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Abstract Recent neuropsychological research has begun

to reveal that neurons encode information in the timing of

spikes. Spiking neural network simulations are a flexible

and powerful method for investigating the behaviour of

neuronal systems. Simulation of the spiking neural net-

works in software is unable to rapidly generate output

spikes in large-scale of neural network. An alternative

approach, hardware implementation of such system, pro-

vides the possibility to generate independent spikes pre-

cisely and simultaneously output spike waves in real time,

under the premise that spiking neural network can take full

advantage of hardware inherent parallelism. We introduce

a configurable FPGA-oriented hardware platform for

spiking neural network simulation in this work. We aim to

use this platform to combine the speed of dedicated hard-

ware with the programmability of software so that it might

allow neuroscientists to put together sophisticated compu-

tation experiments of their own model. A feed-forward

hierarchy network is developed as a case study to describe

the operation of biological neural systems (such as orien-

tation selectivity of visual cortex) and computational

models of such systems. This model demonstrates how a

feed-forward neural network constructs the circuitry

required for orientation selectivity and provides platform

for reaching a deeper understanding of the primate visual

system. In the future, larger scale models based on this

framework can be used to replicate the actual architecture

in visual cortex, leading to more detailed predictions and

insights into visual perception phenomenon.

Keywords Spiking neural network � Visual cortex �
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Introduction

Spiking neural networks have been referred to as the third

generation of neural networks, which are highly inspired

from recent discovery regarding the details of neuron cell

membrane activity and potential generation (Koch 1999).

Spiking neural networks differ from conventional artificial

neural networks in that the information passed between

neurons is expressed as temporal discrete events, or spikes.

Based on dynamic discrete processing, researchers open up

fascinating new areas of study.

Simulations of biologically plausible spiking neural net-

work are a flexible and powerful method for investigating the

behaviour of neuronal systems. They are consequently used

extensively by computational neuroscientists in experiments

to model and obtain insights into the operational function-

ality of the brain. Typically these models are simulated using

software simulators, such as Neuron (Neuron Software

Simulator Tool 2010), Genesis (General Neural Simulation

System 2010) and SpikeNET (SpikeNET Neural Network

Simulator 2011). However, those existing software simula-

tion environments incur significant simulation times due to

distinct fundamental bottlenecks in traditional sequential

processing systems (Patterson and Hennessy 2003). Field

Programmable Gate Array (FPGA) based strategies provide

varying acceleration platforms and levels of reconfiguration

to deploy the rapid exploration of spiking neural network

(Gotarredona et al. 2009; Upegui et al. 2004).

FPGAs are recognised as being a suitable configurable

platform for high-speed spiking neural network simulations,

due to FPGA fabric’s highly reconfigurable nature (Wildie
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et al. 2009). However, designing an FPGA based simulator

takes significant amounts of time and hardware design

expertise are required (Gokhale and Graham 2005). It is

desirable that a fast emulation platform provides user-

friendly configure interface for general users.

In this work, we focus on delivering a configurable

FPGA hardware platform for spiking neural network sim-

ulation. Users who have basic programming skills will be

able to drive spiking neural network based on FPGA

platform via configurable user interfaces. This platform

offers significant possibility towards speeding up the sim-

ulation of the biological system with programmability.

Each individual of a neuron module can be embodied into

FPGA device with parallelism. Using pre-designed pro-

grammable HDL modules, we are able to configure hard-

ware platform using various neural network related

parameters with a graphic-based interface. The automati-

cally generated FPGA cores (bit stream files) can be

downloaded into an embedded FPGA platform. Output

data can be dumped out for observation during run time.

Neuroscience has accumulated a substantial volume of

research results in recent years, trying to explain the

computational capability of the visual system and further-

more to apply them to artificial systems (Girau and Torres-

Huitzil 2007). However, many computational models

mostly use recurrent processing through horizontal or

feedback connections to explain the primate visual system

(Satoh and Usui 2008). This work aims to test a purely

feed-forward network in the early stage of the primate

visual system. A primate vision system is implemented

using a feed-forward hierarchy network based on our

configurable multiple FPGA system. In our experiments,

pixels of a gray-value image file can be transformed into a

temporal firing rate in a given period indicating various

orientation preferences. A visualised map is generated

representing the orientation map of V1 visual cortex area.

The experimental results show our hardware implementa-

tion is capable of performing orientation selectivity at a

higher speed than a PC based solution. This work opens up

a way for more elaborate visual cortex emulations in the

future and can help to probe the biological mysteries.

