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Abstract

Human studies are reviewed concerning whether “aging”-related mechanisms contribute to
Alzheimer’s disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic
amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors
related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes
involved in APP-related mechanisms, there is no firm connection between genes implicated in
human “accelerated aging” diseases (progerias) and AD. The epidemiology of AD in advanced
age is highly relevant but deceptively challenging to address given the low autopsy rates in most
countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the
impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain
diseases other than AD afflict older human brains and contribute to cognitive impairment.
Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both
high-morbidity brain diseases that appear to peak in incidence later than AD chronologically.
Because of these common brain diseases of extreme old age, the epidemiology differs between
clinical “dementia” and the subset of dementia cases with AD pathology. Additional aging-
associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to
AD and these hypotheses are discussed. Criteria are proposed to define an “aging-linked” disease,
and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on
specific pathways involved in AD rather than attributing it to an inevitable consequence of aging.

Introduction and definition of terms

This review examines the relationship between Alzheimer’s disease (AD) biology and
human brain aging. AD mostly affects older individuals. There has been debate about
whether AD is linked mechanistically to “brain aging” and to cellular senescence
mechanisms [44, 90, 142, 183, 192, 232]. This is an important issue, especially since the
number of very old individuals is predicted to increase dramatically in coming decades
([116, 174], Fig. 1). Although animal models provide a valuable context for experimental
work, their direct correlation with human neurodegenerative diseases is still being
characterized. The human aging trajectory and other aspects of Homo sapiens brain biology
are also unique to our species. Hence, in the present literature review, we focus on data
derived from human studies.

Recent scholarship has called into question the idea that “age is the greatest risk factor for
AD”. The current review focuses on the changes that occur in humans past 90 years of age
since the central question we wish to address is whether AD is linked to aging. Both of these
concepts—AD and aging—are incompletely understood, so our discussion begins with a
definition of terms.

AD is defined by the presence of three different elements, each necessary (and together
entirely sufficient) for definitive diagnosis [1]:

1. Clinical dementia (cognitive impairment with a memory component that impacts
daily living skills);
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2. Substantial numbers of neocortical neurofibrillary tangles (NFTs) at autopsy as
quantified using Braak staging [37]; and

3. Substantial numbers of neuritic amyloid plaques as quantified using CERAD scores
[139] at autopsy.

The neuropathology-based definition of AD is a key assumption of the present review.
Despite controversy in this area [46], no rival method discriminates AD from other causes of
cognitive decline in aging as accurately as does postmortem evaluation. AD neuropathology
correlates well with cognitive impairment although the relationship is complex [151]. Like
all diseases, there is an expected prodromal phase and imperfect clinical-pathological
correlation [120, 189, 206]. As in other diseases such as cancer, increased patient age
correlates with greater dissociation between clinical expectations and autopsy-proven
pathology [36, 212].

A modicum of AD pathology may be present in “nondemented” aged brains [146, 147, 149,
175, 198]. NFTs are not disease-specific and may develop in hippocampi and elsewhere
independently of the processes present in AD brains [38, 92, 137, 147, 149, 175, 222],
which by definition contain numerous AB plaques surrounded by abnormal tau-containing
neurites [1]. There are also many individuals whose brains harbor substantial diffuse
amyloid plaques yet they do not meet criteria for MCI or AD clinically [77, 129, 148, 175].
It is important to acknowledge our incomplete understanding about how these cases relate to
full-blown AD. However, given ADs well-documented multiyear prodromal period [45, 48,
51, 141, 182, 194, 197, 208], the observed AD-specific pathology (neuritic AB plaques
combined with neocortical NFTs) closely matches expectations when one compares autopsy
data and AD epidemiology [5, 149].

Alternative definitions of AD, emphasizing clinical and biomarker data, have been proposed
recently that remove the need for postmortem (definitive) diagnosis in a practical attempt to
support clinical trials and patient management [67]. Biomarkers assessed during life are only
surrogates for pathology, not for cognitive symptoms, nor even for the prediction of future
cognitive impairment (which often are due to factors other than AD). AD bio-markers are
valid for the detection of preclinical AD inasmuch as they predict eventual cognitive
impairment accompanied by plaques and tangles in the brain.

