
The Thrombospondins

Josephine C. Adams1 and Jack Lawler2

1School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
2Division of Experimental Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School,
Boston, Massachusetts 02215

Correspondence: jo.adams@bristol.ac.uk; jlawler@bidmc.harvard.edu

Thrombospondins are evolutionarily conserved, calcium-binding glycoproteins that
undergo transient or longer-term interactions with other extracellular matrix components.
They share properties with other matrix molecules, cytokines, adaptor proteins, and chaper-
ones, modulate the organization of collagen fibrils, and bind and localize an array of growth
factors or proteases. At cell surfaces, interactions with an array of receptors activate cell-
dependent signaling and phenotypic outcomes. Through these dynamic, pleiotropic, and
context-dependent pathways, mammalian thrombospondins contribute to wound healing
and angiogenesis, vessel wall biology, connective tissue organization, and synaptogenesis.
We overview the domain organization and structure of thrombospondins, key features of
their evolution, and their cell biology. We discuss their roles in vivo, associations with
human disease, and ongoing translational applications. In many respects, we are only begin-
ning to appreciate the important roles of these proteins in physiology and pathology.

Thrombospondins (TSPs) comprise a con-
served family of extracellular, oligomeric,

multidomain, calcium-binding glycoproteins.
In general, basal metazoa and protostomes
encode a single TSP in their genomes and deu-
terostomes have multiple TSP genes. The TSPs
of mammals have many complex tissue-specific
roles, including activities in wound healing and
angiogenesis, vessel wall biology, connective
tissue organization, and synaptogenesis. These
activities derive mechanistically from interac-
tions with cell surfaces, growth factors, cyto-
kines, or components of the extracellular
matrix (ECM) that collectively regulate many
aspects of cell phenotype. Emerging evidence
on the functions of TSPs in invertebrates

suggests that ancient functions include bridging
activities in cell–cell and cell–ECM interactions.
Knowledge of TSP domain structures provides a
rational basis for understanding their roles in
vivo and associations with human disease and
is assisting ongoing translational applications.

DOMAIN ARCHITECTURE AND DOMAIN
STRUCTURES

The domain architectures of representative TSP
polypeptides are shown in Figure 1A. The invar-
iant carboxy-terminal regions comprise a series
of EGF-like domains, thirteen calcium-binding
type 3 repeats, and a carboxy-terminal domain
structurally homologous to the L-type lectin

Editors: Richard O. Hynes and Kenneth M. Yamada

Additional Perspectives on Extracellular Matrix Biology available at www.cshperspectives.org

Copyright # 2011 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a009712

Cite this article as Cold Spring Harb Perspect Biol 2011;3:a009712

1



domain. This domain organization is the hall-
mark of a TSP and has also been termed the
“signature” domain (Adams and Lawler 1993;
Carlson et al. 2005). The amino-terminal halves
of TSPs are much more varied in domain
composition, with the laminin-G like (LG)
amino-terminal domain (NTD) being the most
widely conserved domain. The discoidin domain
or Type 2 chitin-binding domains are present in
some TSPs of invertebrates (Fig. 1A). A highly
prevalent, although not invariant, feature of
TSPs is an a-helical coiled-coil domain located
adjacent to the NTD (red line in Fig. 1A) that
mediates cotranslational oligomerization via for-
mation of a left-handed super-helix. Vertebrate
TSPs assemble either as trimers (subgroup A,

comprising TSP-1 and TSP-2) or pentamers
(subgroup B, comprising TSP-3, TSP-4, and
TSP-5/COMP; TSP-5 is also known as cartilage
oligomeric matrix protein [COMP]) (Lawler
et al. 1985, 1995; Sottile et al. 1991; Mörgelin
et al. 1992; Qabar et al. 1995). Residues important
for pentamerization have been identified by
mutational studies of the COMP/TSP-5 coiled-
coil (Gunasekar et al. 2009). Oligomerization of
TSPs is stabilized by intersubunit disulfide bonds
formed between cystine residues adjacent to the
amino-terminal end of the heptad repeats in
trimeric TSPs or the carboxy-terminal end in
pentameric TSPs (Fig. 1B) (Prochownik et al.
1989; Sottile et al. 1991; Qabaret al. 1995). Mono-
meric, dimeric, and pentameric TSPs exist in
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Figure 1. Domain architectures of thrombospondins. (A) Schematic diagram of the domain architectures of
thrombospondin family members. Key: LG ¼ laminin G-like amino-terminal domain; vWF_C ¼ von Wille-
brand type C domain; TSR ¼ thrombospondin type 1 domains; EGF ¼ epidermal growth factor-like domains;
Type 3 ¼ thrombospondin type 3 repeats; L-lectin ¼ L-type lectin-like domain; DD ¼ discoidin domain; IVR
¼ intervening region; CX2C ¼ Cys-X2-Cys domain; CB ¼ chitin-binding type 2 domain. Horizontal red lines
indicate coiled-coil domains. Vertical black lines indicate position of cysteine residues that form intersubunit
disulfide bonds. (B) Examples of the coiled-coil oligomerization domain from representative trimeric and pen-
tameric thrombospondins. Asterisks indicate cysteines that form intersubunit disulfide bonds.
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invertebrates (see also section on Evolution of
Thrombospondins).

Structures for the major domains of TSPs
have been solved by X-ray crystallography. The
NTD of TSPs 1–4 folds as a Laminin-G domain
(Tan et al. 2006). The structure of the vWF_C
domain of TSPs has not been determined but
is predicted to conform to the vWF_C domain
of collagen IIA (Fig. 2) ([Protein Data Bank—
PDB 1U5M] O’Leary et al. 2004). Each throm-
bospondin type 1 domain (TSR) corresponds to
a novel fold composed of three b-strands with
alternating orientation, stabilized by three disul-
fide bonds and cation-p bonds between highly
conserved tryptophan residues in the first strand
and two arginine residues in the second strand
(Tan et al. 2002). This folding pattern brings
together sequences from the first and second
strands to form a positively charged groove on
one surface of the TSR that is thought to rep-
resent the binding site for the CD36 receptor
(see section Major Binding Partners). Around
90 proteins containing TSR domains are
encoded in the human genome. Of those that
have been characterized functionally, many are

involved in cell–cell and cell–ECM interactions
and cell migration (Adams and Tucker 2000).
Proteins involved in axon guidance include
F-spondin, SCO-spondin, and UNC-5; others
include complement factors, proteases, and pro-
tease inhibitors (Tucker 2004).

In TSP-1 and -2, the three TSRs are followed
by three epidermal growth factor-like (EGF)
domains. TSP-3, -4, and -5/COMP and many
TSPs of invertebrates contain larger numbers
of EGF-like domains contiguous with the
coiled-coil domain (Fig. 1A). Crystal structures
have been solved for different portions of the
carboxy-terminal regions of TSP-1 ([PDB
1UX6] Kvansakul et al. 2004), TSP-2 ([PDB
1YO8] Carlson et al. 2005) and TSP-5/COMP
(Fig. 2) ([PDB 3FBY] Tan et al. 2009). Multiple
intramolecular interactions between the EGF-
like domains, the type 3 repeats, and the
L-type lectin-like domain support the concept
that this entire region folds and functions as a
single structural unit. The carboxy-terminal
region of TSP-2 has been divided into subre-
gions described as a stalk (EGF-like domains 2
and 3), a clasp (EGF-like domain 3), a wire

