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Abstract
This Letter describes a chemical lead optimization campaign directed at VU0238429, the first M5-
preferring positive allosteric modulator (PAM), discovered through analog work around
VU0119498, a pan Gq mAChR M1, M3, M5 PAM. An iterative parallel synthesis approach was
employed to incorporate basic heterocycles to improve physiochemical properties.

In the course of our Program to develop allosteric ligands for GPCRs,1–6 we recently
described the identification of VU0119498 (1), a pan Gq muscarinic acetylcholine receptor
(mAChR) M1, M3, M5 positive allosteric modulator (PAM).7 Application of an iterative
parallel synthesis approach identified key structural elements within the VU0119498
scaffold that eliminated M3 and M5 activity affording VU0366369 (2), a highly selective M1
PAM (M1 EC50 = 0.83 µM, >30 µM vs. M2–M5).8 Further SAR discovered a critical 5-
OCF3 moiety on the isatin core that engendered selective M5 activity that led to the
development of the first M5 PAM, VU0238429 (3).9 Optimization of VU0238429, again
employing iterative parallel synthesis, led to the development of VU0365114 (4) and
VU0400265 (5) with excellent selectivity for the M5 subtype (Fig. 1).10 While 4 (M5 EC50 =
2.7 µM, >30 µM vs. M1–M4) and 5 (M5 EC50 = 1.9 µM, >30 µM vs. M1–M4) marked
notable advances for the study of M5 function with small molecule tools, both are lipophilic
compounds (logPs >4.5) with limited solubility and overall poor physiochemical
properties.8–10 This Letter, describes efforts to identify alternatives for both the 5-OCF3
moiety, and heterocyclic replacements for the phenyl rings that would retain M5 potency and
subtype selectivity while providing basic nitrogen atoms from which salts could be formed
to improve solubility and physiochemical properties.

Our optimization strategy is outlined in Figure 2, and as SAR with allosteric ligands is often
shallow, we employed an iterative parallel synthesis approach.11 For the first round of
parallel synthesis, we first held the biphenyl moiety constant and surveyed a diverse range of
substituents (lipophilic, polar, basic and acidic functionalities) in the 5-position as possible
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replacements for the 5-OCF3 moiety. Libraries were prepared according to Scheme 1,
wherein 5-methoxyisatin 6 is alkylated with 4-bromobenzyl bromide to provide 7 in 65%
yield, followed by a microwave-assisted Suzuki coupling to install the biaryl motif affording
8 in 82% yield. A subsequent BBr3-mediated demethylation delivered the key substrate 9 for
library production in 83% yield. Depending on the electrophile, a number of alkylation/
SNAr/Mitsunobu conditions were employed to deliver the final 44 library members 10.12

The library was then triaged by a single point (10 µM) screen for their ability to potentiate
an EC20 of ACh in M5-CHO cells (Fig. 3). Surprisingly, not a single library member 10 was
able to significantly potentiate the EC20 of ACh in M5-CHO cells; however, three analogs
10ee, 10gg and 10kk, all containing a basic amine, did decrease the ACh EC20, suggesting
that they may be putative antagonists or NAMs. Thus, the 5-OCF3 was essential for M5
PAM activity and would be retained in future libraries.

In parallel with the library work, we prepared a number of singleton analogs (Fig. 4)
following the synthetic routes outlined in Scheme 1. In the related M1 PAM series, we found
that strategic introduction of fluorine atoms maintained M1 selectivity while increasing
potency.8,13 In the present case, as with 11 and 12, this strategy did not translate well into
the M5 PAM series, leading to a loss in both potency and efficacy. In our M4 PAM series, a
piperonyl moiety was equipotent to a 4-OMe group (as in 3); this modification was also
productive here, providing 13, a highly efficacious M5 PAM of comparable potency to 4.
Finally, we surveyed installation of the biphenyl and phenyl ether moieties in the 3-position
versus the 4-position, 14 and 15, respectively, but all M5 PAM activity was lost (M5 EC50
>30 µM). In addition, replacement of the isatin ketone carbonyl with either a tertiary alcohol
or a spirocyclopropane resulted in analogs devoid of M5 PAM activity. These data
influenced the design of subsequent heterocyclic-containing libraries.