Whereas clinical-pathological correlation in AD defies simplistic interpretations, the
concept of “aging” is even less completely understood. Multiple mechanisms have been
described for decreased “molecular fidelity” in the mature epoch of a cell, organ, and
organism [88, 93]. Senescence near the end of life has been attributed to mitochondrial
dysfunction, telomerase activity, free radicals, oxidative stress, and other factors [47, 66, 71,
85, 88, 113, 114]. In addition, genes have been described that either augment natural aging
processes deleteriously (see below) or that delay normal aging effects in some organisms
(e.g., sirtuins).

One thing that is clear is that advanced human age is accompanied by characteristic medical
conditions [221]. Diseases that affect 95-year olds are not identical to those that affect most
75-year olds [154]. In extreme old age, there is a lamentable combination of vascular
pathologies accompanied by weaker regenerative capacity. The background of generalized
infirmity, specific high-morbidity diseases, polypharmacy, mood and sleep disorders
represent formidable challenges to determining if a specific process exacerbates AD per se,
or contributes to impaired cognitive functioning through other mechanisms [13, 110, 136,
154, 190, 220, 227]. These are some of the complexities that may have led to conflation
between cognitive impairment in advanced age (“dementia”), and AD. A key feature of
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aging is that it is universally linked to the physical time dimension. The question then is the
universality of the AD-aging linkage: is AD a manifestation of aging or is it not?

We propose five testable criteria which, if supported by experimental data, would indicate
that AD pathogenesis is linked specifically to aging-associated mechanisms (Table 1):

»  Criteria #1: No specific mechanism outside of aging causes most known AD cases;

» Criteria #2: Human genetic aberrations that hasten the aging process also increase
incidence of AD and vice versa;

e Criteria #3: Everyone will develop AD if they live long enough;

e Criteria #4: An aged individual should have a higher likelihood of AD with each
additional year of life; and

e Criteria #5: Other aging-linked mechanisms (diabetes and synapse loss) contribute
specifically to AD.

The present review is organized to address critically the experimental data related to these
testable hypotheses. Criteria #1 and #2 are discussed in the context of clinical trial data, AD
genetics, and cancer biology. Criteria #3 and #4 can be assessed by focusing on the nexus of
neurodegenerative disease epidemiology and neuropathology. Criterion #5 is discussed in
connection with diabetes and synapse loss. The above criteria for “aging-linked”
mechanisms are admittedly debatable. Whether or not one accepts these tenets, there are
additional interesting observations relevant to the question of whether AD pathogenesis is
linked specifically to “aging” mechanisms.

AD pathology: insights from clinical trials, genetics, and cancer

Significance of extant clinical trial data

No therapeutic strategy for AD has demonstrated long-term efficacy to date. However, the
existing data on clinical trials need to be interpreted with caution. We briefly discuss clinical
trials related to “anti-aging” or “anti-amyloid” mechanisms.

Extensive links have been made between reactive oxygen species (ROS), aging mechanisms,
and AD pathologic changes [64, 127, 128, 157, 167, 216]. However, molecular interactions
between aging-linked ROS mechanisms, amyloid protein processing (plaques, oligomers,
etc.), and tau modification have not yet been clearly drawn [131, 215]. Beta-amyloid itself
may promote excess oxidation species reactions, further complicating the relationships
between aging, ROS and AD pathology [43]. Therapies oriented toward anti-oxidant or anti-
aging strategies have not been clearly successful although future studies may prove
otherwise [6, 32, 163, 164].

There have been a handful of reported cases where individuals with mid-to-late stage AD
were administered anti-Af immunotherapy that apparently cleared a large proportion of
brain amyloid plaques, but this clearance did not seem to alter the presence of NFTs or the
inexorable course of the disease [94, 155]. These data have been interpreted to constitute a
repudiation of the amyloid cascade hypothesis [214], and to indicate that it is “aging”, rather
than AB-related mechanisms, that underlies AD progression [90]. However, the limitations
of the conclusions that can be drawn from the few autopsied anti-Ap immunotherapy cases
have been acknowledged [34] and in fact some beneficial effects of the human
immunotherapy studies have been seen in clinical trials [31, 35, 191, 202]. By far, the best
clinical-pathological correlation in AD is between neocortical NFTs and cognitive
impairment [14, 149] and no therapies that target cortical NFTs have been successfully
tested in humans. The current clinical trial literature does not contradict the idea that there is
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a pathogenetic synergy in which amyloid plaques kindle an auto-propagating process related
to cortical NFTs, as has been hypothesized [49, 58, 72, 82]. Future drug trials oriented
toward earlier stages of disease progression may help explain and reconcile these
phenomena. For now, clinical trials have not provided definitive answers either way.