LG Coil vWF_C TSR EGF Type 3 L-lectin

Figure 2. Structures of the domains of subgroup A thrombospondins. The crystal structures of LG (PDB 2ERF)
and the second and third TSRs (PDB 1LSL) of TSP-1, and the carboxy-terminal region/signature domain of
TSP-2 (PDB 1YO8) are shown. The vWF_C domain of TSP-1 is modeled on the solution structure of the
vWF_C domain of collagen IIA (PDB 1U5M). Each domain is shown in a color gradient from blue at the amino
terminus to red at the carboxyl terminus. The black spheres represent calcium ions. Note that the domains are
not shown at the same scale.
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(the type 3 repeats), and the L-type lectin
domain (Carlson et al. 2005). The thirteen
type 3 repeats form an unusual protein struc-
ture in which a series of 26 calcium binding sites
(DxDxD/N) are stabilized by disulfide bonds
between adjacent repeats, calcium, and interac-
tions with the L-type lectin domain (Kvansakul
et al. 2004; Carlson et al. 2005). Removal of cal-
cium leads to disassociation of the type 3 repeats
from the L-type lectin domain (Annis et al.
2007). Two classes of type 3 repeat motif, [N]
and [C], can be distinguished by their sequence
length, the way in which the calcium ions are
bound, and their interactions with water mole-
cules (Kvansakul et al. 2004; Carlson et al. 2005;
Tan et al. 2009). The importance of the type 3
repeats for the correct folding of the entire
carboxy-terminal region is emphasized by
the fact most point or single amino acid dele-
tion mutations of human TSP-5/COMP that
lead to pseudoachondroplasia (PSACH) or
multiple epiphyseal dysplasia (EDM) occur in
this region and disrupt protein conformation
and calcium binding (see section TSP-5/
COMP and PSACH). Coding polymorphisms
in the carboxy-terminal regions of TSP-1 or
TSP-4, or COMP-equivalent mutations in

TSP-2 also affect calcium-binding and protein
conformation (Stenina et al. 2003; Carlson
et al. 2008a,b) (see section TSP Single Nucleotide
Polymorphisms and Disease).

The carboxy-terminal L-type lectin-like
domain contains 15 b-strands in two curved
antiparallel b-sheets and also binds calcium
ions (Kvansakul et al. 2004). All TSPs contain
the sequence DDDYAGF in the loop between
the b5 and b6 strands and two calcium ions
are coordinated by the DDD motif. A third
calcium-binding site is in close proximity to
the DDDYAGF sequence and, in TSP-1, D956
and D975 coordinates a fourth calcium ion
(Kvansakul et al. 2004; Tan et al. 2009).

EVOLUTION OF THROMBOSPONDINS

TSPs are exclusive to the metazoa. However,
most of their component domains have pre-
metazoan origins (Fig. 1). TSP pentamers ap-
parently arose very early in the metazoa and
have been highly conserved. Most protostomes
and inferred basal metazoa encode a single
TSP with the general domain organization of
subgroup B TSPs and with a pentamerizing
coiled-coil (Figs. 1 and 3). It appears that gene
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Figure 3. Model for the evolution of thrombospondins within the metazoa. FSGD ¼ fish-specific genome
duplication. (Diagram is a development of a figure originally published in Bentley and Adams [2010]. It is
reprinted, with permission, from Oxford University Press # 2010.)
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duplication and domain-shuffling events took
place on the deuterostome stem lineage because
all modern deuterostomes, urochordates, and
cephalochordates encode three to four TSPs
per genome. These include two novel forms:
the TSP-A domain architecture and TSP-DD,
a monomeric form with an amino-terminal
discoidin-like domain that was lost from the
vertebrate lineage (Figs. 1 and 3). Interestingly,
TSP-As of Ciona, sea urchin, and acorn worm
have all the major domains of TSP subgroup
A yet do not contain a coiled-coil (Fig. 1A).
The simplest explanation is that the trimerizing
coiled-coils of TSP-1 and TSP-2 evolved sepa-
rately from the pentamerizing coiled-coils
(Bentley and Adams 2010).

TSP evolution in vertebrates involved fur-
ther gene duplications, likely resulting from
the genome-wide duplications that occurred
early in the vertebrate lineage, plus subsequent
gene losses resulting in a total of five TSP genes
in modern tetrapods (Fig. 3 and Table 1). A
third genome duplication took place in the
ray-finned fish lineage resulting in additional
paralogs (Table 1) (McKenzie et al. 2006; Wu
et al. 2009). Across both bony fish and tetra-
pods, orthologous TSP genes display conserva-
tion of synteny (Table 1) and Thbs3, Thbs4,
and Thbs5/COMP are located in paralogous
genomic regions, indicating their evolution as
duplicated genes within the vertebrate lineage
(Fig. 3). Interestingly, Thbs5/COMP of bony
fish encodes a protein that is most closely
related in sequence to tetrapod TSP-4 (even
though the Thbs5/COMP gene product of

both bony fish and tetrapods lacks an LG-NTD)
(McKenzie et al. 2006). These data support the
model that duplication of a Thbs4-like gene pro-
vided the origin for Thbs4 and Thbs5/COMP
(Fig. 3). This model implies that TSP-5/
COMP protein sequence has diverged faster in
tetrapods than in bony fish, and thus might be
evolving distinct functions in tetrapods.

CELL BIOLOGY OF THROMBOSPONDINS

Expression and Synthesis of TSPs

Data on the tissue expression profiles of TSPs
have been collected from adult human or mouse
tissues or mouse or chicken embryos; studies
of other organisms are more fragmentary
(Table 2). TSP-1 and TSP-5/COMP mRNA
and protein are regulated by many environ-
mental cues or pathological agents (Table 3).
The synthesis of TSP polypeptides involves
signal-mediated cotranslational transfer into
the lumen of the endoplasmic reticulum (ER).
Oligomerization of TSP-1 into trimers occurs
through noncovalent association of the coiled-
coil domains (Vischer et al. 1985; Prabakaran
et al. 1996). Although TSPs are predominantly
homooligomers, natural heteropentamers of
TSP-4 and TSP-5/COMP subunits occur in
tendon (Hecht et al. 1998; Södersten et al.
2006).

Quality control of TSP-1 polypeptide fold-
ing is mediated by ER chaperones (Kuznetsov
et al. 1997). BiP, calreticulin, protein disulfide
isomerase, ERp72, and grp94 are coretained

Table 1. Chromosomal locations of thrombospondin genes in representative vertebrates

Thbs

gene Human Mouse Chicken

Pufferfish

T. nigroviridis

Zebrafish

D. rerio

Thbs1 15q15 2 band F 5 1a:14, 1b:10 20
Thbs2 6q27 17 band A3 3 17 2a:13, 2b:12
Thbs3 1q21 3 band E3 Unmapped Not in genome 3a:16, 3b:19
Thbs4 5q23 13-52 Z 4a:12, 4b:4 4aa:5, 4b:21
Thbs5/COMP 19p13.1 8-22 28 1 11b

The locations of Thbs genes show conservation of synteny across the species (McKenzie et al. 2006).
aD. rerio TSP-4 paralogs were unmapped at time of publication of McKenzie et al. (2006), and in this paper NP_775333 was

designated as D. rerio TSP-4a. However, NP_001107896, encoded on Danio chromosome 5, is now known to be adjacent

metaxin-3, i.e., to have conservation of synteny with human THBS4. This gene is now designated D. rerio thbs4a.
bLocation according to Zv8 genome assembly.
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Table 2. Tissue expression patterns of thrombospondins in vertebrates and invertebrates

TSP Tissue sites of expression References

Mammalian
TSP-1 Mouse embryo: �/^widespread, most

prominent in heart, lung, intestinal
epithelium, skeletal muscle, CNS

Adult mouse or human: ^more restricted,
platelet a-granules, activated endothelium,
ovary, cornea, lens; in healing wounds of skin,
skeletal muscle, or spinal cord; neointima,
atherosclerotic plaques

Murphy-Ullrich and Mosher 1985; Raugi et al.
1987, 1990; O’Shea and Dixit 1988; Watkins
et al. 1990; Corless et al. 1992; Iruela-Arispe
et al. 1993; Hoffman et al. 1994; Hiscott
et al. 1996, 1997; Moller et al. 1996; Roth
et al. 1998; Greenaway et al. 2005

TSP-2 Mouse embryo: ^cartilage growth zone,
^skeletal muscle, ^bone, �kidney, �/^adrenal
gland, ^skin, �brain, �lung, �heart

Adult mouse: ^Adrenal cortex, ^bone marrow
stromal cells.

