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ABSTRACT

Motivation: The ability to detect copy-number variation (CNV) and
loss of heterozygosity (LOH) from exome sequencing data extends
the utility of this powerful approach that has mainly been used for
point or small insertion/deletion detection.
Results: We present ExomeCNV, a statistical method to
detect CNV and LOH using depth-of-coverage and B-allele
frequencies, from mapped short sequence reads, and we
assess both the method’s power and the effects of confounding
variables. We apply our method to a cancer exome resequencing
dataset. As expected, accuracy and resolution are dependent on
depth-of-coverage and capture probe design.
Availability: CRAN package ‘ExomeCNV’.
Contact: fsathira@fas.harvard.edu; snelson@ucla.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The development of next-generation sequencing has enabled
routine large-scale resequencing projects, permitting us to perform
increasingly more comprehensive DNA variant analysis. However,
the cost and analytical complexity of sequencing still limit the
number of whole genomes that can be sequenced in any single
project (Teer and Mullikin, 2010). In fact, the analysis of complete
human genome sequence often interprets DNA alterations in protein
coding regions primarily. This is in practice a reasonable strategy
since ∼85% of the disease-causing mutations are found in the coding
regions or canonical splice sites (Choi et al., 2009). Thus, whole-
exome sequencing presents an effective alternative to whole-genome
sequencing and provides an unbiased, cost-effective and time-
efficient tool for the study of the genetic basis for disease. Following
the first successful application of whole-exome sequencing in re-
discovering the cause of a dominantly inherited rare Mendelian
disorder Freeman–Sheldon syndrome (Ng et al., 2009), a number
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of studies have reported similar successes (Chou et al., 2010;
Hoischen et al., 2010; Johnston et al., 2010; Raca et al., 2010;
Rehman et al., 2010; Volpi et al., 2010). Although the cost of both
genome and exome sequencing continues to fall at a rapid pace,
whole-exome sequencing has a number of advantages, including a
lower cost, more straightforward data analysis and interpretation and
significantly greater depth of coverage with a corresponding overall
improvement in data quality. Exome sequencing is rapidly becoming
a fundamental tool for genetic and functional genomic research
laboratories and a diagnostic tool in clinics. At present the main
applications of targeted exonic sequencing is for the determination
of single nucleotide variants (SNVs) or small indel variants but not
structural variation.

Structural variation, especially copy-number variation (CNV) and
loss of heterozygosity (LOH), is an important class of genetic
variability in Mendelian, common inherited diseases and cancer
(Choi et al., 2007; Deng et al., 2010; Fong et al., 1989; Jankowska
et al., 2009; Sha et al., 2009; Shuin et al., 1994; Stankiewicz
and Lupski, 2010; Wain et al., 2009). As is true of SNVs, there
are population-specific, common CNVs and rare, disease-causing
CNVs (Kato et al., 2010; Sudmant et al., 2010). Many large-scale
projects (Conrad et al., 2010a,b; McCarroll, 2010) and technological
platforms (Pinkel et al., 1998; Urban et al., 2006) have been devised
to estimate the prevalence and impact of CNV. Array Comparative
Genomic Hybridization (CGH) (Pinkel et al., 1998) and SNP
genotyping arrays have been widely used as standard methods to
detect CNV and LOH. However, with the rapid increase in genomic
and exomic sequence, there is growing interest in the use of these
data to detect CNVs.

While methods have been developed for CNV estimation in
whole-genome sequencing (Chiang et al., 2009; Yoon et al.,
2009), these methods make key assumptions that fail to hold in
the exome sequencing setting. For example, Yoon et al. (2009)
assumes random, unbiased distribution of sequence reads, such
that read depth can be modeled as a normal distribution across
the genome, and deviation from the background indicates the
presence of CNV. This random read distribution assumption breaks
down in the context of exome capture as the probes have variable
specificity and efficiency for the targeted exonic regions. The
discrete nature of exome sequences also presents problems to
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Fig. 1. Overview of ExomeCNV analysis workflows. Two workflows
are present: CNV detection and LOH detection. Each involves similar
steps of exon/position/segment-wise CNV/LOH calling, Circular Binary
Segmentation, and interval merging. User inputs and parameters are listed
at each step.

existing methods. Many whole-genome CNV detection tools use
segmentation algorithms that assume continuity of search space and
do not function properly when given discontinuous and variable
length exome sequencing data. SegSeq (Chiang et al., 2009), for
example, merges windows of a fixed length based on a log-ratio
difference statistic. Lastly, because exons are generally smaller than
insert sizes for paired-end sequencing (200–500 bp), paired-end
based CNV detection methods are not generally applicable to exome
data.