Progerias and AD

A subset of human genetic aberrations cause well-characterized phenotypes with specific
features of advanced human aging in individuals of younger ages. These diseases are called
“progerias” [40, 117, 178]. It has been suggested that progerias provide insights about the
aging process and the pathways that are involved in human aging [42, 177]. Clinical signs
and symptoms that may exist even in pre-teens, include cognitive impairment, wrinkled
skin, atherosclerosis, brittle bones, cataracts, and many other changes, although there is not a
single disease that can be said to definitely cause “accelerated aging”.

Characteristic features of human progerias are listed in Table 2. There is no firm indication
that individuals with progeria have any increase in dementia with AD pathology. One
nondemented individual with Werner syndrome and apolipoprotein E (APOE)-g4 genotype
was reported to have early AD-type pathology upon death at age 55 [126]. Otherwise, the
link between Werner syndrome (or any other progeria) and AD pathology has been queried
and not found to exist [132, 133, 160] although some of the progerias do in fact involve
cognitive impairment (Table 2). Mutations of the lamin gene (LMNA) cause a severe
autosomal dominant progeria syndrome, muscular dystrophy, and Charcot—-Marie-Tooth
disease, but not AD [42]. In contrast, gene defects in presenilin-1 (PSEN1) produce early
onset autosomal dominant AD and a wide range of associated neurologic deficits, but not a
progeria syndrome (see below). Nor is there any firm association between AD and other
known aging genes including the sirtuins (for example SIRT1 or SIRT3) although these
have been exhaustively analyzed for AD-linked polymorphisms [11].

In summary, genetic diseases provide important insights into human aging and senescence.
The dissociation between premature aging-linked genetic aberrations and AD cannot by
itself negate the hypothesis that AD is caused by aging mechanisms, but it is a pertinent
clue. The lack of linkage between progerias and AD is all the more significant because there
are indeed other genetic loci that strongly impact AD pathogenetically.

AD genetic risk factors

Human alleles that alter AD risk are critically relevant to any discussion of AD biology.
Approximately 70% of a given individual’s risk for developing AD is conferred through her
genetic repertoire [28, 75]. AD is thus like many predominantly genetic diseases, which are
not linked to aging mechanisms, but which can manifest late in life with neurodegeneration
—trinucleotide repeat diseases, familial prion diseases, familial motoneuron diseases,
FTLDs, and dozens of other genetic diseases (see for example [7, 69, 84, 201, 230]).

The high-penetrant human gene loci that alter risk for developing AD are APP, PSEN1,
PSENZ2, and APOE. None of these genes are known to be directly related to the aging
process, nor with aging-related processes such as combating oxidative stress. These AD-
affecting genes all influence processing of the amyloid precursor protein (APP). The
triplication of APP in the context of Down’s syndrome can induce AD-like pathology in the
human brain as young as 8 years of age [124] with precursor lesions present even during
infancy (Fig. 2). Even outside of Down’s syndrome, the focal duplication of the APP gene,
and mutations in APP promoter regions that increase APP production, can cause AD [138,
207, 218]. AD-relevant mutations in the APP gene affect its proteolysis as do mutations in
PSEN1 and PSEN2 [28].
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By far, the strongest risk factor for late-onset AD is the €4 allele of the APOE gene [52,
213]. The impact of APOE-¢4 allele in terms of boosting brain Af deposition is well
established [29, 41, 111, 122]. APOE alleles alter Ap plaque burden and cerebral amyloid
angiopathy in dramatic fashion [26, 27, 180]. The strong genetic risk for AD in persons aged
50-80 leads to a survival bias in terms of individuals beyond that age range. Relatively few
individuals with APOE-&4 allele (much less with APP or PSEN mutations) survive AD-free
past age 90 [78, 119, 144, 169, 187]. This survival bias has been discussed previously [107].