Adult human: �brain

Laherty et al. 1992; Iruela-Arispe et al. 1993;
Kyriakides et al. 1998; Tooney et al. 1998;

Adolph 1999; Caceres et al. 2007

TSP-3 Mouse embryo: �/^CNS, �Meckle’s cartilage,
�spinal cord, �lung, �bone, �skeletal muscle,
�diaphragm, �intestine

Adult mouse or human: �Kidney, �muscle,
intestine, �lung, �heart, �tail, �skin, �bone,
�skeletal muscle

Vos et al. 1992; Iruela-Arispe et al. 1993; Lawler
et al. 1993; Qabar et al. 1994

TSP-4 Adult mouse, rat, or human: �Heart,
�/^skeletal muscle, �diaphragm, ^tendon,
^neuromuscular junction, ^cerebellum,
�/^hippocampus, �cerebral cortex, ^retina,
^blood vessels

Adult mouse: ^adventita of arteries,
atherosclerotic lesions

Lawler et al. 1993; Arber and Caroni 1995;
Hauser et al. 1995; Chen et al. 2000; Stenina
et al. 2003; Caceres et al. 2007; Frovola et al.
2010

TSP-5/
COMP

Mouse embryo: �skeletal muscle and all
cartilaginous tissue

Adult mouse or human: ^articular cartilage,
^synovium, ^tendon, ^skeletal muscle,
^testis, ^arteries, ^eye, ^heart

Franzen et al. 1987; DiCesare et al. 1994a,b,
1997; Fang et al. 2000; Kipnes et al. 2000;
Riessen et al. 2001; Wilson et al. 2010

Avian
TSP-1
TSP-2
TSP-3
TSP-4

Gallus gallus embryo:
�CNS and floorplate, cartilage
�Cartilage growth zone, tendon
�CNS, spinal cord, lung, bone
�Cornea, early osteogenic tissue

Tucker 1993; Tucker et al. 1995, 1997

Amphibian
TSP-1

TSP-3

TSP-4

Xenopus laevis embryos:
�Fertilized eggs, in embryo after gastrulation. In

tadpole floor plate of neural tube, epidermis,
somites, notochord, and alternating
rhombomeres

�In embryo after gastrulation. In tadpole
notochord, floor plate, sensorial layer of the
epidermis, and sensory epithelia

�In embryo after gastrulation. In tadpole
somitic mesoderm and skeletal muscle

Lawler et al. 1993; Urry et al. 1998

Continued
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with TSP-5/COMP in the Golgi of chondro-
cytes from PSACH patients (see section ROLES
OF TSPS IN VIVO), suggesting that these
chaperones also participate in its normal qual-
ity control (Hecht et al. 2001; Vranka et al.
2001). Trafficking of TSPs from ER to Golgi
appears to be by COPII vesicles (Veliceasa et al.
2007). Sec23a-positive vesicles are implicated
in trafficking wild-type TSP-5/COMP to the
Golgi in chondrocytes (Fig. 4) (Saito et al. 2009).

While transiting the secretory pathway, TSP-1
becomes modified by N- and O-linked sugars
(Furukawa et al. 1989; Nishimura et al. 1992).
The TSRs undergo C-mannosylation of trypto-
phan residues within the WXXW motifs (Hof-
steenge et al. 2001) and are also modified by
the unusual disaccaride Glc-Fuc-O-Ser/Thr
through the actions of protein O-fucosyl transfer-
ase 2 (POFUT2) and b1,3-glucosyltransferase,
(b3GLT) (Kozma et al. 2006; Luo et al. 2006;

Sato et al. 2006). The biological roles of these
modifications of TSRs remain unclear; however,
mutations of b3GLT cause a genetic disorder,
Peters Plus syndrome (Hess et al. 2008).

Generally, TSPs are secreted from cells by
constitutive pathways; an exception is the
release of TSP-1 from stored platelet a-granules
that are discharged on platelet activation (Blair
and Flaumenhaft 2009). In apico-basally polar-
ized cells, TSP-1 secretion is targeted to the
basolateral membranes (Prabakaran et al.
1993, 1999; Gath et al. 1997).

Degradation of TSPs

Extracellular. After secretion, TSPs can be incor-
porated into extracellular matrices in cell cul-
ture and in vivo (Raugi et al. 1982; Jaffe et al.
1983; Vischer et al. 1985; DiCesare et al.
1994a; Schlötzer-Schrehardt et al. 2007; Adams

Table 2. Continued

TSP Tissue sites of expression References

Bony Fish
TSP-1
TSP-1a
TSP-1b

Danio rerio early embryos
Oreochromis niloticus and Oryzias latipes: �Adult

ovary with dynamic expression during the
spawning cycle, granulosa cells, skeletal
system, brain, intestine, heart, spleen

Oreochromis niloticus and Oryzias latipes:
�Gonads, theca cells of adult ovary, skeletal
system, heart, spleen

Wu et al. 2009; Zhou et al. 2009

Wu et al. 2009

TSP-2 Solea senegalensis: �in ovary, 2x up-regulated in
atretic ovary relative to vitellogenic/mature
ovary

Tingaud-Sequeira et al. 2009, EST accessions
FF284909, FF284981

TSP-5/
COMP

Solea senegalensis: �in ovary, 2x up-regulated on
vitellogenesis

Invertebrate
Drosophila

TSP
Prawn

TSP-CB

Embryo: �trunk mesoderm, wing imaginal disc,
tendon cells of pharyngeal muscles,
�/^myotendinous junction

Marsupenaeus japonicus: �/^in cortical rods of
vitellogenic and mature oocytes
Fennerpenaeus chinensis: �in hemocytes,
heart, intestine, stomach and ovary, induced
in hepatopancreas on microbial challenge

Penaeus monodon: �in ovary
Penaeus monodon: �up-regulated in lymphoid

organ on Vibrio harveyi infection

Adams et al. 2003; Chanana et al. 2007;
Subramanian et al. 2007

Yamano et al. 2004

Sun et al. 2006

Preechaphol et al. 2007
Pongsomboon et al. 2008

�Transcript, ^protein.
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et al. 2008). Alternatively, proteolytic fragments
can be generated that either have a specific
extracellular activity (Lee et al. 2006), or are
internalized for full degradation (see below)
(Fig. 4). Extracellular proteolysis of TSP-1 by
thrombin or plasmin occurs during fibrinolysis
and fibrin clot resolution (Lawler and Slayter
1981; Dixit et al. 1984; Bale and Mosher
1986) or during inflammation by elastase
(Raugi et al. 1984; Hogg et al. 1993). Cleavage
of TSP-1 by ADAMTS-1 releases antiangiogenic
fragments (Lee et al. 2006). TSP-5/COMP is a
substrate for MMP-19/-20 and ADAMTS-
4/-7/-12 (Stracke et al. 2000; Dickinson et al.
2003; Liu et al. 2006a,b) and increased COMP
fragments in synovial fluid are correlated with
joint damage in rheumatoid arthritis and osteo-
arthritis (Neidhart et al. 1997).

Intracellular. TSP-1 and TSP-2 are endo-
cytosed for intracellular degradation within

lysosomes: the rate depends on the cell type
and the expression of cell-surface glycosamino-
glycans (McKeown-Longo et al. 1984; Murphy-
Ullrich and Mosher 1987a,b; Murphy-Ullrich
et al. 1988; Chen et al. 1996a). For TSP-1, endo-
cytosis is mediated by binding of its LG-NTD to
a ternary cell-surface complex of LDLR-related
protein 1 (LRP1), extracellular calreticulin,
and heparan sulphate proteoglycans (Fig. 4)
(Godyna et al. 1995; Mikhailenko et al. 1995,
1997; Chen et al. 1996b; Orr et al. 2003; Wang
et al. 2004a).

Major Binding Partners

TSPs have many binding partners; the best-
validated are listed in Table 4. Integrin-bind-
ing by TSPs is important for their activities in
cell attachment, spreading, and migration. The
best-characterized interaction is that of the

Table 3. Factors that regulate TSP-1, TSP-4, and TSP-5

Factor Regulation /cell type Reference

Amino acids Increased TSP-1 in glomerular mesangial cells Meek et al. 2003
Angiotensin II Increased TSP-1 synthesis in vascular smooth

muscle cells
Scott-Burden et al. 1990

Cardiac overload Increased TSP-1 and TSP-4 transcripts in left
ventricle

Mustonen et al. 2008

Extracellular ATP Increased TSP-1 production by dendritic cells Marteau et al. 2005
Glucose Increased TSP-1 synthesis by mesangial cells and

vascular smooth muscle cells
Tada and Isogai 1998; Wang et al.