Method

Architecture

As described in the pioneering research of Hubel and

Weisel, simple cells in the visual cortex (V1) are selective

for local orientation and there are excitatory lateral con-

nections between neurons of V1 with similar orientation

(Hubel and Wiesel 1962). Here we use a feed-forward

connection as a basic structure to simulate orientation

selectivity in visual cortex V1, as shown in Fig. 1.

Although this model does not thoroughly explain all

properties of a simple cell, we hope this configurable

model can help neuroscientist to run computational

experiments to qualitatively study primate visual cortex.

The digitalized data transfer from host machine to a

FPGA board is via PCIe bus. The FPGA board consists of a

two-dimensional array of neurons representing the cortical

surface, virtually connected to an input image array that

represents a receptor surface. In order to deal with realistic

images at least with 512 9 512 gray-value images, a total

480,000 neurons need to be implemented for four different

types of orientation selectivity. Therefore, the overall sys-

tem needs 1 M neurons with 2 M synapses. Even with the

latest FPGA technology, we cannot accommodate such

lager neural network into a single FPGA device. A multi-

ple-FPGA system is developed to partition the image into

four parts: upper, lower, left, right. Four parts of image will

be implemented into four FPGA devices respectively. In

the case of deployment on Xilinx virtex-4, up to 64 spiking

neuron processing units have been implemented. Using

time division multiplexed scheme, the total of four FPGA

devices emulate 1 M ‘‘virtual’’ neurons and 2 M synapses.

The development board we used is a PCIe-based board

Benney from Nallatech with four virtex-4 family FPGAs

(Nallatech Ltd 2006) populated. The board includes a user

FPGA (V4FX60) implementing PCIe bus function. The

block diagram of the multiple-FPGA system used in this

work is illustrated in Fig. 2. The input image stimuli are

read out pixel by pixel and converted to 16-bit digital sig-

nals. The digitalized signals are sent to the FPGA devices

where external currents input for spiking neural models are

produced. Two Gaussian-type filters are implemented on

each FPGA device to create a parallel model of the regular

spatial distribution of Lateral Geniculation Nucleus (LGN)

Fig. 1 A feed-forward model proposed by Hubel and Wiesel. The

multiple pixels, located on a dash rectangle block indicate a straight
line. The neurons temporal firing rates with preferred orientation are

averaged (N is the number of total aggregated neurons). The receptive

field present on this figure is only from ON channels. The OFF

channel inputs can be obtained using the same way and be combined

with ON channels
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cells (one on–off centre and one off–on centre per pixel).

Multiple outputs for different orientation preferences are

generated on the FPGAs located in slot1.

Throughout the development of the simulation of a

primate visual cortex based on spiking neural network

model, it is necessary to have a method to create various

networks, debug their behavior, and further develop a

fully-functioned primate visual system. With these goals in

mind, a design-time configurable environment is provided

so that users are able to arrange components and configure

their properties without knowing HDL programming

details. A user-friendly graphic user interface (GUI) is

implemented, which aims to provide an easy method of

configuring and controlling simulations for a wide user

base of neuroscientists. There are a set of configurable

parameters, such as number of neurons, synapses weight

bits, programmable timer, connectivity, synapses-to-neu-

ron ratio in spiking neural network simulation and com-

munication FIFO length in FPGA-based configuration. The

whole design also uses top-down hierarchy architecture so

that various neuron modules with our customised interface

can be plugged into the top modules. For instance, the

current design is using leaky IF modules, alternatively,

Izhikevich modules can be explored as well (Izhikevich

2003).

Neuron model

The first scientific model of a spiking neuron was proposed

by Hodgkin and Huxley (1952). This model describes the

neuron membrane potential in terms of the dynamic

behaviour of the various ion channels (Hodgkin and Hux-

ley 1952). However, these models contain so many

parameters that it is frequently difficult to make any

meaningful exploration of the available parameter space

(Dayan and Abbott 2001). A leaky Integrate-and-Fire (LIF)

neuron model, as one of the most basic formalisms of the

spiking behavior of neurons, is used in this work (Burkitt

2006). Classical IF neuron model is in a form of differ-

ential equations (Gerstner and Kistler 2002). We use for-

ward Euler integration to convert over discrete time-steps.