The fact that individuals without genetic risk tend to survive AD-free beyond the
chronological peak for disease incidence (see below) indicates that aging and AD invoke
discrete mechanisms of cerebral degeneration. High penetrance AD genetic loci all connect
directly to APP mechanisms, but not aging; aging genes do not link to AD risk. Thus,
criteria #1 and #2 (Table 1) are not met for AD pathogenesis being an aging-linked
mechanism.

There are relatively recently discovered single nucleotide polymorphisms (SNPs) that alter
AD risk and these include alleles in CLU, PICALM, SORL1, and BIN1 [25, 30, 109, 204].
The penetrance of these genes is far weaker (i.e. effect of the mutation on risk for the disease
phenotype is less predictable) in comparison to mutations in APP, PSEN1, PSEN2, or
APOE. SNP/GWAS data remain to be fully understood both in normal brain and in relation
to AD manifestations. Aside from genetic polymorphism linked to this disease, some
additional clues about what to expect with regard to AD expression in human aging may be
gleaned by study of another aging-linked disease category, hamely cancer.

Human aging and cancer

Other human diseases can provide valuable insights about AD and illustrate the need for
pathology-based epidemiology. Cancer is one of the major aging-associated diseases [17,
20, 178, 192] that can be compared and contrasted with AD. We describe some features of
cancer research with the caveat that human malignancies differ from each other in
mechanisms and manifestations. Cancer biology diverges meaningfully from AD, but both
AD and cancer mechanisms have been linked with cell maintenance pathways, oxidative
stress, aberrant phosphorylation, immunity, and apoptosis [168].

As with neurodegenerative diseases, particular cancer subtypes tend to affect humans of
distinct age ranges. Pathology-based epidemiology can provide clues about which subtypes
of cancer are more strongly associated with advanced aging. Figure 3, derived from the
publicly accessible SEER database [87], demonstrates the difference in death rates from two
types of human genitourinary carcinoma—kidney and prostate—in American males. Both
cancers are “age-associated”; mortality of both is increased in old age. However, the natural
histories of the two cancers differ. Kidney carcinoma incidence increases in age 50-80s
unlike prostate cancer that surges later in the aging scale; these differences may be relevant
to clinical diagnostics and drug trials. Affecting an older population, prostate cancer is more
strongly linked to senescence pathways [205]. Although seemingly remote from AD
pathobiology, these data provide insights into the stochastic tendencies of human disease to
manifest in distinct ways, for reasons that are currently not well understood, and help
establish the need for sophisticated pathology-based epidemiology.

AD and dementia epidemiology

Dementia versus AD epidemiology: recent progress

The epidemiology of AD in advanced age is deceptively challenging to address [100, 123,
136, 229, 233]. Autopsy series are critical for understanding AD epidemiology for the
simple reason that definitive AD diagnosis requires autopsy confirmation. This fact is
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important to acknowledge because there is no truly epidemiological study cohort with a
100% autopsy rate. With that caveat in mind, recent scientific progress has been achieved
through analyses of large high-quality autopsy series. Excellent studies, which have included
community-based cohorts, have provided important new insights [8, 70, 91, 97, 156, 171,
198, 233]. European datasets have provided notably rich contributions [10, 38, 104]. In the
US, some of these data derive from NIH-sponsored Alzheimer’s Disease Centers (ADCSs),
which comprise many thousands of autopsies of clinically well-characterized patients,
consolidated under the National Alzheimer’s Coordinating Center (NACC) [22].

Recent autopsy series have established the central importance of previously ignored non-AD
pathologies. The classic clinical-pathological studies of Tomlinson, Blessed, and Roth had
substantial impact on researchers’ views of AD clinical-pathological correlation, despite
being necessarily unacquainted with prevalent brain diseases, such as dementia with Lewy
bodies (which often coexists with AD pathology), hippocampal sclerosis, frontotemporal
lobar dementia (FTLD) subtypes, and other diseases. The mean age at death for demented
subjects and control subjects in the seminal Tomlinson, Blessed, and Roth papers [188, 219]
were 76.4 and 75.4 years, respectively. This is 2-5 years below the average life
expectancies for Western countries [16], and a critically distinct cohort from the many
individuals that live beyond their 90th year. The large majority of cognitively impaired
subjects in their mid-70s is affected by advanced AD pathology, but this is less true in
extreme old age (see below). In summary, early clinical-pathological studies were
scientifically important, but also misleading if read without recourse to subsequent
scholarship.