2004; Raman et al. 2007
Heat shock TSP-1 in endothelial cells Ketis et al. 1988
Herpes simplex virus

type 1
Suppression of TSP-1 transcript in endothelial cells Ziaie et al. 1986

Hypoxia Increased TSP-1 transcript and protein in
endothelial cells

Phelan et al. 1998

Id-1 Transcriptional repression of TSP-1; modulates
angiogenesis

Volpert et al. 2002a

KSHV Transcriptional silencing of TSP-1 by viral
microRNAs

Samols et al. 2007

Mechanical cyclic
compression

Increased TSP-5/COMP transcript in articular
cartilage explants

Giannoni et al. 2003

Nedd4 ubiquitin
ligase

Suppression of TSP-1 transcript in MEFs and heart Fouladkou et al. 2010

PDGF, HS-GAGs TSP-1 synthesis in vascular smooth muscle cells Majack et al. 1985
TGFb1 Increased TSP-5/COMP synthesis by

chondrocytes and synovial fibroblasts
Recklies et al. 1998

Ultraviolet B Decreased TSP-1 transcript in keratinocytes;
increased TSP-1 transcript in dendritic cells

Howell et al. 2004; de la Fuente
et al. 2009

J.C. Adams and J. Lawler
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single RGD motif of TSP-1 with integrin avb3
and, to a lesser extent, with aIIbb3 (Table 4)
(Lawler et al. 1988; Lawler and Hynes 1989).
The availability of this RGD motif for integrin-
binding is promoted by incomplete calcium ion
loading or reduction of disulfide bonds within
the type 3 repeats (Sun et al. 1992; Kvansakul
et al. 2004). Many cells undergo RGD-inde-
pendent attachment to calcium-replete TSP-1
or TSP-2 (reviewed in Adams 2004). Many
TSPs contain RGD and KGD potential integrin-
binding motifs at other locations in the type 3
repeats. Few of these have been tested function-
ally, however, the RGD motif of TSP-5/COMP
is implicated in binding a5b1 and, under
reducing conditions, avb3 (Chen et al. 2005).
The KGD motif of Drosophila TSP is needed
for aPS2 integrin-dependent cell adhesion in
vitro (Subramanian et al. 2007). TSP-1 and
TSP-2 also bind several non-RGD-dependent
integrins including a4b1 (Table 4). Binding
sites for integrins a3b1 and a6b1 have been
mapped to the LG-NTD, yet the physiological
significance of these remains uncertain because
the identified motifs are not fully surface-
exposed in the crystal structure (Krutzsch
et al. 1999; Calzada et al. 2003; Tan et al.
2006). However, a3b1 binding may be favored

in calcium-depleted TSP-1 (Rodrigues et al.
2001). b1 integrins are also implicated in inter-
actions with the TSRs and EGF-like domains
(Calzada et al. 2004b).

ECM incorporation is a conserved property
of TSPs and, through their multivalent struc-
tures, TSPs likely function as molecular bridges
to facilitate ECM organization. Incorporation
of TSP-1 into culture ECM depends on the
carboxy-terminal region in trimeric form.
This activity is partially inhibited by mutation
of the three highly conserved aspartic acid
residues that coordinate two calcium ions in
the L-lectin domain (see section DOMAIN
ARCHITECTURE AND DOMAIN STRUC-
TURES) (Adams et al. 2008). The DDD motif
is also part of a motif in TSP-5/COMP reported
to bind collagen IX (Table 4) (Holden et al.
2001). In vitro, TSP-5/COMP acts as a catalyst
for collagen fibrillogenesis (Halász et al. 2007;
Hansen et al. 2011). Other important interac-
tions are with glycosaminoglycans. Cocrystals
of the TSP-1 LG-NTD with heparin oligosac-
charides revealed that R29, R42, and R77 form
a positively charged patch that binds to sulfate
groups on the heparins (Tan et al. 2006,
2008). Molecular docking studies indicate that
longer heparins might also interact with other

Integrin

Endoplasmic reticulum-
oligomerization

COPII vesicles-
transport

Golgi—addition
of N- and O-Iinked
sugars

Plasma membrane—
secretion

ECM
incorporation

TGFβ
bind/activate

CD36 CD47 HS-PG LRP1

Calreticulin

α2-δ1

Extracellular proteolysis

Cytoskeleton
signaling
adhesion
migration
proliferation

Synaptogenesis

Lysosomal
degradation

Apoptosis (endothelial cells) Endocytic
uptake
Focal adhesion
disassembly

Antagonism of NO signaling

Figure 4. Overview of cellular pathways and activities of mammalian TSP-1 (not to scale).
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positively charged residues and bridge between
LG-NTDs; this might contribute to the high
affinity of heparin binding by TSP-1 (San Anto-
nio et al. 1993). R29 and R42 are in a 26 aa seg-
ment absent from TSP-3 or TSP-4, thus these
TSPs probably engage heparin through other
positively charged residues in LG-NTD.
TSP-5/COMP has no LG-NTD yet binds with
high affinity to chondroitin sulfate and heparin
(Chen et al. 2007); this is likely mediated by
positively charged patches on the surface of
the type 3 repeats and L-lectin domain (Tan
et al. 2009). Interactions with other ECM
ligands are, as yet, unmapped (Table 5).

Other interactions of TSPs are with growth
factors and proteases. The interaction with
TGFb1 is particularly complex and is specific
to TSP subgroup A members. The WSHWSPW
motif located in the second TSR of TSP-1 and
TSP-2 binds to VLAL motifs present in both
TGFb1 and its latency-associated peptide that

together form the small latent complex (SLC)
(Schultz-Cherry et al. 1995; Young and Murphy-
Ullrich 2004). Binding of SLC may serve to
localize inactive TGFb1 at specific sites within
ECM or in proximity to cell surfaces. In addition,
TSP-1 specifically activates TGFb1 by triggering
its dissociation from SLC by an interaction of
the KRFK motif (located between the first and
second TSR) with a LSKL motif proximal to the
amino terminus of the latency-associated pep-
tide (Schultz-Cherry et al. 1995; Ribeiro et al.
1999). The TSRs of TSP-1 and TSP-2 also interact
with matrix metalloprotease-2 and -9 (MMP-2 or
MMP-9) and this inhibits MMP activity (Bein
and Simon 2000). TSP-2 also modulates the
extracellular levels of MMP-2 because of endocy-
tosis of TSP-2/MMP2 complexes by LRP1 (Yang
et al. 2000, 2001).

TSP-1 binds to vascular endothelial cell
growth factor (VEGF), a potent proangiogenic
factor that is opposed in certain physiological

Table 4. Mapped binding partners

TSP domain Motif Binding partner Reference

LG-NTD Positive patch involving
R29,K32,R42,R77,K80,K81,
K106a

MKKTRGa

E17LTGAARKGSGRRLVKGPDa

A159ELDVPa

I151DCEKMENAELDVPa

HS-glycosaminoglycans

Decorin
Calreticulin

a4 Integrin
Fibrinogen

Lawler et al. 1992; Tan et al. 2006

Merle et al. 1997
Murphy-Ullrich et al. 1993;

Goicoechea et al. 2000
Calzada et al. 2004a
Voland et al. 2000

Type 1 repeats WSXWSe

CSVTCGe

W420SHWSPWc

K412RFKb

HS-glycosaminoglycans
CD36
TGF-b binding
TGF-b activationb

Guo et al. 1992
Asch et al. 1992
Schulz-Cherry et al. 1995
Ribeiro et al. 1999

Type 3 repeats RGDa,d b1 Integrin, b3 integrin Lawler et al. 1988; Lawler and
Hynes 1989; Chen et al. 2005;

KGD PS2 Integrin Chanana et al. 2007;
Subramanian et al. 2007

L-type lectin
domain

GVDFEGTFHVNTVTDDD Fibrillar collagend

Collagen IXd

Matrilin-3d

Holden et al. 2001

Binding partners of thrombospondins. The interactions listed are those for which the binding site has been mapped within

the relevant TSP domain and is surface-exposed in the domain structure, as determined by X-ray crystallography.
aIdentified in TSP-1.
bSpecific to TSP-1.
cPresent in the second type 1 domain of both TSP-1 and TSP-2.
dIdentified for TSP-5/COMP. The DDD motif is also surface-exposed in TSP-1 and TSP-2 and is conserved in most TSPs.