Here we present ExomeCNV, which uses depth-of-coverage
and B-allele frequencies from mapped short sequence reads to
estimate CNV (Fig. 1, left side) and LOH (Fig. 1, right side).
We describe an assessment of its validity, sensitivity, specificity
and limitations through an analysis of a melanoma tumor and a
matched normal sample. Important model assumption and the effect
of important confounding factor such as sample admixture rate are
also considered.

2 METHODS

2.1 Correlation of depth-of-coverage
To plot the correlation of depth-of-coverage (Fig. 2), we used the internal
exome data that were captured by the same Agilent SureSelect Human
All Exon Kit and sequenced on the Illumina GAIIx. Samples 1 through
4 were generated by two lanes of 76 bp single-end sequencing, Sample 5
was generated by three lanes of 76 bp single-end sequencing and Sample 6
was generated by one lane of 76 + 76 bp paired-end sequencing. For each
sample, the average depth-of-coverage per exon was normalized by dividing
the average coverage by the overall exome average coverage and then, the
normalized depth-of-coverage were compared between 15 pairs of samples.

2.2 The CNV detection algorithm
2.2.1 Power analysis of CNV Detection Consider an exon of length L,
let X and Y denote the numbers of reads, each of length w, mapped within
the exon in question in case (e.g. tumor) and control (e.g. matched normal),
respectively. The depth-of-coverage is then Xw/L and Yw/L for case and

control, respectively. Although we discuss our method in terms of depth-of-
coverage, our method is developed in terms of the count statistics X and Y .
Let NX and NY be the total numbers of aligned reads in case and control,
respectively. Define the read count ratio:

R= X/NX

Y/NY
. (1)

We divide the raw counts X and Y by the total number of reads NX

and NY to mitigate the effect of overall increase in local counts due to the
increase in total depth-of-coverage. Finally, we adjust the ratio so that the
exome-wide median is 1. Without lost of generality, we assume NX =NY

and reduce R=X/Y . Because X and Y follow Poisson distributions with
parameters λX and λY , respectively, with sufficient depth-of-coverage the
Poisson distributions converge to normals with equal means and variances:
N(λX , λX ) and N(λY , λY ). Under the null hypothesis of no CNV, λX =λY ,
and under the alternative hypothesis, λX =ρλY =ρλ. ρ indicates the copy-
number ratio; for example, ρ = 0.5 for deletion and ρ = 1.5 for duplication.
By Geary–Hinkley transformation (Geary, 1930,1944; Hinkley, 1969), let
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and t(ρ) follows the standard normal distribution. Thus, the specificity and
sensitivity are 1−α and 1−β where
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The formulas above describe the achievable specificity and sensitivity of
a given cutoff ratio R. Considering values of R from zero to infinity, we
can plot the receiver operating characteristic (ROC) curve (Supplementary
Materials). In practice, we may wish to identify a cutoff r(ρ) which yields
the desired minimum specificity and/or sensitivity for testing a particular
copy-number ratio ρ at an exon with certain depth-of-coverage and length.
This can be achieved by solving above equations, and an appropriate cutoff
r(ρ) can be chosen from a set of solutions to maximize user-selected quantity
metrics such as specificity, sensitivity or area under curve.

In the presence of sample admixture, the ‘true’copy-number ratio will tend
to 1. In particular, if a fraction c of the tumor sample has a normal copy-
number (either by contamination of normal tissue or heterogeneity within
the tumor), the copy-number ratio of this admixed sample will be ρ′ =c+
ρ(1−c). Thus, in heterogeneous samples, the only change to the method
described above is the replacement of ρ by ρ′. The admixture rate c can be
estimated from data by back-calculating c from empirical ρ′ in LOH regions
(see Supplementary Materials).

2.3 Segmentation and sequential merging
We used the circular binary segmentation (CBS) algorithm (Olshen et al.,
2004), as implemented in the R package DNAcopy (Venkatraman and
Olshen, 2007), to subdivide the genome (exome). For each segment we
combined the coverage by direct sum, and used mean coverage log ratio
as the segment’s log ratio log(R). Log ratio is used here to satisfy the input
requirement of CBS algorithm. CNV call proceeds on each segment in the
same manner as described above.