Based on the preceding data, the next library was designed wherein the 5-OCF3 was held
constant, the benzylic ring was retained as phenyl and the 4-position of the benzylic phenyl
ring was substituted with various heterocycles (Scheme 2). 5-Trifluoromethoxyisatin 16 was
alkylated with 4-bromobenzyl bromide to provide 17 in 99% isolated yield. Suzuki
couplings with heterocyclic boronic acids delivered analogs 18 in low yields ranging
between 9% to 18%. From this effort (Fig. 5), three analogs displayed M5 PAM activity
comparable to 4 (M5 EC50s 1.6 to 2.8 µM), but with low efficacy (M5 ACh Max <60%).

We then replaced the benzylic phenyl ring with either a 2- or 3-pyridyl ring and explored
aryl and heteroaryl rings in the 4-position (Scheme 3). Thus, 5-trifluoromethoxyisatin 16
was alkylated with either 5-bromo-2-(bromomethyl)pyridine or 5-(bromomethyl)2-
chloropyridine to provide 19 and 20, respectively in 98% isolated yields. Suzuki couplings
with heterocyclic boronic acids delivered libraries of analogs 21 and 22.

As shown in Table 1, this effort produced several active analogs with a balance of M5
potency and efficacy. Notably, the 3-pyridyl analogs 22 and the chloro intermediate in this
series 20 proved to be uniformly active, affording M5 PAMs with modest potency (M5
EC50s 2.4 to 4.4 µM and 50–80% M5 ACh Max). Interestingly, heterobiaryl analogs 21b
and 21c were devoid of M5 PAM activity, while the phenyl congener 21a was of
comparable potency to 4, but with diminished efficacy (47% M5 ACh Max). Gratifyingly,
HCl salts could be generated for analogs 21 and 22 with improved solubility across vehicles
as compared to 4. Moreover logP was reduced by an order of magnitude (logP = 4.6 for 4
whereas logP = 3.6 for 22a and logP = 3.0 for 22b).

Finally, we prepared a small library based on biaryl ether 5, replacing the distal phenyl ring
with various heterocycles. Chemistry to access these analogs proved arduous under Ullmann
coupling conditions. Therefore, our synthetic route (Scheme 4) employed methyl 4-
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hydroxybenzoate 23 for SNAr reactions with heteroaryl chlorides to produce analogs 24.
Reduction with DIBAL delivered benzylic alcohols 25 which were then converted to the
corresponding bromides 26 and employed in alkylation chemistry with 16 to deliver analogs
27.

Four analogs 27a–d displayed M5 PAM activity (Fig. 6). The phenyl moiety of 5 could be
replaced with 2-pyridyl (27a, M5 EC50 = 3.2 µM, 46% ACh Max), 6-fluoro-2-pyridyl (27b,
M5 EC50 = 1.5 µM, 62% ACh Max), a 6-methoxy-2-pyridyl (27c, M5 EC50 = 2.2 µM, 51%
ACh Max) or a 2-thiazolyl (27d, M5 EC50 = 2.8 µM, 58% ACh Max). Again, HCl salts
could be generated for analogs 27 with improved solubility across vehicles as compared to
5. Moreover logP was reduced by an order of magnitude.

From this effort, two analogs emerged 22a (VU0415478), a heterobiaryl derivative, and 27b
(VU0414747), a heterobiaryl ether congener, worthy of further evaluation. In acetylcholine
fold-shift assays at a standard 30 µM concentration, 22a elicited a robust 14-fold leftward
shift and 27b displayed a 6-fold leftward shift of the ACh concentration response curves
(Fig. 7). 22a was found to possess ~20% allosteric agonism. Notably, the fold-shifts were
equivalent to those of the phenyl analogs 4 (10-fold shift) and 5 (5-fold shift). We then
evaluated selectivity of these heterocyclic analogs versus the other mAChRs. Using a 30
µM, fold-shift selectivity assay protocol,2–7 neither 22a nor 27b showed any significant
effect on M1–M4; thus, 22a and 27b are highly selective M5 PAMs. Moreover, the
diminished lipophilicity translated directly into a cleaner ancillary pharmacology profile. For
example, 5 showed significant activity (>50% inhibition at 10 µM) for 32 targets in a
panel14 of 68 GPCRs, ion channels and transporters which limited its utility as a tool
compound to study selective M5 activation. In the same assay panel, 27b was found to
possess modest activities for 11 of the 68 targets, and only significant activity at NET and
H1.