J.C. Adams and J. Lawler
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situations or tumors by antiangiogenic activ-
ities of TSP-1 and TSP-2 (see section Endothelial
Cells and Antiangiogenesis). In the ovary, VEGF
binding to TSP-1 results in endocytosis and
degradation via LRP1 (Greenaway et al. 2007).
In endothelial cells, CD36 and b1 integrin asso-
ciate in cis with VEGF receptor 2 (VEGFR2) and
signaling by VEGFR2 is modulated by the level
or activity of TSP-1 (Zhang et al. 2009). Also of
interest is the binding of Notch3 and its ligand
Jagged1 by TSP-2, which increases ligand-
dependent signaling through the Notch path-
way. This activity depends on Notch3 extracel-
lular domain and the presence of LRP1 on the
ligand-producing cells for the endocytic uptake
of cleaved Notch3 extracellular domain (Meng
et al. 2010). Complexes of TSP-1 with Notch3
and Jagged1 do not potentiate Notch signaling
(Meng et al. 2009).

It is interesting that many binding activi-
ties of mammalian TSPs represent either co-
evolutionary innovations in the deuterostome
lineage (for example, TGFb1 binding by the
TSR, or fibrinogen binding by LG-NTD), or
neo-functions of ancient molecules such as
CD36 or calreticulin. In contrast, binding to
glycosaminoglycans, fibrillar collagen, or RGD-
dependent integrins represent widely conserved

and likely ancestral activities. CD47 is encoded
only in amniotes and thus cannot be an evo-
lutionarily ancient ligand of TSP-1 (Bentley
and Adams 2010). These findings help us dis-
tinguish which interactions might be most
appropriate for building synthetic ECM, or
as therapeutic targets distinct from ECM or-
ganization.

Functions of TSPs at Cellular Level

Fundamental properties attributed to all TSPs
examined to date include interactions with
ECM components and glycosaminoglycans
and support of calcium-dependent cell attach-
ment. Other activities, investigated with regard
to particular TSP family members or cell types,
include the induction of cell spreading with
organization of actin-based protrusions, cell
migration, disassembly of focal adhesions,
cell-dependent stimulation or inhibition of
cell proliferation or apoptosis, stimulation of
synaptogenesis by neuronal cells, and antago-
nism of nitric oxide signaling in vascular
cells (reviewed by Adams 2001, 2004; Born-
stein et al. 2004; Zhang and Lawler 2007; Isen-
berg et al. 2009). Here, we summarize the
cellular activities of TSPs that underlie their

Table 5. Unmapped binding partners

TSP domain Binding partner Reference

LG-NTD Link domains of versican and TSG-6 Kuznetsova et al. 2006
TSR Collagen V

Glycosaminoglycans (low affinity binding)
MMP-2, MMP-9

Takagi et al. 1993
Bein and Simon 2000

Carboxy-terminal
region (EGF to
L-lectin domain)

von Willebrand factor multimersb

Fibrillar collagens (TSP-1, TSP-4, TSP-5)
Laminin, fibronectin, matrilin-2 (TSP-4)
Fibronectin (TSP-5)
Aggrecan (TSP-5)

Pimanda et al. 2004
DiCesare et al. 2002
Galvin et al. 1987
Rosenburg et al. 1998; Narouz-Ott et al.
2000; Thur et al. 2001; Mann et al. 2004;
Chen et al. 2007

Binding partners of thrombospondins—domain assigned but unmapped interactions.

HS, heparan sulphate.
aIdentified in TSP-1.
bSpecific to TSP-1.
cPresent in the second type 1 domain of both TSP-1 and TSP-2.
dIdentified for TSP-5/COMP. The DDD motif is also surface-exposed in TSP-1 and TSP-2 and is conserved in most TSPs.
eThese motifs are present in each of the type 1 domains of TSP-1 and TSP-2.
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roles in cell–cell and cell–ECM interactions.
The biological significance of these activities
is discussed in the section ROLES OF TSPS
IN VIVO.

Endothelial Cells and Antiangiogenesis

TSP-1 and TSP-2 are specific activators of apop-
tosis in microvascular endothelial cells (Dawson
et al. 1997, 1999). This leads to inhibition of
endothelial tubule formation in vitro, and the
antiangiogenic activities of TSP-1 and TSP-2
in vivo (see section ROLES OF TSPS IN
VIVO). At the molecular level, the TSRs interact
with the transmembrane glycoprotein CD36,
likely via the positively charged groove of the
TSR (Fig. 4) (Asch et al. 1992; Dawson et al.
1997; Jiminez et al. 2000, 2001; Simantov et al.
2005; Yee et al. 2009). Additional motifs within
the TSRs, implicated in heparin-binding activ-
ity, also contribute to antiangiogenic activity
(Iruela-Arispe et al. 1999).

CD36 is a multifunctional 88kDa glycopro-
tein with two small cytoplasmic domains at its
amino and carboxyl termini. TSP binding
involves a short region of the extracellular
domain (Asch et al. 1992; Frieda et al. 1995).
Inhibition of angiogenesis by TSP-1 depends
on residues in the carboxy-terminal cytoplas-
mic domain (Primo et al. 2005). Ligation of
CD36 by TSP-1 or -2 results in intracellular
association of Src family kinases, fyn or yes,
activation of their kinase activities, and phos-
phorylation of caspases and JNK leading to
apoptosis (Jimenez et al. 2001). Binding of
TSP-1 to CD36 also increases expression of
death receptors and Fas ligand, thereby sensitiz-
ing endothelial cells to apoptosis (Volpert et al.
2002b; Ren et al. 2009). Cell cycle progression
and MAP kinase signaling in microvascular
endothelial cells are also limited by a nonapop-
totic mechanism involving association of the
carboxy-terminal region of TSP-2 and VLDL
receptor (Oganesian et al. 2008). Antiangiogen-
esis by TSP-1 and TSP-2 has aroused great inter-
est as a possible therapeutic strategy to block
tumor angiogenesis or treat diabetic retinop-
athy (see sections ROLES OF TSPS IN VIVO
and TRANSLATIONAL APPLICATIONS).

Smooth Muscle Cell Migration and
Proliferation

TSP-1 is elevated in the neointima of injured
arteries or atherosclerotic plaques (Table 2). In
cell culture, TSP-1 supports smooth muscle
cell (SMC) adhesion, proliferation, and migra-
tion (Majack et al. 1986; Yabkowitz et al. 1993;
Patel et al. 1997). Under conditions of elevated
nitric oxide (NO), the effect of TSP-1 is reversed
to inhibit these cell behaviors. This is mediated
by TSP-1 binding to CD36 on SMC, resulting in
reduced intracellular cyclic GMP (cGMP) levels
(Isenberg et al. 2006a, 2007a). Activation of
SMC migration by TSP-1 is mediated by avb3
and b1 integrins (Lymn et al. 2002; Isenberg
et al. 2005) and stimulates assembly of fascin-
containing cell protrusions (Anilkumar et al.
2002).

For both smooth muscle cells and endothe-
lial cells, TSP-1 modulates adhesion and pro-
motes motility by antagonizing focal adhesion
assembly in response to ECM components
such as fibronectin. This activity depends on a
motif in the LG-NTD and is mediated by
cGMP- and PI 3-kinase-dependent signaling
(Murphy-Ullrich et al. 1996; Greenwood et al.
2000). These signals are transduced by a com-
plex of LRP1, cell-surface calreticulin and
LG-NTD (Fig. 4) (Orr et al. 2003). Signaling
from this complex via Akt also promotes cell
survival (Pallero et al. 2008).