In order to achieve the most sensitive segmentation, we chose to start
CBS with parameters that produce a large number of small segments, call
CNV on the segments, and repeat the process with a smaller number of
larger segments. We then merge the CNV segments sequentially, from finest
segmentation to coarsest. By nature of CBS, finer segments are contained
within coarser segments, and in merging step, we need to resolve conflicting
CNV calls between finer segments within a larger segment. If a finer (smaller)
segment has sufficient coverage to call a CNV event, the call persists.
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However, if it does not have sufficient coverage to reject the null hypothesis
(i.e. not being called, or being called as copy-number neutral), a positive
CNV call in a larger segment overrides the negative calls. An illustration of
this sequential merging algorithm is given in the Supplementary Materials.

2.4 LOH detection
First, we consider all polymorphic positions in the exome of the control
sample, and for each of the positions, the B-allele count B is the number of
reads with non-reference- or B-allele at that position. For a polymorphic
position i, let Ni be the total number of reads mapped to that position
(i.e. depth-of-coverage); thus the B-allele count Bi follows a binomial
distribution Binomial (pi,Ni). A binomial that rejects the null hypothesis:
pi =0.5 can be used to detect LOH at each polymorphic position.

Segmentation is done using CBS algorithm based on the absolute
difference in B-allele frequencies (BAFs) |BAFi,case – BAFi,control|, where
BAFi =Bi/Ni. Within each segment, based on the realization that B-allele
frequencies deviate from the null value of 0.5 under LOH, an F-test for
equality of variance is used to detect significance increase in variance of
BAFcase from that of BAFcontrol (other statistics were also considered, see
Supplementary Materials). Finally, the LOH calls are merged sequentially
as described above.

2.5 Exome sequencing and data analysis
2.5.1 Exome sequencing High molecular weight whole genomic DNA
from matched skin and tumor pair samples of a melanoma patient
were sequenced on the Illumina Genome Analyzer (GAIIx). The UCLA
Institutional Review Board (IRB) approved the collections of the DNA
samples. The libraries were generated following the Agilent SureSelect
Human All Exon Kit version 1.0.1 protocol, and the Illumina Genome
Analyzer (GAIIx) flowcell was prepared according to the manufacturer’s
protocol. We performed three and four lanes of single-end sequencing for
each of the skin and tumor samples, respectively, within the UCLA Center
of High-throughput Biology (CHTB). The base-calling was performed by
the real time analysis (RTA) software (version 1.6) provided by Illumina.

2.5.2 Sequence data analysis Novoalign from Novocraft Short Read
Alignment Package (http://www.novocraft.com/index.html) was used to
align each lane’s QSEQ file to the reference genome. Human Genome
reference sequence (hg18, March 2006, build 36.1), downloaded from the
UCSC genome database located at http://genome.ucsc.edu and mirrored
locally, was indexed using novoindex program (-k 14 -s 3). The output
format was set to SAM and default settings were used for all options. Using
SAMtools (http://samtools.sourceforge.net/), the SAM files of each lane were
converted to BAM files, sorted and merged for each sample and potential
PCR duplicates were removed using Picard (http://picard.sourceforge.net/)
(Li et al., 2009). To retrieve the depth of coverage information of each base,
we generated a PILEUP file for each sample using SAMtools and calculated
the average coverage per capture interval using a custom script. Here, we
used processed BAM files that were used to call the SNVs while reducing
the likelihood of using spuriously mismapped reads to call the variants: the
last 5 bases were trimmed and only the reads lacking indels were retained
(Clark et al., 2009). The detailed description of the mutational landscape of
this tumor sample is in preparation.

2.6 Genome-wide SNP genotyping
Both the skin and the tumor samples were submitted to the Southern
California Genotyping Consortium (SCGC) at UCLA for genotyping on
the Illumina Omni-1 Quad BeadChip, which consists of 1 140 419 SNPs
(1 016 423 genotyping probes and 123 996 CNV probes) distributed across
the genome. The Illumina GenomeStudio V2010.1 Genotyping Module
version 1.6.3 was used to calculate the BAF values and the log R ratio
(LRR) for each probe and the copy number aberration (CNA) and LOH of the

autosomes were inferred from these values using the genoCN R package (Sun
et al., 2009). The genoCNA function was used with the default parameters.

2.7 Copy-number analysis using ERDS
The same PILEUP file we used to generate the average coverage per capture
interval was used to run Estimation by Read Depth with SNVs (ERDS)
to demonstrate the need to control for the variability of capture of exons
observed in exome sequencing (M.Zhu et al., manuscript in preparation).
The SNV file that is required by ERDS was generated by using SAMtools
varFilter tool default parameters and SVA (Sequence Variant Analyzer)
snp_filter.pl script. The result file generated by ERDS was summarized using
the SVA software (http://people.genome.duke.edu/∼dg48/sva/index.php).

