, mammal, and squamate body sizes and obtained time
intervals from time-calibrated phylogenies by summing the branch lengths
separating species (SI Text and Table S3). The final database includes 6,053

morphometric divergence measurements from 169 microevolutionary and
paleontological studies and 2,627 node-averaged divergence estimates
obtained from 37 time-calibrated phylogenies. The total time span of the
complete dataset ranges from 0.2 y to 357 Myr.

Because the datasets combine many types of data across many different
taxa, we risk comparing traits and taxa for which the evolutionary process is
not comparable. Consequently, we examined patterns in the dataset for
specific taxonomic groups (mammals, birds, squamates, and primates). For
squamates, we used data on body-size divergence between mainland and
land-bridge island populations, using the age of last connection between
populations to estimate the time interval. For primates, we examined a single
trait, first-molar size. By measuring a homologous trait in a single clade across
the range of timescales included in the full dataset, we reduce the compli-
cations resulting from standardization. The first-molar size is ideal for this
purpose as it is among the most abundant fossilized remains in primates and
has one of the lowest sampling variances among dental traits (50).

To visualize the effect of time on evolutionary divergence in each dataset,
we plotted divergence against time interval. We scaled the interval on the
log10 scale to obtain resolution from microevolutionary to macroevolu-
tionary timescales.

Stochastic Model Fitting.We fitted four stochastic evolutionary models to the
combinedmicroevolutionary, fossil, and node-averaged phylogenetic data by
maximum likelihood. These models are (i) BE, (ii) BM, (iii) SB, and (iv) MB
(Fig. S4). In the bounded-evolution model, divergence is modeled as in-
dependent draws from a stationary normal distribution, N(0, σ2P), so that
there is no time-span effect on the size of evolutionary changes. All three of
the remaining models include this time-independent component of di-
vergence, as well as a process that causes cumulative evolutionary change,
resulting in increasing variance in divergence among lineages with time. In
the Brownian-motion model, the distribution of replicate trait means is
a normally distributed random deviate, N(0, σ2bmt), where t is the length of
the interval. In the single-burst model, evolution is episodic. The optimum is
displaced from its original position just once with a displacement magnitude
that is a normally distributed deviate, N(0, σ2D). The timing of the displace-
ment is not constrained as in ref. 21, but instead is modeled with an expo-
nential distribution with rate parameter λ. In the multiple-burst model, we
allowed multiple displacements to occur according to a Poisson process with
rate parameter λt (as in ref. 17). As in the single-burst model, we modeled
the magnitude of individual displacements as a normally distributed random
deviate, N(0, σ2D). The distribution of phenotypes for a given number of
displacements, m, is then N(0, σ2P + mσ2D). Note that all models include
a randomly distributed normal deviate that is time independent, σ2P . For the
best-fitting model, we bootstrapped over studies (2,000 replicates) to eval-
uate the sensitivity of the parameter estimates to overrepresented studies
(SI Text and Fig. S5). More detail on models is provided in SI Text.

For each model, we derived a likelihood equation and estimated
parameters using the functions nlm and nlminb in R (SI Text) (51). In data
analysis, we assumed independence of the data, common parameters, and
no autocorrelation. Developing models to deal with the complex covariance
structure of this diverse dataset is beyond the scope of this paper. However,
although these assumptions are clearly violated in our dataset, the excep-
tional size of the database should allow us to determine what types of
models can explain the pattern and the associated parameter values, even if
the exact differences in AIC between models are inaccurate (SI Text). We
compared parameter estimates and AIC scores across models fitted to the
full dataset with models fitted to subsets of data including (i) microevolu-
tionary and fossil data only and (ii) phylogenetic data only to determine to
what extent the different datasets differ in pattern. To compare our results
to phylogeny-based model fitting, we fitted Brownian-motion models to the
largest comparative dataset in our database (mammals) using the fitCon-
tinuous function in the Geiger package (52).

To determine how much of the estimated time-independent variance
could be due to sampling error, we simulated comparisons between pop-
ulations with equal means, a within-population SD of 0.055, and sample sizes
drawn from a geometric distribution to match the sampling distribution of
typical studies found in the database (SI Text).

Linear Regressions. We calculated linear regressions of divergence on time.
We log-transformed the absolute value of divergence, d, and regressed this
value against the log10 time interval using the combined dataset of micro-
evolutionary, fossil, and node-averaged phylogenetic data. Each of the fol-
lowing regressions was fitted to these data: (i) a single linear regression to
the entire dataset, (ii) separate linear regressions for each dataset (micro-
evolutionary, fossil, and phylogenetic), and (iii) a segmented regression with

15912 | www.pnas.org/cgi/doi/10.1073/pnas.1014503108 Uyeda et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1014503108/-/DCSupplemental/pnas.201014503SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1014503108


a single breakpoint. We compared the fits of these regressions using AIC to
determine the best fitting model and whether different patterns exist be-
tween datasets (SI Text).
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