Antagonism of Nitric Oxide Signaling

Regulation of NO signaling by TSP-1 in the
vasculature affects SMC, endothelial cells and
platelets (reviewed by Isenberg et al. 2009).
NO is an important regulator of tissue perfu-
sion, platelet function, and vascular tone that
is synthesized and released by endothelial
cells and enters vascular SMC or platelets by
diffusion. In all these cells, the intracellular
activity of NO is to bind and activate soluble
guanylate cyclase to increase cGMP; this
decreases SMC contractility, reduces platelet
adhesion and aggregation, and has biphasic
effects on endothelial cell proliferation. TSP-1
and TSP-2 inhibit NO-dependent stimulation
of proliferation (Isenberg et al. 2005). TSP-1

J.C. Adams and J. Lawler
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also counteracts SMC relaxation by NO and
increases contractility and the antithrombotic
activity of NO on platelets (Isenberg et al.
2006a, 2007b, 2008a). In endothelial cells,
the relationship between TSP-1 and NO is com-
plex and triphasic. Low doses of NO are pro-
angiogenic because of suppression of TSP-1
production (Ridnour et al. 2005), and picomo-
lar concentrations of TSP-1 inhibit NO sig-
naling in both endothelial cells and SMC
(Isenberg et al. 2005, 2006a). Antagonism of
NO signaling by TSP-1 depends on CD36 and
the inhibition of myristate uptake by CD36
(Isenberg et al. 2005, 2006a, 2007a). However,
in CD36-null cells, NO signaling is inhibited
by a mechanism dependent on the immunoglo-
bulin superfamily member CD47 (Isenberg
et al. 2006b).

Chondrocytes and Osteoblasts

All five TSPs of mammals are present in carti-
lage and bone where they have roles in cell–
ECM interactions (reviewed by Hankenson
et al. 2010). TSP-1 inhibits mineralization by
osteoblastic cells or retinal pericytes (Canfield
et al. 1996; Ueno et al. 2006), whereas TSP-2
promotes mineralization by preosteoblasts
(Alford et al. 2010). TSP-5/COMP produced
by chondrocytes is important for the organiza-
tion of other matrix components; for example,
Thbs5 – / – : colIIX – / – cultured chondrocytes
incorporate less matrilin-3 into their ECM as
compared to wild-type chondrocytes (Blum-
bach et al. 2009) (see also section TSP-5/
COMP and PSACH).

Skeletal Muscle

Skeletal myoblasts adhere and migrate on TSP-1
or TSP-2 because of formation of fascin-based
protrusions. This response depends on trimeric
assembly of the carboxy-terminal region
(Anilkumar et al. 2002). Whereas ligation of
syndecan-1 by TSP-1 strongly activates F-actin
bundling by fascin, the ligation of integrin
a5b1 by fibronectin promotes protein kinase
C-dependent phosphorylation of fascin,
thereby inhibiting its actin-bundling activity

(Adams et al. 1999; Anilkumar et al. 2003).
Muscle explant cultures have shown multiple
roles of TSP-1 in muscle, involving modulation
of collagen a1 and a2 secretion that impacts
endothelial cell outgrowth and proliferation,
and also modulation of SMC migratory
capacity (Zhou et al. 2006).

Neuronal Cells

Interactions with neuronal cells are shared
properties of mammalian trimeric and pen-
tameric TSPs. Both TSP-1 and TSP-4 support
neurite outgrowth (O’Shea et al. 1991; Arber
and Caroni 1995); in the case of TSP-4, this
may involve interplay with laminin (Dunkle
et al. 2007). TSP-1 is also important for devel-
opmental neuronal cell migration in the rostral
migratory stream. In these cells, TSP-1 binds
ApoER2 and VLDLR to induce phosphoryla-
tion of the intracellular signaling protein,
Dab1 (Blake et al. 2008).

All TSPs secreted by mammalian astrocytes
promote assembly of excitatory glutamatergic
synapses within the CNS. TSP-induced synap-
ses in culture are ultrastructurally normal and
presynaptically active, but lack postsynaptic
activity (Christopherson et al. 2005; Eroglu
et al. 2009). TSPs do not promote inhibitory
GABAergic synaptogenesis (Hughes et al.
2010). Glutamatergic synapatogenic activity is
mediated by interaction of the EGF-like
domains of TSPs with the vWF_A domain of
a2d-1, a ubiquitously expressed, nonessential
subunit of L-type calcium channel that is the
target of the drug gabapentin (Eroglu et al.
2009). Synaptogenesis as a result of this interac-
tion is independent of the cytoplasmic domain
of a2d-1; thus, it is likely that additional down-
stream processes are required for the necessary
cytoskeletal and membrane reorganizations,
the nature of which remain to be established.
In hippocampal neurons, a TSP-1/neuroligin
1 interaction was implicated in promoting syn-
aptogenesis (Xu et al. 2010). Collectively, the
data suggest that synaptogenic activity of TSPs
is mediated via a multiprotein complex on neu-
ronal cell surfaces (see also article by Barros
et al. 2010).
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ROLES OF TSPS IN VIVO

Analyses in Drosophila and Mice

Drosophila

Drosophila TSP (D-TSP) is a pentameric,
heparin-binding glycoprotein that incorporates
into ECM in culture (Adams et al. 2003). In
embryos, D-TSP expressed at segmental boun-
daries is under control of hedgehog signaling
in tendon precursor cells, or the transcription
factor stripe in differentiated tendon cells
(Chanana et al. 2007). D-TSP colocalizes with
tiggrin in the ECM at tendon/muscle cell
attachment sites. In embryos lacking D-TSP,
the longitudinal muscles detach from tendon
cells once muscle contractions begin, resulting
in lethality. Although tiggrin, PS1, and PS2
integrins are expressed normally by muscle cells
in tsp mutant embryos, these proteins do not
polarize properly at tendon/muscle cell attach-
ment sites, suggesting that D-TSP is important
for organization of the tendon ECM. D-TSP has
been identified as a PS2 integrin ligand by both
genetic and functional criteria (Chanana et al.
2007; Subramanian et al. 2007). This interac-
tion is regulated by another secreted protein of
tendon cells, slowdown. In vitro, slowdown
undergoes KGD-modulated association with
D-TSP, suggesting that it acts by steric competi-
tion (Gilsohn and Volk 2010).

Mice

Phenotypes of mice homozygous for “knock-
outs” of single TSP genes are summarized in
Table 6. All single gene knockouts are viable,
as are double Thbs1 – / – ; Thbs2 – / – mice (Agah
et al. 2002) and triple Thbs1 – / – ; Thbs3 – / – ;
Thbs5 – / – mice (Posey et al. 2008). Whereas col-
umnar stacking of chondrocytes in growth
plates is mildly disrupted in Thbs5 – / – mice,
the triple Thbs1 – / – ; Thbs3 – / – ; Thbs5 – / –

results in a stronger phenotype (Posey et al.
2008). In relation to the action of astrocyte-
secreted TSPs on synaptogenesis (see section
Neuronal Cells), formation of synapses in the
developing brains of Thbs1 – / – or Thbs2 – / –

mice is indistinguishable from that of wild-type
mice. However, Thbs1 – / – ; Thbs2 – / – mice have

a 40% decrease in the number of synapses by
postnatal day 8 (Christopherson et al. 2005).
Thbs1 – / – ; Thbs2 – / – mice recover poorly after
experimentally induced stroke, with reduced
synaptic recovery and axonal sprouting, indica-
tive of lifelong roles for TSPs in synaptic plasti-
city (Liauw et al. 2008).