2.8 Comparison between CNV calling methods
In assessing performance of ExomeCNV, we used all mapped exons as the
sample space. CNV calls on other platforms were mapped to the exons and
compared to calls by ExomeCNV. Thus specificity is the proportion of copy-
neutral exons correctly identified by ExomeCNV, while sensitivity is the
proportion of amplified (or deleted) exons correctly identified. Similarly,
LOH performance is assessed using all polymorphic positions as the sample
space.

3 RESULTS

3.1 ExomeCNV for CNV and LOH detection
ExomeCNV uses a normalized depth-of-coverage ratio approach
to identify CNV and LOH from exome sequencing information
of paired case/control samples (for example, paired tumor/normal)
in a way that optimizes sensitivity and specificity. We begin by
assuming that although there are potentially exon-specific biases due
to laboratory capture methods and sequence-specific biases, these
are independent of sample and so are nearly uniform for a particular
exon across samples. As a result, simply assessing the ratio of depth-
of-coverage of each exon reduces such bias (see Supplementary
Materials).

3.1.1 Correlation of depth-of-coverage across exome sequencing
samples To establish validity of this fundamental assumption,
we compared depth-of-coverage of exons across five independent
samples from five different subjects (Samples 1–5 in Fig 2). All
samples were captured using the same probe set (Agilent SureSelect
Human All Exon G3362) and sequenced at mean base coverages
of 36–39× as a result of two (Samples 1–4) or three (Sample 5)
lanes of GAIIx single-end sequencing per sample (see Section 2).
As shown in Figure 2, a high correlation was observed among
the five samples (Pearson correlation 0.908–0.975, mean = 0.947,
SD = 0.027), arguing for the validity of our assumption.

The same level of consistency was not observed when single-
end data were compared with paired-end data (Sample 6; Pearson
correlation 0.855–0.877, mean = 0.871, SD = 0.009) due to the lack
of independence between pairs of reads in paired-end data. Thus,
care must be taken to ensure consistency of library preparation
and sequencing method between samples used in analysis. Here,
all of our analyses used exome sequencing data from a melanoma
(Sample 5) and a matched normal skin, both processed and
sequenced in the same manner (see Section 2).

3.1.2 Analytic power calculation of exonic CNV and LOH
detection For each exon, the number of sequencing reads aligning
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within it appears to follow a Poisson with mean directly proportional
to the size of the exon and the copy-number (see Supplementary
Materials), but assuming that we have sufficiently deep coverage,
we can approximate this by a normal distribution with mean

Fig. 2. Correlation of depth-of-coverage across exome sequencing samples.
To demonstrate the consistency of capture and sequencing efficiency
of individual exons represented by the depth-of-coverage per exon, the
normalized individual exon coverage in all pairs of six-independent exomes
were plotted. All 6 samples were captured using the Agilent SureSelect
Human All Exon G3362. Samples 1–5 had mean base coverages of 36∼39×
as a result of 2 (Samples 1–4) or 3 (Sample 5) lanes of GAIIx single-end
sequencing per sample. Sample 6 had mean base coverage of 60× as a result
of 1 lane of GAIIx paired-end sequencing and demonstrates substantially
different biases in individual exonic depth-of-coverage.

equal to variance. We apply the Geary–Hinkley transformation
(Geary, 1930,1944; Hinkley, 1969), which converts a ratio of two
normally distributed variables to a standard normal distribution, and
a CNV is identified by a significant deviation of the transformed ratio
from the null, standard normal distribution (see Section 2). Allowing
only one false positive per genome, we analytically determine the
statistical power of this CNV detection approach for different depth-
of-coverage, and the results are shown in Figure 3a–b. For detecting
deletions, 95% power is achieved for segments of size 500 bp or
more (Fig. 3a), while detection of a single copy duplication is
achieved with 95% power for segments of size 1,000 bp or more
(Fig. 3b) with a mean segmental base coverage of 35×. We note
that the power of the method improves substantially with higher
depth-of-coverage, and an individual exons deletion/duplication
status would be more powerfully observed by including additional
flanking intronic sequence in the capture probe design. Genomic
DNA admixture, as expected, diminishes power, but even with
35× coverage of a given exon, a length of greater than 1000 bp
is observed over 95% of the time. Exons or segments captured with
500 bp at target sequence are observed at 95% power only with
greater than 55× base coverage. A more thorough consideration
of specificity and ROC curves are produced in the Supplementary
Materials.