The equations for neuron firing are:

VmðnÞ ¼ Vmðn� 1Þ þ VsðnÞ � VlðsÞ if Vm\Vth

Vreset otherwise

where Vm is the membrane potential, Vm(n-1) is the

membrane potential at the previous time instant, Vl(s) is

the exponentially decreasing leaky voltage with time

constant s. The equation for Vs(n) synaptic integration is:

VsðnÞ ¼
XNs

i¼1

WiXiðnÞ

where Vs in the synaptic input contribution to the mem-

brane potential, Ns is the number of synapses, Wi are the

synaptic weights, and Xi(n) denotes the arrival of per

synaptic spike on input i at time n.

A block diagram of an individual LIF neuron is shown

in Fig. 3. The membrane potential of the LIF neuron is

implemented as a 16-bit accumulator. When the accumu-

lator exceeds a threshold, a spike output is delayed with a

programmable setting which models the axonal delay. The

membrane potential resets to the user-specified reset value

soon after the firing and in the absence of input spikes the

membrane potential decays exponentially towards resting

potential. The exponential decay function is implemented

with lookup tables that have pre-calculated exponential

decay values stored.

Due to the logical resource limitation on FPGA devices,

there are only 64 neuron processing units implemented.

Using time division multiplexed scheme, each of which

emulate 256 K ‘‘virtual’’ neurons and 2,304 K synapses.

The update period of the all neuron processing units on one

FPGA device is set at 800 ls, which constitutes a real-time

update period for biologically plausible spiking neural

network. A flow diagram for this process is shown in

Fig. 4.

Fig. 2 Block diagram of multiple-FPGA system. The system

includes four FPGA devices (XC4VLX160) which are responsible

for aggregating multiple pixels from the input images, mimicking a

feed-forward model. A multi-FPGA system in which virtual connec-

tions form a two-dimensional array of receptors onto a set of neurons

on a multiple-chip system mimic the feed-forward visual cortex. The

host machine talks to the board through a local bus. The primary

FPGA and secondary FPGA are application FPGA (XC4VLX160).

The 40bit adjacent bus transfers signals into the neighboring chip if

the spikes are generated. The high bandwidth bus with 100 bits at

200 MHz is used as inter-chip transmission
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Response generation for orientation selectivity

The receptive field depicted to the Fig. 5 is illustrative of

one type of receptive field known as the Simple Cell

(Hubel and Wiesel 1962). In this particular cell, the

inhibitory region is located in the center, not on the sides.

Using the location as the center, the weights of two

pixels are then calculated from the Gaussians function. The

distribution of the receptive field is governed by Eq. 1. The

weight Wxy from pixel (x, y) in the receptive field of an

image pixel (a, b) with center (xc, yc) is given by

Wxy;ab ¼ exp � ½ðx� xcÞ cosð/Þ � ðy� ycÞ sinð/Þ�2

o2
a

 !

þ exp � ½ðx� xcÞ cosð/Þ � ðy� ycÞ sinð/Þ�2

o2
b

 !

ð1Þ

where oa; determine the width along the major and minor

axis of the Gaussian, and / its orientation. Xc, Yc is the

center of receptive field. The ratio of oa to ob determines

the orientation sensitivities.

In FPGA design, we implement an approximation of

the Gaussian function using cascading multiple simple

filters. Four consecutive FIR filters (generated by Xilinx

Coregen 10.1) provide a good approximation to a Gauss-

ian filter.

Fig. 3 A block diagram of a single neuron model. A basic neuron

contains three things: weight and delay, input spike activation

function. The activation function take decision of output depended on

the sum of all product terms, and this product depends on input and

initial weights. The spike output is generated by a binary output 0

when the membrane voltage is below the threshold and 1 when it is

above it. This signal is fed to the output register and is combined with

the refractory control signal to ensure that the threshold is passed and

an output spike is signalled. After that, the neuron membrane voltage

is restored to its reset value

Fig. 4 A flow diagram of the time division multiplexing scheme.

With time step 1 ms, each loop could be 1000 iterations when FPGA

running at 100 MHz. Each neuron processing units read neuron data

and synapses weights from off-chip RAM and accumulated

membrane potential according to current time step value on each

iteration. The calculated values are stored in off-chip RAM after one

epoch completes

Fig. 5 The images (of pixel resolution 100 9 100) on the left show

Gaussian-type filter kernels with values of the orientation parameter

of 0�. The values of the other parameters are as follows: da = 5,

db = 6, xc = 0, yc = 0 and ø = 0
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Inter-FPGA communication

Much research has been done on developing communica-

tion interfaces for neuron processing. However, the exist-

ing designs either provide extra functionality that is not

required for this feed-forward network connection, or are

not freely available. For those reasons, we propose a spike-

driven communication controller that sends and receives

spike data to the neighbouring FPGA devices. The con-

trollers orchestrate data movement to neighbouring FPGA

devices.