Many other phenotypes of Thbs1 –/– and
Thbs2 –/– null mice (Table 6) stem from the roles
of TSP-1 and TSP-2 in inhibiting angiogenesis or
suppressing nitric oxide signaling (see section
CELL BIOLOGY OF THROMBOSPONDINS).
Thbs1 – / – mice have increased blood vessel den-
sity in cardiac and skeletal muscle, retina, and
iris (Table 6) (Cursiefen et al. 2004). In contrast,
vascular permeability response to VEGF is sig-
nificantly diminished in Thbs1 – / – mice (Zhang
et al. 2009). One antiangiogenic mechanism
of TSP-1 is by promoting clearance of VEGF
(see section Major Binding Partners), and
Thbs1 – / – retinal endothelial cells display
changes in the distribution of Src family kinases
(Wang et al. 2006; Sun et al. 2009). Increased
MMP activity in the pericellular space of
Thbs1 – / – and Thbs2 – / – mice affects both cell
adhesion and angiogenesis (Rodriguez-Manza-
neque et al. 2001; Maclauchlan et al. 2009) In
Thbs2 – / – mice, increased MMP-2 activity leads
to degradation of tissue transglutaminase,
decreased integrin activity and weaker collagen
fibrils (Agah et al. 2005).

Thbs1 – / – and Thbs2 – / – mice have oppo-
site phenotypes in wound healing models
(Table 6). Because TSP-1 is delivered to wounds
by platelets at the time of injury, wounds in
Thbs1 – / – ;Thbs2 – / – mice follow the delayed
healing pattern of Thbs1 – / – mice (Agah et al.
2002). If the survival of the tissue is limited by
ischemia, as in experimental models of kidney
ischemia/reperfusion injury or the cutaneous
flap assay, Thbs1 – / – mice recover better than
wild-type controls as a result of increased tissue
perfusion in the absence of NO signaling sup-
pression (Table 6) (Thakar et al. 2005; Isenberg
et al. 2007b). Thbs1 – / –-specific phenotypes are
caused by decreased levels of activated TGFb
(Miao et al. 2001; see section CELL BIOLOGY
OF THROMBOSPONDINS). TSP-1 activates
TGFb in wound healing, immune response,
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Table 6. Constitutive and experimentally induced phenotypes of Thbs gene knockout mice

TSP Mouse gene knockout phenotype Reference

TSP-1 Decreased embryonic viability
Spinal lordosis
Pneumonia from 1 month after birth
Reduced active TGFb in lung and pancreas
Decreased survival and osteosarcoma incidence in p53-null mice

Delayed healing of skin wounds
Increased vascular density during retinal development
Reduced plasma vWF multimer size
Reduced inflammation and proteinurea in experimental

glomerulonephritis

Increased inflammatory response and granulation tissue in healing
myocardial infarcts

Reduced platelet vessel wall adherence and thrombus formation on
endothelial injury

Reduced smooth muscle cell activation and neointima formation after

carotid artery ligation
Reduced active TGFb in glomeruli after experimental diabetic

nephropathy
Increased tissue survival after ischemic injury

Decreased age-linked susceptibility to ischemic injury
Resistance of soft tissue to radiation injury
Increased susceptibility and angiogenic response to experimental

inflammatory bowel disease
Accelerated atherosclerotic plaque maturation in ApoE – / – mice

Increased cardiac and skeletal muscle capillarity and exercise capacity

Lawler et al. 1998

Crawford et al. 1998
Lawler et al. 2001

Agar et al. 2002
Wang et al. 2003
Pimanda et al. 2004
Hochegger et al. 2004

Frangogiannis et al. 2005

Bonnefoy et al. 2006

Moura et al. 2007

Daniel et al. 2007a

Isenberg et al. 2007b

Isenberg et al. 2007c
Isenberg et al. 2008b
Punekar et al. 2008

Moura et al. 2008

Malek et al. 2009

TSP-2 Fragile skin, lax tendons with enlarged collagen fibrils

Twofold increase in bone density
Cortical thickening of long bones
Increased vascular density
Prolonged bleeding time
Accelerated healing of skin wounds

Increased vascularity of foreign body reaction
Altered organization of fibrotic capsule
Increased proliferation of osteoblast precursor cells
Accelerated skin carcinogenesis with increased tumor angiogenesis
Increased inflammation and angiogenesis in delayed-type

hypersensitivity reaction
Altered bone marrow ultrastructure and megakaryocyte

differentiation
Increased susceptibility to angiotensin II-induced fatal cardiac rupture
Increased osteoblastogenesis and decreased bone resorption after

ovariectomy
Increased endocortical bone formation in response to mechanical load
Increased early phase inflammatory response and MMP-2 activity in

experimental glomerulonephritis

Altered lamellar morphology of lumbar discs
Altered cartilage/bone ratio during bone fracture healing
Reduced notch3 target gene expression
Increased age-related dilated cardiomyopathy and age-related

mortality

Inhibition of adipogenesis

Kyriakides et al. 1998

Kyriakides et al. 1999a

Kyriakides et al. 1999b

Hankenson et al. 2000
Hawighorst et al. 2001
Lange-Asschenfeldt et al.

2002
Kyriakides et al. 2003

Schroen et al. 2004
Hankenson et al. 2005a

Hankenson et al. 2006
Daniel et al. 2007b

Gruber et al. 2008
Taylor et al. 2009
Meng et al. 2009
Swinnen et al. 2009

Shitaye et al. 2010

Continued
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myocardial infarction, renal fibrosis, diabetes,
experimental autoimmune uveoretinitis, and
tumor progression (Table 6). Inflammatory
cell recruitment and fibrosis are decreased dur-
ing these processes in Thbs1 – / – mice. The
immune privilege of retinal pigment epithelial
cells is maintained by TSP-1-mediated activa-
tion of TGFb (Zamiri et al. 2005). Some disease
phenotypes in Thbs2 – / – mice are related to
aging and indeed Thbs2 – / – mice display
increased age-related mortality (Table 6). Col-
lectively, these results highlight the complexity
of interpreting the diverse phenotypes of
TSP-deficient mice: in the absence of TSP-1 or
TSP-2 an extensive network of interacting pro-
teins are disrupted with multiple tissue-specific
phenotypic consequences.

Roles in Mouse Cancer Models

In general, tumor cells down-regulate TSP-1
expression to promote angiogenesis (Ren et al.
2006). This endpoint is achieved by multiple
mechanisms, including: (1) secretion of soluble
factors that down-regulate TSP-1 in surround-
ing fibroblasts (Kalas et al. 2005), (2) loss of
TSP-1-dependent inhibition of tumor growth
or endothelial cell migration by TGFb activa-
tion (Miao et al. 2001, Motegi et al. 2008), (3)
inhibition of VEGF mobilization from the
extracellular matrix by MMP-9 (Rodriguez-
Manzaneque et al. 2001), (4) down-regulation
of circulating endothelial cell progenitors
(Shaked at al. 2005), (5) induction of endothe-
lial cell apoptosis (Jimenez et al. 2000), and (6)

suppression of melanoma growth by recruit-
ment of M1 macrophages and innate antitumor
immunity (Martin-Manso et al. 2008). Mega-
karyocytes and platelets represent key sources
of TSP-1 that regulate bone marrow and tumor
angiogenesis (Kopp et al. 2006; Zaslavsky et al.
2010). The tumor-suppressive role of TSP-1 is
supported by findings that, in the absence of
TSP-1, tumors progress more rapidly in neu/
erbB2, APCMin/þ, and p53-deficient mouse
models (Lawler et al. 2001; Rodriguez-
Manzaneque et al. 2001; Gutierrez et al. 2003).