To estimate LOH, we focused on the non-reference-allele or BAF
of polymorphic positions in the sequenced regions. The observed
B-allele count at a polymorphic position can be modeled by a
binomial distribution with depth-of-coverage as sample size and
the probability of observing a B-allele proportional to the B-allele
copy-number, which is equivalent to the LOH state. Because the

Fig. 3. Examples of the power of ExomeCNV to detect segmental duplication, deletion and LOH based on an analytical calculation. Power is plotted relative
to mean depth-of-coverage in the genomic segment, setting false positive to 1 per genome based on an analytical model of genome-wide power of detection
at different window sizes (inset, a–d). Windows are the total length of a given sequence at a given exon or the sum of length of exons adjacent to each other
in the genome. The effect of admixture (rate of 30%) on the power to detect deletions and single copy duplications are shown in (c) and (d), respectively. (e)
plots the power of LOH detection versus depth-of-coverage of individual polymorphic position (single base pair) with variable admixture rates (inset). The
periodicity of the power curve is due to discrete nature of the binomial test. The 35× depth of coverage is chosen because it is a typical minimal average
depth of coverage for exome sequencing and is thus a conservative view of power within typical exome sequencing datasets.
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expected value of BAF at a normal (non-LOH) polymorphic position
is 0.5, a significant deviation of BAF from 0.5 identifies LOH.
With sufficient depth-of-coverage, LOH can be detected at a single
polymorphic position.

3.1.3 The effect of sample admixture The specificity and
sensitivity of this CNV detection method depends not only on the
depth-of-coverage but also the rate of admixture, whereby non-
mutated genomes contaminate mutated genomes in the sampled
tissue/cells. In the absence of admixture, the average depth-of-
coverage ratio is 0.5 for deletion, 1.5 for one-copy duplication and
the BAF at an LOH site is either 0 or 1; however, in cancer biopsy
sequencing, this is rarely observed in practice due to admixture with
normal or non-mutated tumor cells. Thus, we assess the effect of
admixture ranging from 10% to 70%, which is frequently observed
in tumor samples (Fig. 3e). With admixture, the depth-of-coverage
ratio and the BAF will tend to the null values of 1 and 0.5,
respectively, making the CNV and LOH detection harder. Figure 3c
and d show a reduction of power in detecting deletion (Fig. 3c) and
one-copy duplication (Fig. 3d) as a result of 30% admixture. There is
an approximate two-fold increase in the size of the exonic sequence
detectable in the presence of 30% non-mutated genomic DNA.
Capping the false positive rate at 0.001 and assuming 35× mean
depth-of-coverage, a power curve (Fig. 3e) shows 0.95 sensitivity
of detecting LOH at a single polymorphic position with admixture
up to 30%.

3.1.4 Using circular binary segmentation to merge exonic
CNV/LOH Because CNV and LOH can, and usually do, span
multiple exons, we extended our method above to call CNV/LOH on
larger segments derived from summing data of sequentially spaced
exons in the human genome. We apply circular binary segmentation
(CBS) (Olshen et al., 2004; Venkatraman and Olshen, 2007) to
subdivide the genome and then combine depth-of-coverage of exons
and BAF of polymorphic positions within each segment, composed
of arbitrary number of individual exons, to search for larger CNV and
LOH. In the case of CNV, since reads are independent of each other,
the sum of depth-of-coverage of all exons in a segment constitutes
the segment’s depth-of-coverage, and the CNV test can be performed
as described above. In the case of LOH, since B-alleles are not
always on the same chromosome, BAF cannot be combined by
direct summation. Instead, since BAF deviates from the null value
0.5 under LOH, a significance increase in variance of BAF from
control (F-test for equality of variances) indicates LOH (several
other statistics were also considered, see Supplementary Materials).
Finally, we repeated the process of CBS and CNV/LOH-calling,
ranging granularity of segmentation from finest to coarsest, and
merged the CNV/LOH calls by prioritizing positive calls of finer
segments over coarser ones (see Section 2 for details). In the case
of our melanoma sample, we performed CBS/sequential merging at
five levels of granularity and observed 165 130 merging events in
the first iteration followed by 121, 79, 105 and 66 in the subsequent
iterations for a total of 165 501 merging events.

3.2 Validation
To test the performance of ExomeCNV we analyzed exome
sequencing data from a melanoma and a matched normal skin
(Supplementary Materials); the average depth-of-coverage of the
data is 42.8× for the tumor and 37.5× for the normal sample, which

are sufficient to achieve at least 90% sensitivity and specificity based
on the power calculation above.