In summary, an iterative parallel synthesis approach rapidly identified key heterocyclic
replacements for phenyl moieties in two related biaryl and biaryl ether M5 PAM scaffolds.
SAR was steep, but key analogs 22a and 27b maintained M5 PAM activity, robust leftward
shifts of the ACh CRC and mAChR subtype selectivity. In addition, HCl salts could be
formed and logP was reduced by an order of magnitude. Further in vitro pharmacology and
electrophysiology studies with 22a and 27b are in progress and will be reported in due
course.
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Figure 1.
HTS lead VU0119498, a pan Gq mAChR M1, M3, M5 PAM which was optimized to
provide both an M1 selective PAM, VU0366369, and an M5 preferring PAM, VU0238429.
Further optimization of VU0238429 led to the development of two highly selective M5
PAMs, VU0365114 and VU0400265. Data represent means from at least three independent
determinations with similar results using mobilization of intracellular calcium in M1–M5
CHO cells (M2 and M4 cells co-transfected with Gqi5).
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Figure 2.
Optimization strategy for VU0365114 (4), a highly selective M5 PAM.
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Figure 3.
ACh EC20 triage screen of 44 analogs 10a–10rr at 10 µM in M5-CHO cells by intracellular
calcium mobilization assay. Data represent means from at least three independent
determinations with similar results.
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Figure 4.
Singleton analogs designed to test key design elements to influence heterocyclic library
design.
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Figure 5.
M5 PAM analogs 18a–c with heterocycles in the 4-position of the biaryl motif.
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Figure 6.
M5 PAM heterobiaryl ether analogs 27a–d.
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Figure 7.
Human M5 ACh fold-shift assay at a standard 30 µM concentration for heterocyclic analogs
22a (VU0415478), a heterobiaryl derivative, and 27b (VU0414747), a heterobiaryl ether
congener.
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Scheme 1.
Reagents and conditions: (a) 4-bromobenzyl bromide, K2CO3, KI, DMF, rt, 48 h (65%); (b)
PhB(OH)2, 5 mol % Pd(PPh3)4, 1.0 M aq. Cs2CO3, THF, mw, 120 °C, 20 min (82%); (c)
BBr3, DCM, 0 °C – rt, 2 h (83%); (d) R-X, Cs2CO3, KI, DMF, mw, 120 °C, 30 min (avg.
20% for 31 analogs 10); (e) ROH, PS-PPh3, DIAD, THF, rt (avg. 4% for 10 analogs 10); (f)
Het-X, Cs2CO3, DMF, 160 °C, 20 min (avg. 10%, 3 analogs 10).
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Scheme 2.
Reagents and conditions: (a) 4-bromobenzyl bromide, K2CO3, KI, DMF, rt, 48 h (99%); (b)
Het-B(OH)2, 5 mol % Pd(PPh3)4, 1.0 M aq. Cs2CO3, THF, mw, 120 °C, 20 min (9–18%).
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Scheme 3.
Reagents and conditions: (a) 5-bromo-2-(bromomethyl) pyridine or 5-(bromomethyl)2-
chloropyridine, K2CO3, KI, DMF, rt, 48 h (98%); (b) (Ph)Het-B(OH)2, 5 mol % Pd(PPh3)4,
1.0 M aq. Cs2CO3, THF, mw, 120 °C, 20 min (5–11%).
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Scheme 4.
Reagents and conditions: (a) Cs2CO3, DMF, 130 °C, 5–12 h (57–91%); (b) 1 M DIBAL,
toluene, 0 °C to RT, 2 h (86–94%); (c) PBr3, CH2Cl2, 0 °C (19–53%); (d) 16, K2CO3, KI,
DMF, mw, 120 °C, 30 min, (5–32%).
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Table 1

Structures and activities of analogs 21 and 22.

Cmpd R M5EC50 (µM)a M5 %Ach Maxa

20 Cl 2.4 80

21a Ph 3.1 47

21b 3-pyridyl >30 ND

21c 4-pyridyl >30 ND

22a Ph 3.8 76

22b 3-pyridyl 4.0 53

22c 4-pyridyl 4.4 50

a
Average of at least three independent determinations.
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