AD pathology in persons past 90 years of age

Epidemiologic data initially appeared to support the concept that aging is a major risk factor
for dementia, and therefore AD. According to many different studies, dementia prevalence
in Western populations is approximately 2% at age 65 and then doubles every 5 years
thereafter [73, 112, 118]. Dementia epidemiology is less thoroughly studied in extreme old
age. Dementia incidence appears to level off after age 90 [83, 118, 123, 185, 186] although
clinical dementia prevalence probably does keep increasing [54, 203]. Whereas dementia
prevalence keeps increasing, this does not necessarily mean that AD has increased
prevalence in the same cohorts. For example, ear infections can lead to hearing loss in
children; elderly individuals often have hearing loss, but this does not necessarily indicate
increased ear infections in elderly individuals.

Clinical data without rigorous pathological correlation can be misleading. In contrast to the
increased prevalence of dementia with advanced age (a clinical observation), the appearance
of neuritic amyloid plaques and NFTs by pathology seems to level off in older cognitively
impaired individuals according to multiple autopsy series [2, 56, 86, 193, 222], with the
caveat that not all studies agree (discussed in [96, 106]). Even in extreme old age, the
presence of many neocortical NFTs correlates with antemortem cognitive decline [65, 148,
150, 228], the enigma relates to cognitively impaired individuals whose brains lack AD
pathology at autopsy. Recall that AD is defined by the presence of neocortical neuritic
amyloid plaques and neocortical NFTs [1]. If the prevalence of AD pathological hallmarks
is leveling off, or even decreasing, after the ninth decade of life while the prevalence of
dementia is still increasing, then there must be a scientific explanation. Three unproven—
and not necessarily reconcilable—hypotheses could help explain the apparent paradox:

Hypothesis #1: All demented subjects have AD unless proven otherwise. Because
extremely old individuals often suffer from dementia without excessive burden of
plaques and tangles, then plaques and tangles are mere epiphenomena that are not
biologically important;
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Hypothesis #2: There is a survival bias, whereby individuals genetically predisposed to
AD are less represented in cohorts of extreme old age; or

Hypothesis #3: AD is indeed a distinct disease but like many other diseases (e.g.,
kidney carcinoma) levels off in prevalence prior to extreme old age, and the increased
prevalence of dementia past age 90 is due to specific diseases other than AD, in
combination with the frequent, but not increasing, AD in that cohort.

We consider that the existing published data best support Hypotheses #2 and #3, but not
Hypothesis #1. The survival bias in AD has been described above, related to genetic disease
risk. However, why are so many individuals in extreme old age cognitively impaired and
lacking AD pathology? There are prevalent brain diseases, besides AD, that contribute to
dementia in the elderly. Some of these brain diseases are particularly germane to populations
beyond 90 years of age.

Consider the following two statements:
1. Mechanism “X” contributes to AD.
2. Mechanism “X”: contributes to dementia.

These two statements are critically different, but seem to be frequently confused because, for
a given patient, mechanism “X” could worsen cognitive symptoms in either case. Yet if AD
is a discrete disease then merging it with other dementias (as an abstract idea or clinically
for particular patients) can be seriously misleading both for researchers and clinicians.
Ideally, each disease should be expected to be studied using different experimental designs,
diagnosed using specific tests, and each disease would probably require separate treatments.

Many diseases other than AD affect the aged brain (Table 3). Prevalent brain diseases in
advanced age, include cerebrovascular disease (CVD), hippocampal sclerosis (HS-Aging),
synucleinopathies, FTLD, hematomas, normal pressure hydrocephalus, and numerous other
neurological conditions. These are all directly relevant to a discussion of “dementia versus
AD” because they may worsen cognition irrespective of AD status. We focus here on four
different non-AD mechanisms: CVD, HS-Aging, diabetes, and synapse loss. While each can
contribute to dementia, none of them has been proven to relate specifically to AD
pathogenesis.