3.2.1 Validating false positive and false negative rates We first
estimated the false positive rate of the algorithm by calling CNVs
on two sequencing lanes of the same normal tissue library, treating
one as case and the other as control; any CNV call from this
would be false positive. Our method correctly called most exons
as non-CNV. In particular, setting P-value thresholds to ensure
minimum specificity of 0.9, 0.99 and 0.999, we observed specificity
of 0.916, 0.995 and 1.0, respectively (Supplementary Materials).
Furthermore, we tested the sensitivity of ExomeCNV by analyzing
copy-number of sex chromosomes in a pair of male and female
exome data that were available internally (see Section 2). Using
the male exome as control, ExomeCNV correctly identified female
chromosome X as being ‘duplicated’ and chromosome Y as being
‘deleted’ (Supplementary Materials) with no false negatives.

3.2.2 Comparison with SNP genotyping array We then used
ExomeCNV to predict CNV and LOH in the melanoma samples
and compared our results to those obtained from Illumina Omni-1
Quad Beadchip genotyping array assessment of the same samples
(Fig. 4 and Supplementary Materials). The sizes of the CNV
segments from ExomeCNV range from single exon (120 bp) to
whole chromosome (chr 10 and 18) (size distribution of CNV calls
is presented in the Supplementary Materials). Treating calls from
the genotyping array experiment as a standard, ExomeCNV had
97% specificity and 86% sensitivity for detecting deletions, 92%
specificity and 88% sensitivity for detecting amplifications, and
88% specificity and 68% sensitivity for detecting LOH even though
there is substantial variability across the genome. Higher depth-of-
coverage from the sequence data for each exome would likely further
improve concordance. We note that this is a dramatic improvement
of ExomeCNV relative to the inappropriate application of ERDS
(M.Zhu et al., manuscript in preparation) CNV caller which, when
applied to these data, achieves only 16% sensitivity and 83%
specificity for deletion and 50% sensitivity and 56% specificity for
amplification (see Circo plot showing results from the three methods
in the Supplementary Materials). This is due to the fact that there is
substantial variability of the efficiency of capture of exons in exome
sequencing not accounted for in ERDS. For CNV segments called by
ExomeCNV but not by the genotyping arrays, we found that most
lie within regions in which there is a low density of genotyping
markers; thus the false positive rates (and the associated specificity)
for ExomeCNV here may in fact be lower.

4 DISCUSSION AND CONCLUSION
The resolution of CNV detection with ExomeCNV is limited
largely by the probe design. The CNV segments identified by our
method range from 120 bp (single exons with higher than average
coverage) to 240 Mb in size (whole chromosomes); however, the
true breakpoint can be anywhere in the space between the terminal
exon called within a CNV region and the adjacent exon in a non-
CNV region. Hence, although a given CNV event can be detected
at a single exon in some instances, the absolute resolution of our
method is in fact limited to the inter-exon distance around an exon,
which can be as small as 125 bp or as large as 22.8 Mb with the
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Fig. 4. Analysis of melanoma and paired normal samples. Interpretation of
deletion, duplication and LOH from exonic sequence data using ExomeCNV
and plotted with Circos. The most outer ring shows the chromosome
ideograms in a pter–qter orientation, clockwise with the centromeres in red.
From inside to outside, each data track represents (A) B-allele-frequency
(BAF) from Omni-1 genotyping array with the region of LOH highlighted
in blue underneath the track; (B) Log R Ratio (LRR) from genotyping array
with the region of gain highlighted in red and the region of loss highlighted
in green; (C) BAF from ExomeCNV output from ∼40× depth-of-coverage
exome sequencing with the region of LOH highlighted in blue; (D) log ratio
of tumor and normal depth-of-coverage with the segment mean in red line,
the region of gain highlighted in red and the region of loss highlighted in
green. The LOH and CNV for the chromosomes X and Y were not called
for the genotyping data as genoCN (the algorithm used to call CNV from
Omni-1) is not designed to analyze chromosomes X and Y. The table in the
middle summarizes best achievable specificity and sensitivity of ExomeCNV
in detecting CNV and LOH relative to CNV/LOH calls from Omni-1 array
assessment.

median of 5 kb (statistics based on SureSelect Human All Exon Kit
G3362).