These communication controllers contain the logic to

form spike data packets and generate all necessary hand-

shaking signals. The communication controllers also

comprise transmitter, receiver interfaces and asynchronous

FIFO to forming two directional channels. Both these

transmitter and receiver interfaces have 32-bit wide data

bus, end-of-packet signal and handshaking signals.

Most neurons have a large number of inputs and output

due to the all-to-all connectivity. Translating this aspect to

the case of communication controller, the communication

controller may have a larger FIFO on the receiver side and

transmitter side. A current implementation of communi-

cation controller contains eight 32bit FIFOs. This can be

configured during simulation to an appropriate size,

depending on the logical resources of FPGA devices.

Configurable computing

A design-time configure interface in our implementation

enables our prototype hardware to be configured with

various network and simulation parameters. The GUI

interface features several options we have found useful for

debugging a spiking neural network. Those options are the

number of inputs, the number of output neurons and the

number of synapses, the ratio of synapse-to-neuron, the

number of communication FIFO, the population of neu-

rons, the type of connectivity, the simulation time and the

programmable timer (Fig. 6).

Our hardware neural network platform has been imple-

mented as parameterised modules using VHDL generic

options. To create a parameterised logic function in VHDL,

the logic function’s entity declaration includes a generic

clause that lists all parameters (or ‘‘generics’’) used in the

logic function and their optional default values. Any users

can instantiate a parameterised function with a component

instantiation statement in the same way as un-parameter-

ised functions.

On the modules qualification point of view, the proposed

modules have passed both the HDL coding check following

the Xilinx coding guidelines. We use synopsys LEDA as

the checking tool to examine the generated RTL code.

When the proposed HDL program is be qualified without

any error, the floor planning and place-and-route included

in the synthesis process can be done using Xilinx free-

licence develop tool ISE9.1i. The pre-designed and reus-

able hardware modules or blocks easily reduce hardware

turnover time.

Results

Dynamics of spiking neuron

We tested network dynamics by a three-layered feed-for-

ward network with fixed connection weights and random

delay. In the layer 1: one input neuron is injected with a

fixed interval spike train which makes first layer fire at

*100 Hz; In the layer 2: 32 neurons are fully connected

with layer 1 to form a one-to-all connectivity; in the layer 2

and layer 3: two populations of 32 Neurons are fully

connected. Each population of neurons has two groups: 22

excitatory neurons and 10 inhibitory neurons. Each excit-

atory neuron is with a random delay range from 10 to

20 ms. Each inhibitory neuron is with a random delay of

20–80 ms. Excitatory weights are set in order to build up

the background activity of the network slowly. Once there

is sufficient activity, the whole excitatory group starts fir-

ing, causing the inhibitory neurons to fire a few millisec-

onds later (due to the long delay).

Figure 7 presents the results of the simulation. In this

experiment, we aim to design a simple feed-forward circuit

to test the 64 neurons and 1,024 synaptic connections

(32 9 32) functionality. In a feed-forward network, the

neural activity remained primarily driven by the external

inputs and most neurons discharge at the same time syn-

chronously. As shown in Fig. 7, the neural activities are

propagated into the next layer through a feed-forward

connection. Since there are fewer inhibitory neurons than

excitatory neurons, neurons are tuned to have higher firing

rates firstly. Since the inhibitory neurons connect to the

excitatory neurons, their firing shut down the burst peri-

odically after few milliseconds. This result shows that our

multiple-FPGA system can successfully integrate mem-

brane potential, generate spikes (if fire) and propagate

spike activity through three layers.

Effect of orientation selectivity

To help easily investigate the results of the FPGA accel-

erator, we develop a map to visualise those results.

Implementing post-processing algorithms in this design

significantly reduces I/O bandwidth requirements and thus

enables a more efficient utilization of the hardware accel-

erator. The data that is required for the representation can

be received by downloading the appropriate weight vectors
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from the external SRAM to the host machine. Additional

software has been implemented to represent the corre-

sponding synaptic weights value. The matrix of these

values can be visualized e.g. a grayscale picture whose

brightness area are depict high firing rates and whose dark

areas represent low firing rates.