Hippocampal sclerosis and cerebrovascular disease

With advanced age, it is normal for individuals’ cognitive abilities to decline from previous
levels although the brains of many aged individuals lack abundant AD pathology [56, 154].
As possible explanations for this phenomenon, we describe two brain diseases that, unlike
AD, preferentially affect people in extreme old age: CVD and HS-Aging. Study of both
diseases is still evolving, and rubrics are still being developed for optimal clinical—
pathological correlation.

CVD, unlike AD, occurs through many distinct mechanisms, progresses in an unpredictable
fashion, and currently lacks a universally applied nosology for pathological characterization.
There are large vessel pathologies, small vessel pathologies, diseases related to the heart or
kidney, and CVD related to other diseases and their therapies (including chemotherapies for
cancer) that may manifest as CVD. Embolism, hemorrhage, neuroinflammation, impaired
perfusion, hypertension, hypoxia, vascular malformations, glycemic fluxes, and other
disease-inducing vascular mechanisms are all relatively common conditions that can induce
adverse changes throughout the CNS [4].
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Whereas overt clinical strokes affect ~750,000 in America each year, over 11 million
discrete, but clinically silent cerebrovascular events are thought to occur over the same
interval [3, 12, 68]. Radiographically, discrete infarcts may be seen in only ~25% of
octogenarians [60], yet MRI white matter hyperintensities are noted in over 80% of
octagenarians [74, 226] and literally 100% of persons in extreme old age [172]. This is
indicative of CVD pathology [39, 153] in advanced aging and a higher risk for clinical
stroke [59]. On microscopic examination, at least subtle CVD pathology is detectable in 75—
90% of persons over the age of 90 years [150, 224, 225]. The increased prevalence of CVD
pathology with age is clearly seen in the NACC neuropathological dataset (Fig. 4a).

Why is the high prevalence of CVD directly and critically relevant to a discussion of AD?
The frequency of cerebrovascular pathologies in advanced old age means that both cognition
and other pathology need to be assessed entirely differently. An analogy can be made to a
given patient’s lung function and pathological outcomes if he had both asthma and
pneumonia; this would magnify the impact of each separate disease. Accordingly, CVD (not
limited to cases of “vascular dementia”) often coexists, and synergizes, with AD along a
broad spectrum of disease severity [103].

CVD causes more rapid cognitive deterioration in patients with coexisting AD pathology
relative to patients without AD pathology [143, 181]. Subcortical and/or lacunar infarcts
alter the detection threshold for dementia [81, 170, 171, 199, 200, 209]. The clinical impact
of CVD—although difficult to predict confidently for any individual patient—is correlated
with systematic changes in pathological outcomes related to AD. Persons with CVD
pathology tend to have lower AD-related pathology with a given degree of cognitive
impairment [150, 170, 234]. Correspondingly, as people become older (with more CVD), a
larger percentage of AD cases die with more moderate AD pathology—i.e., Braak stage V
rather than Braak stage VI (Fig. 4b).

The frequent presence of concomitant CVD dampens the association for other pathologies,
such as neurofibrillary pathology, to the severity of antemortem cognitive decline. In
summary, CVD alters autopsy results related to AD pathology without necessarily
interacting with the disease-specific mechanisms. Some researchers have argued for a more
direct link in pathogenetic mechanisms than can be supported by existing autopsy data, and
this consideration warrants further investigation.

As with CVD but unlike AD, HS-Aging pathology appears to increase dramatically in
extreme old age [53, 63, 101]. The presence of HS-Aging pathology is strongly correlated
with antemortem cognitive impairment [148], which can be seen both with mental status
assessment and, more specifically, with certain testing methods [152]. Pathogenetically, HS-
Aging is probably not attributable to CVD, but is instead linked to aberrant TDP-43
pathology [108]. HS-Aging is a distinct brain disease in comparison to FTLD-TDP cases
(which also have aberrant TDP-43 by definition) because of the far older age group affected
in HS-Aging and the lack of frontotemporal dementia, progressive aphasia, or semantic
dementia clinically [152]. Although by definition HS-Aging affects the hippocampal
formation, evidence does not indicate any direct causative association with AD. The
strongest genetic risk factor for AD (the APOE-¢4 allele) does not increase risk of HS-Aging
[125, 165].