Although ExomeCNV relies on the availability of matched control
samples, we can also derive a matched control sample from a pool
of other samples, which then serves as an effective control. This is
useful for the identification of germline inherited or de novo CNVs
in an individual. Because the expected copy number in the reference
population is constant (usually two), by the law of large numbers,
averaging depth-of-coverage from sufficiently many samples yields
a good control set, assuming that they are all captured using the same
probe set and capture method and sequenced in the same manner.
This may limit the application of ExomeCNV to data generated
at a given site with a given protocol. Calling CNVs using this
pooled sample as background will generate CNV calls that are
present in the case sample but not the control population. Also,
by the central limit theorem, pooling independent samples helps
reduce variance in depth-of-coverage and increases precision of our
method. We have pooled as few as eight samples and have observed
that this is indeed the case (Supplementary Materials). However, it
is important to note that using pooled sample as control imposes

a strong assumption that the samples do not share common CNV
regions and that the population has an average genomic copy number
of two. Other potential challenges of using the pooled sample as
control are discussed in the Supplementary Materials.

Because ExomeCNV depends on an estimate of the admixture
rate c, misspecification of c would affect its performance. We
performed sensitivity analysis and found that misestimating c
would have a strong effect on sensitivity and specificity of CNV
detection. Fortunately, LOH detection provides some data to directly
estimate c, as LOH detection does not depend on a prior knowledge
of c (Supplementary Materials). For the melanoma sample, our
estimate of 30% admixture rate matches that from genotyping
arrays, confirming the validity of this approach. However, there are
advantages to slightly overestimating c as it makes the method more
conservative and reduces false positives.

As we have shown, CNV and LOH detection is readily possible
from exome sequencing data, extending the utility of this powerful
approach. The fundamental basis that makes this approach possible
is the consistency of depth-of-coverage of each exon (and BAF
by extension) across multiple samples for each individual exon,
as demonstrated in five samples performed in our laboratory
(Supplementary Materials, Fig. 2). This consistency permits reliable
parametric modeling of the shift in depth-of-coverage and BAF
distributions, hence accurate identification of CNV and LOH.
However, we do not observe the same level of consistency when
comparing depth-of-coverage across different library types. For
instance, a sixth sample was performed using a paired-end approach
that results in very different coverage of each exon (Fig. 2), and as a
result, ExomeCNV does not perform well when the control sample
library is of one type and the case is of another, or when the case
and control have significantly different coverage levels. Resolving
these issues is a work-in-progress.

From the analytical power calculations, assuming 35× coverage
(which is the lower end of a reasonable amount of sequence for
variant calling and easy to generate with a variety of technologies),
CNV detection has a limit of about 500 bp (in transcript coordinates),
which is typically equivalent to 2–3 exons and spans about 10 kb of
genomic space on average. Increased depth-of-coverage, which is
likely to become the norm as sequencing costs decrease, reduces
the interval size that is reliably detectable and should push the
method to single exonic deletion resolution. Currently, CNV and
LOH information should be detectable in whole-exome sequencing
data at a resolution that is almost equivalent to what one can obtain
from a dense SNP genotyping array.

ExomeCNV is available as a CRAN package ‘ExomeCNV’.

ACKNOWLEDGEMENTS
We would like to thank Kevin Squire and the members of Nelson
Lab for thoughtful discussion and suggestion, Markus Schröder for
help with R package and Bret Harry, Zugen Chen and Traci Toy for
technical support.

Funding: National Heart, Lung, Blood Institute of the US National
Institutes of Health grant (1RC2 HL101715, to J.Q.); National
Institute for Mental Health (R01 MH071852); National Institute
of Arthritis, Musculoskeletal and Skin Disorders (P30 AR057230);
National Cancer Institute (P30 CA16042).

Conflict of Interest: none declared.

2653



[09:50 21/9/2011 Bioinformatics-btr462.tex] Page: 2654 2648–2654

J.F.Sathirapongsasuti et al.

REFERENCES
Chiang,D.Y. et al. (2009) High-resolution mapping of copy-number alterations with

massively parallel sequencing. Nat. Methods, 6, 99–103.
Choi,C.H. et al. (2007) Hypermethylation and loss of heterozygosity of tumor

suppressor genes on chromosome 3p in cervical cancer. Cancer Lett., 255, 26–33.
Choi,M. et al. (2009) Genetic diagnosis by whole exome capture and massively parallel

DNA sequencing. Proc. Natl Acad. Sci. USA, 106, 19096–19101.
Chou,L.S. et al. (2010) DNA sequence capture and enrichment by microarray followed

by next-generation sequencing for targeted resequencing: neurofibromatosis type 1
gene as a model. Clin. Chem., 56, 62–72.

Clark,M.J. et al. (2009) U87MG Decoded: The Genomic Sequence of a Cytogenetically
Aberrant Human Cancer Cell Line. PloS Genet., 6.