The global selectivity of the receptive field can be vis-

ualised similar to biological orientation maps. A response

to bar of a preferred orientation is measured and recorded.

As shown in Fig. 8, the white bar is oriented at 45�. The

preferred orientation of receptive field is also 45�. In the

case, the preferred orientation matches the orientation of

the presented bar, the output gives rise to relatively clear

responses in which the excited region and inhibitory region

are seen side by side, in a configuration similar to that of

the simple cells.

Neurobiologists have found that various receptive fields

exist in the visual cortex (Kandel et al. 2000). The basic

principle of orientations selectivity features in visual cortex

might use receptive fields, tuned to particular orientations,

to generate the orientations selectivity map of an input

image. A 5 9 5 receptive field is a weight distribution of

one of favored orientation with 5-rows-and-5-columns 2D

array. The neuron array that has one orientation selectivity

receptive field connected to the receptor array is 60 9 80.

If we take an image with 512 9 512 pixel resolution, one

neuron array includes 12 9 16 receptive fields.

The response of the orientation selectivity to a zebra

image was measured to examine how the proposed

Fig. 6 A main screen of GUI

interface. The GUI interface is

design for drag and click model.

The neuron connectivity,

synapse-to-neuron ration and

the number of neuron in each

group are configurable. A

programmable timer can be

configured in drag menus

Fig. 7 A spike raster of the 64 neurons simulation. Experiment result

shows synchronization of firing activity in a spiking neural network

simulation in 1 s biological time

Fig. 8 Example input and response of a bar. A 45� bar is an input

image. The on-center response and the settled cortical V1 response

are shown from left to right. The LGN responses are plotted in (left)
by showing an average firing map of ON-channel. The output gives

rise to relatively clear responses in which the excited region and

inhibitory region are seen side by side
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architecture performs for a real size image. Figure 9a, b

represents the firing rates of vertical texture (90�) and

horizontal texture (0�) of the zebra image matching two

preferred orientations. The output map is patchy due to

the fixed receptive field. These results are consistent with

biological findings. The tuning selectivity will fade out

along the activation path (Kandel et al. 2000). In Fig. 9c,

the firing map is plotted as the 60� texture of preferred

orientation. As we can see, the firing rates map of 60�
is not accuracy with human observation. The discrep-

ancy might be attributed to insufficient fixed size of

receptive field. This observation conforms that the size

of receptive field can be critical in the primate visual

system.

Figure 10 also shows the dynamics of one of neuron (30,

40) in the arrays during a 100 ms biological time period.

The firing rate of a neuron is calculated within a period

100 ms. A set of typical parameter for these experiments

is as follows: vth = - 60 mv, vreset = - 70 mv, wex =

0.0023, Win = - 0.0025, sex = 8 ms, sih = 8 ms. These

parameters are adopted for neurons to perform specific

function in the proposed network, which are consistent

with biological results (Hodgkin and Huxley 1952).

Simulation speed

We run a simulation based on 512 9 512 pixel images to

evaluate the simulation performance. The time required to

perform on Intel Duo core 3.3 GHz in Matlab is 19.2 s for

500 ms real time while the FPGA based simulation

requires 2.13 s (Table 1).

It should be noted that for the software simulation,

increasing the number of orientations would result in an

increase in the simulation times as the same processor must

be used to process the data serially. For the FPGA imple-

mentation however, the simulation time would remain the

same due to the fact that multiple processors can be

designed to operate in parallel for each additional orien-

tation. It is of note that the time division multiplexing

scheme used in this work has impact on the computing

speed.

The target FPGA in this instance is four Xilinx Virtex 4

devices. For each FPGA device, the implemented design

consumed a total of 7,434 of the available 67,584 slices

(11%), 30 of the 528 dedicated multiple blocks (24%) and

502 of the 628 BRAM (80%). The place and route tools

reported that the requested 200 MHz system clock timing

constraint was successfully achieved and this clock fre-

quency was used for the actual hardware implementation.

Fig. 9 Output image of the orientation responding to a zebra image.

a Show the input image with resolution 512 9 512. b, c and d show

the output image that was obtained with the preferred orientation of

0�, 90�, 60�, respectively

Fig. 10 The output image is the firing rate with vertical orientation

selectivity. The membrane potential and synapse weights of neuron

(30, 40) are recorded

Table 1 The software and hardware processing time

Selectivity Hardware Software

2 Orientations 2.13 s 19.2 s

4 Orientations 2.13 s 38.4 s

8 Orientations 2.13 s 76.8 s
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Based on Integrate-and-Fire model our approach is suc-

cessfully used to implement topologies containing 1 M

neurons and 2 M synapses.