TSP-1 is reported to both inhibit and stim-
ulate metastasis. Inhibitory effects in some can-
cer models are probably secondary to inhibition
of angiogenesis (Weinstat-Saslow et al. 1994;
Hawighorst et al. 2001). Because lymphatic ves-
sels have little or no CD36 in vivo, TSP-1 does
not inhibit tumor-associated lymphangiogene-
sis or tumor cell spread to regional lymph nodes
(Hawighorst et al. 2001). TSP-1 also reportedly
mediates the antimetastatic effect of prosaposin,
the precursor form of the lipid hydroxylase acti-
vators saposin A-D (Kang et al. 2009). Contrary
to these results, TSP-1 promotes metastasis in a
transgenic model of breast cancer, likely because
of promotion of cell migration (Yee et al. 2009).
Migration of invasive breast, melanoma, or thy-
roid cancer cell lines is also promoted by TSP-1
in vitro (Wang et al. 1996; Albo et al. 1998;
Nucera et al. 2010). In several cases, increased
migration correlates with elevated activity of
extracellular proteases (Albo et al. 1998; Liu
et al. 2009). These data further underscore the
pleiotropic activities of TSP-1 in cell–ECM

Table 6. Continued

TSP Mouse gene knockout phenotype Reference

TSP-3 Transient alteration of biomechanical properties of bone (PN weeks
9–15)

Accelerated ossification of the head of the femoral bone

Hankenson et al. 2005b

TSP-4 No overt phenotype. Thbs4 – / – ; ApoE – / – mice have reduced

development of atherosclerotic lesions and reduced vascular
inflammation in lesions

Frolova et al. 2010

TSP-5/COMP No detectable skeletal phenotype in unchallenged mice
Altered growth plate organization

Svensson et al. 2002
Posey et al. 2008

See text for discussion of additional phenotypes in mice that lack multiple TSP family members.
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interactions and the differential responses of
various cell types, resulting in multifaceted
effects on tumor progression.

Data from Humans

TSP-5/COMP and PSACH

COMP/THBS5 is the causal gene for PSACH
([Online Mendelian Inheritance in Man—
OMIM177170] Newton et al. 1994; Briggs
et al. 1995; Hecht et al. 1995). Individuals heter-
ozygous for a mutant allele have shortened stat-
ure, joint laxity, joint erosion and pain, and
early onset osteoarthritis. Subsequent studies
have shown that: (1) PSACH mutations occur
in multiple locations of the coding sequence
of COMP/THBS5, and (2) mutations can also
lead to EDM1 (OMIM132400) (Posey and
Hecht 2008). Because mutations of collagen
IX or matrilin-3 also lead to forms of EDM,
the three proteins might work in concert during
cartilage ECM assembly.

In PSACH patients and, to a lesser extent,
EDM patients, the ER of chondrocytes is dilated
with alternating electron-dense and electron-
lucent layers that contain collagen II, TSP-5/
COMP, collagen IX, matrilin-3, aggrecan, and
other ECM proteins (Briggs and Chapman
2002; Merritt et al. 2007). Pulse-chase experi-
ments indicate that many TSP-5/COMP
mutants are secreted less rapidly than wild
type (Chen et al. 2008). The increased transit
time in the ER results in increased interactions
between the ECM proteins leading to formation
of inclusions and ER stress, chondrocyte death,
and premature slowing of bone growth. Some
TSP-5/COMP mutations have less severe effects
on protein secretion and these may affect extra-
cellular functions of TSP-5/COMP.

Because gene deletion of Thbs5/COMP has
minor phenotypic consequences in mice
(Table 6), the concept of silencing TSP-5/
COMP expression, to reduce the burden of
mutant TSP-5/COMP in chondrocytes, is gain-
ing interest as a possible therapeutic strategy. A
hammerhead ribozyme against the common
D569del mutation significantly reduces mutant
TSP-5/COMP mRNA levels in chondrocytes
(Alcorn et al. 2009). Reduced TSP-5/COMP

levels, ER stress, and intracellular retention of
other ECM proteins have been achieved with
short hairpin RNA against TSP-5/COMP in
cultured cells (Posey et al. 2010).

TSP Single Nucleotide Polymorphisms
and Disease

Single nucleotide polymorphisms (SNPs) in
TSP-1, -2, and -4 correlate with increased risk
of premature myocardial infarction (Topol
et al. 2001). However, a recent meta-analysis
failed to detect significant correlations (Koch
et al. 2008). Nevertheless, biochemical and cel-
lular analyses of the N700S and A387P SNPs of
TSP-1 and TSP-4, respectively, have identified
effects on calcium binding, protein conforma-
tion, and interactions with cells and ECM com-
ponents of the vessel wall and platelet clot
(Stenina et al. 2003, 2005; Narizhneva et al.
2004; Carlson et al. 2008b). It is possible that
subtle differences in the patient populations
may account for the discrepancies in clinical
correlations. For example, the TSP-2 SNP corre-
lates with cases that involved plaque erosion
(Burke et al. 2010). Another TSP-2 SNP affects
skipping of exon 11 and correlates with lumbar-
disc herniation in the Japanese population.
Exon 11 encodes the third TSR of TSP-2 and
without this TSR, TSP-2 has reduced binding
to MMPs (Hirose et al. 2008).

TRANSLATIONAL APPLICATIONS

TSR Domains, Angiogenesis, and Cancer

Therapeutic strategies to exploit the antiangio-
genic activity of TSP-1 and -2 have become of
great interest (reviewed by Zhang and Lawler
2007). Approaches demonstrating significant
efficacy in mouse preclinical models include
the delivery of synthetic peptides or recombi-
nant proteins through direct injection, adeno-
associated viruses, or cells. A peptide mimetic,
ABT-510, based on the second strand of the sec-
ond TSR, was taken to phase II clinical trials by
Abbott Laboratories; however, as a single agent,
ABT-510 did not have significant clinical effi-
cacy against metastatic melanoma and renal
cell carcinoma (Westphal 2004; Ebbinghaus
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et al. 2007; Markovic et al. 2007). Recombinant
proteins that also include the RFK sequence that
activates TGFb1 (see section Major Binding Part-
ners), have increased antitumor activity in a
mouse model (Miao et al. 2001; Yee et al. 2009).
Cell-based strategies to deliver intact TSP-1,
TSP-2, or the TSRs have been developed and
have provided effective inhibition of several
experimental cancers (Streit et al. 2002; van Eeke-
len et al. 2010). ABT-510 improved the uptake
and efficacy of cisplatin and paclitaxel in a mouse
ovarian cancer model (Campbell et al. 2010), and
its activity was increased in combination with tro-
glitazone, which up-regulates CD36 expression
on endothelial cells (Huang et al. 2004). The
TSRs of TSP-1 also increase the antiangiogenic
activity of TRAIL to inhibit colon cancer in a
mouse subcutaneous model (Ren et al. 2009).
Thus, the TSRs may have important applica-
tions in combination cancer therapy. A small
molecule mimetic of the FGF-2 binding site of
TSP-1 is also in development as a potential
inhibitor of angiogenesis (Margosio et al.
2008; Colombo et al. 2010).

TSP-5/COMP Oligomerization Domain

The TSP-5/COMP coiled-coil domain has been
used to create engineered pentameric chimeras
of bioactive molecules with enhanced stability
and improved properties to activate or inhibit
specific signaling pathways (Holler et al. 2000;
Cho et al. 2004; Wang et al. 2008). Activation
of nonphysiological receptors, such as Tie2
receptor by an engineered angiopoietin-2 pen-
tamer, has also been achieved (Kim et al.
2009). The TSP-5/COMP pentamerizing
coiled-coil has wide potential for development
of high-affinity or stable ligands for clinical or
bioengineering applications.

FUTURE DEVELOPMENTS

There are many areas of TSP biology that
remain to be explored and translational areas
that are expanding. Key questions and develop-
ing areas include:

† The relationship of structure to function in
the TSP carboxy-terminal region, with benefit

of the universe of TSP sequences from in-
vertebrates.

† The mechanisms and roles of TSPs in colla-
gen fibril organization.

† The roles of TSPs in calcium homeostasis.

† The cell biology of pentameric TSPs.

† The functions of TSPs in invertebrates, espe-
cially within the ECMs of Cnidaria and
sponges.

† The conserved roles of TSPs in the ovary and
their relevance to fertilization mechanisms.

† The roles of TSPs in excitatory synaptogene-
sis, and their relevance to learning, memory,
and pain perception throughout life.

† The mechanisms and potential biological
significance of bacterial adhesion to TSPs.

† The feasibility and practicality of TSPs/TSP
interactions as therapeutic targets, especially
in cancer development and metastasis, cardi-
ovascular disease, fibrosis, and ischemia.

† The application of engineered TSP moieties
in designed molecules or synthetic cellular
environments.
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