Based on the data from the largest series of HS-Aging cases to date (N = 106 pathologically
confirmed HS-Aging cases compared with N = 1,004 controls), we consider it possible that
prior low estimates of HS-Aging prevalence [9, 99] were partially biased by inclusion of

younger patients. The average age at death for HS-Aging in this large cohort was 93.4 years
at death [152] and in this age range HS-Aging pathology is seen in over one-fourth of cases.
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These results are concordant with a recent autopsy study, showing that 43% of aged
individuals’ hippocampi harbored TDP-43 pathology [179]. In our large autopsy series, each
year of life after age 95 brought higher risk for HS-Aging pathology, but lower risk for AD
pathology (Fig. 5). HS-Aging shares a key biomarker with AD (shrunken hippocampi on
MRI), so there is a high chance for confusion clinically [165].

Figure 5 provides empirical data to demonstrate that not all aged individuals have AD by
pathology. Nor does each added year of life lead to increased prevalence of AD pathology
(unlike HS-Aging and CVD). Thus, criteria #3 and #4 (Table 1) are not met. The high
prevalence of non-AD pathologies in the “oldest old” helps account for increased dementia
in this cohort. The “classic” epidemiology of AD and dementia, and a newer representation
that reconciles these data, are presented in Fig. 6. This begins to explain some of the
complex underpinnings of pathology-based epidemiology. However, we are also challenged
to consider additional aging-associated mechanisms that also have been linked with AD
pathogenesis.

Diabetes and synapse loss

Type 2 diabetes (T2DM) [57] and synapse loss [95] have been connected with both
advanced age and with AD. If there were strong etiological connections between these
aging-associated (but poorly understood) mechanisms, it would bolster the idea that aging
and AD are linked with each other. However, how persuasive is the evidence that T2DM
and synapse loss are specific, early contributors to AD, rather than parameters that correlate
with dementia risk instead of AD risk?

T2DM is an aging-associated disease that has been linked to AD. A current Pubmed search
of “Alzheimer’s and diabetes” retrieves 1,906 published papers, of which 789 (41.4%) are
review papers. Many of these papers hypothesize that AD is mechanistically linked with
T2DM [153]. Yet of the research papers related to AD and diabetes, only a relative handful
involve human patients with assessment of antemortem glycemic status correlated with
postmortem autopsy results, i.e. AD pathology [8, 15, 24, 89, 98, 135, 153, 166, 210]. These
studies, comprising 1,843 autopsies from nine different research centers, are summarized
briefly in Table 4. Note that most of the published work demonstrates that there is no
positive correlation between diabetes and AD pathology. To the contrary, studies that have
evaluated the question of whether antemortem diabetes correlates with AD pathology have
shown that persons dying with a history of diabetes have less AD pathology (but more
cerebrovascular disease pathology) than individuals without T2DM. These data highlight a
key study design feature—namely, incorporating autopsy studies for a disease that requires
neuropathologic evaluation for diagnosis—which has been regrettably ignored in meta-
analyses discussing the correlation between T2DM and AD risk.

Although autopsy studies argue against the link between T2DM with AD pathology,
published data have established that T2DM is a strong risk factor for impaired cognition [50,
159]. Diabetes leads to small vessel ischemic disease including CVD, not to mention
glycemic fluxes and neuroinflammation that can be neurotoxic [153]. There are still many
unknowns and potential confounders. T2DM associated clinical-biological mechanisms,
including metabolic syndrome, adiposity, hormone changes including leptin and insulin,
lifestyle (diet and exercise), and inflammation-related factors that may be eventually linked
specifically to AD [18, 55, 130, 223, 235]. At this time, the best-supported hypothesis, based
on the human studies that include autopsy confirmation, indicates that T2DM induces CVD
pathology (and thus is likely to worsen brain function), but T2DM itself does not lead to
increased AD pathology.
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Another process at the ill-defined interface between human brain aging and cognitive
impairment is “synapse elimination”. In a recent review article, the elimination of synapses
was considered a likely connection-point between aging mechanisms and AD pathogenesis
[90]. There are at least two key pertinent questions, only one of which has been adequately
answered:

1. How specific is synapse elimination to AD?

2. Are synapses eliminated upstream, downstream, or in parallel with plaques and
tangles?

In AD, there is a wide distribution of synapse loss in both hippocampus and neocortex
relative to non-demented controls [134, 195]. It has been stated that decreased synapses is
the pathological feature that best correlates with cognitive decline in AD. Even if this were
to be taken at face value (see below), this does not imply that synapse loss is a specific
pathological occurrence, much less a diagnostic feature, of AD.