Discussion

Related work

Given the reconfigurable nature of FPGA technology, there

exist significant opportunities to use FPGA devices to

obtain hardware optimised performance while maintain the

inherent natural parallelism properties of biological neural

arrays (Omondi 2006). One of the earliest instances of a

spiking neural network implemented on FPGA hardware

was reported by Rossmann et al. (1996). Another appli-

cation of image segmentation has been implemented on

FPGA system using an integrated-and-fire based local

excitatory global inhibitory oscillator network model

(Chen and Wang 2002). The authors report the hardware

implementation is capable of performing segmentation at a

higher speed than a PC based solution. This model uses

neural oscillator receiving visual stimuli from pixels of the

input image. As there is a direct correlation between the

dimension of neural oscillator array and the input image

resolution, real images has a significant amount of data

lost.

One approach that provides a similar level of function-

ality to our approach is to use an optical front-end and

FPGA as a combined system (Li et al. 2010). The authors

exhibit biologically realistic simple-cell-like response

properties, including highly modulated Poisson spike

trains, orientation selectivity, spatial/temporal frequency

selectivity, and space–time receptive fields using FPGA

platform. This project aims to help setting- up electro-

physical experiments in neurobiological teaching. The

reported experiments only use standalone neuron mode.

Function of primate visual cortex

It is relatively easy to construct a spiking neural network

model and observe its dynamics, but it is much harder to

develop a model with stable behavior that computes a

specific function using spiking neural networks (Hubel and

Wiesel 2004). A top-down hierarchy model of primate

visual system was implemented in this work in order to

study function of various visual sub-systems within visual

cortex. This experiment in primate visual systems is only

used to observe the orientation selectivity, instead of

temporal response function, spatial-temple frequency

function which has been found in the primate visual cortex

(Wörgötter and Koch 1991). Since the overall system

architecture is the same and we can easily implement

different receptive field modeling based on this established

framework. A multiple-functioned neural network will be

essential to many other important visual phenomena, such

as visual attention, saccades between stimulus features

(Hunt et al. 2011).

Feed-back from high level of visual cortex area

Current hierarchical visual processing model are purely

feed-forward networks. We only simulated activation

propagates from the LGN and to V1, but not in reverse

direction. Although some physiologist believes that the

feedback connections contribute top-down pattern com-

pletion, attention and large scale object grouping, the role

of these feedback connections is not clear. As pre a pre-

viously described approach, feedback connections can be

included in our proposed model using on-board end-to-end

link (Nallatech Ltd 2006) since the address block used for

this purpose has been marked Reserved in our system.

Large-scale of neural network

We demonstrated a programmable multiple-FPGA system

that can be used for orientation selectivity in primate visual

cortex with 1 M neurons and 2 M synapses.

However, the With spike-event based inter-chip con-

nectivity, the system can be scaled into multiple FPGA

cluster with minor changes. With multiple-FPGA cluster

system, we might be able to find ways to map neural

connectivity and hardware-demanding nonlinear function-

ality onto digital devices. Through our configurable hard-

ware platform, we hope a computation paradigm could be

defined to rise up the abstraction level and counterbalance

the main implementation problems of large-scale spiking

neural models.

Conclusion

This paper represents a configurable multiple-FPGA sys-

tem for a primate visual system. We achieve two primary

goals in this work. The first is to create an architecture that

could support large scale network, given the results and

figures presented it is evident that this has been achieved.

The other goal is to develop a configurable method for

incorporating biologically inspired neural network features.

This system has advantages over software simulation in

that the computational time does not scale with the level of

the neural activity.

The long-term goal of this research is to create a pro-

grammable, general-purpose spiking-based visual process-

ing platform that can be interfaced with any spike-event

device with large-scale neural networks. It will be used for
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implementing real-time emulations of higher visual area.

The particular application envisaged by this work is a

multiple layer vision system that could receive its input

from realistic images to implement cortical simple cells,

complex cells, bipolar cells and finally view-tuned cells,

according to the model of Weidenbacher and Neumann’s

model. Currently, we have only implemented the first stage

of processing in real-time. We are working towards a full

implementation.
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