Conrad,D.F. et al. (2010a) Mutation spectrum revealed by breakpoint sequencing of
human germline CNVs. Nat. Genet., 42, 385–391.

Conrad,D.F. et al. (2010b) Origins and functional impact of copy number variation in
the human genome. Nature, 464, 704–712.

Deng,F.Y. et al. (2010) Genome-wide copy number variation association study
suggested VPS13B gene for osteoporosis in Caucasians. Osteoporos. Int., 21,
579–587.

Fong,C.T. et al. (1989) Loss of heterozygosity for the short arm of chromosome 1 in
human neuroblastomas: correlation with N-myc amplification. Proc. Natl Acad. Sci.
USA, 86, 3753–3757.

Geary,R.C. (1930) The frequency distribution of the quotient of two normal variates.
J. R. Stat. Soc., 93, 442–446.

Geary,R.C. (1944) Extension of a theorem by Harald Cramer on the frequency
distribution of the quotient of two variables. J. R. Stat. Soc., 107, 56–57.

Hinkley,D.V. (1969) On ratio of 2 correlated normal random variables. Biometrika, 56,
635–639.

Hoischen,A. et al. (2010) Massively parallel sequencing of ataxia genes after array-
based enrichment. Hum. Mutat., 31, 494–499.

Jankowska,A.M. et al. (2009) Loss of heterozygosity 4q24 and TET2 mutations
associated with myelodysplastic/myeloproliferative neoplasms. Blood, 113,
6403–6410.

Johnston,J.J. et al. (2010) Massively parallel sequencing of exons on the X chromosome
identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am. J.
Hum. Genet., 86, 743–748.

Kato,M. et al. (2010) Population-genetic nature of copy number variations in the human
genome. Hum. Mol. Genet., 19, 761–773.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics,
25, 2078–2079.

McCarroll,S.A. (2010) Copy number variation and human genome maps. Nat. Genet.,
42, 365–366.

Ng,S.B. et al. (2009) Targeted capture and massively parallel sequencing of 12 human
exomes. Nature, 461, 272–276.

Olshen,A.B. et al. (2004) Circular binary segmentation for the analysis of array-based
DNA copy number data. Biostatistics, 5, 557–572.

Pinkel,D. et al. (1998) High resolution analysis of DNA copy number variation using
comparative genomic hybridization to microarrays. Nat. Genet., 20, 207–211.

Raca,G. et al. (2010) Next generation sequencing in research and diagnostics of ocular
birth defects. Mol. Genet. Metab., 100, 184–192.

Rehman,A.U. et al. (2010) Targeted capture and next-generation sequencing identifies
C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79.
Am. J. Hum. Genet., 86, 378–388.

Sha,B.Y. et al. (2009) Genome-wide association study suggested copy number variation
may be associated with body mass index in the Chinese population. J. Hum. Genet.,
54, 199–202.

Shuin,T. et al. (1994) Frequent somatic mutations and loss of heterozygosity of the
von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas.
Cancer Res., 54, 2852–2855.

Stankiewicz,P. and Lupski,J.R. (2010) Structural variation in the human genome and
its role in disease. Annu. Rev. Med., 61, 437–455.

Sudmant,P.H. et al. (2010) Diversity of human copy number variation and multicopy
genes. Science, 330, 641–646.

Sun,W. et al. (2009) Integrated study of copy number states and genotype calls using
high-density SNP arrays. Nucleic Acids Res., 37, 5365–5377.

Teer,J.K. and Mullikin,J.C. (2010) Exome sequencing: the sweet spot before whole
genomes. Hum. Mol. Genet., 19, R145–R151.

Urban,A.E. et al. (2006) High-resolution mapping of DNA copy alterations in human
chromosome 22 using high-density tiling oligonucleotide arrays. Proc. Natl Acad.
Sci. USA, 103, 4534–4539.

Venkatraman,E.S. and Olshen,A.B. (2007) A faster circular binary segmentation
algorithm for the analysis of array CGH data. Bioinformatics, 23, 657–663.

Volpi,L. et al. (2010) Targeted next-generation sequencing appoints c16orf57 as
clericuzio-type poikiloderma with neutropenia gene. Am. J. Hum. Genet., 86,
72–76.

Wain,L.V. et al. (2009) The role of copy number variation in susceptibility to
amyotrophic lateral sclerosis: genome-wide association study and comparison with
published loci. PLoS One, 4, e8175.

Yoon,S. et al. (2009) Sensitive and accurate detection of copy number variants using
read depth of coverage. Genome Res., 19, 1586–1592.

2654