Synapse loss occurs during the course of a broad variety of brain diseases: stroke, FTLD,
synucleinopathy, traumatic brain injury and many other conditions. In fact, we know of no
human condition with progressive neurodegeneration lacking synapse loss. In this sense,
synapse loss is utterly nonspecific.

Nor is the relationship between synapse loss and “normal aging” well understood. There
have been surprisingly few human studies that have adequately addressed the question about
whether there is a “normal” age-related loss of synapses independent of brain disease (see
[196] for review). Most of the well-controlled studies report no significant loss of synapses
in non-pathological aged brains. Interestingly, there is also not a substantial loss of
neocortical neurons in the absence of brain diseases of aging [161, 162]. Age-related
changes in synapse numbers may be either region specific or not a common feature of brain

aging.

There are published reports in which synaptic markers do not closely correlate with the
numbers of amyloid plaques or NFTs on the same cases ([33, 121] although see [62]), which
have indicated synapse loss may be a superior metric of AD severity. However, in these and
related studies, there is the potential for spurious results since there is a tendency to correlate
synapse loss in a particular brain region with AD pathology using either ordinal variables
(e.g., Braak/CERAD stages) or else pathological metrics that are not relevant for clinical—
pathological correlations (e.g., hippocampal NFTs, “amyloid plaques”, or “amyloid load”).
Further, these reports may be confounded by mixed pathologies so frequently seen in aged
individuals’ brains.

Unfortunately, whereas synapse changes clearly occur in a variety of conditions, we still do
not know whether there are specific synaptic changes upstream of AD-type pathology
(plaques and tangles). It is thus unknown where the synaptic changes belong in the AD
pathogenetic schema. As with diabetes, the links to AD are as yet too weak to satisfy our
criteria #5 (Table 1). The biology of synapse changes in AD is an active and fascinating area
of AD research, yet it needs to be kept in mind that synapse elimination is not specific for
AD or for “brain aging” and much remains to be learned in this area.

Summary and conclusions

A summary of reviewed topics is presented in Table 5. Data from genetics indicate that APP
pathway genes and not aging-related genes are associated with AD risk. AD pathology is not
inevitable in all humans, even in advanced age. In contrast, there are diseases that increase
in prevalence in extreme old age (especially HS-Aging and CVD pathology). Neither
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diabetes, synapse loss, nor any other aging mechanism have been proven to be involved
directly in AD pathogenesis although they may worsen cognitive symptoms independently
of AD. Thus, none of the criteria for AD being linked specifically to aging mechanisms have
been met (Table 1), so the null hypothesis is sustained, at least for now. The preponderance
of data indicates that research aiming at diagnostic or therapeutic relevance will most
productively be oriented toward those specific pathways known to be activated in AD, rather
than focusing on aging-related mechanisms as a sole target for intervention in this
devastating disease.
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Fig. 1.

United States Census Bureau data and projections illustrate the practical need to understand
the correlation between aging and Alzheimer’s disease (AD). Raw numbers for the United
States population (2000) rand projected (2010 and 2020) are shown (a). Note that the
demographic changes between 2000 and 2020 in the US are not projected to affect all age
groups the same. Projected increases over time (2000—2020) are shown in b. The number of
persons between ages 85 and 89 years of age will increase by approximately 30% in that
time period, whereas the number of people between ages 95-99 years of age will increase by
over 100%. If aging itself is linked mechanistically to AD, then Western cultures are at
gravely increased AD risk. However, it may be a mistake to conflate AD with other causes
of cognitive impairment. Source: US Census Bureau
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Fig. 2.

AP deposition in the hippocampus of a 5-month-old infant with Down syndrome (DS). DS is
caused by triplication of chromosome 21 genes including the amyloid precursor protein
(APP) locus. This Caucasian female died after 148 days due to complications of congenital
heart disease. At autopsy, brain weight was 550 g with foreshortening of the anterior—
posterior dimension as is characteristic of DS. Photomicrographs show hippocampus
counterstained with Nissl stain (blue) and immunostained (brown) using anti-Ap (6E10).
Sections showed diffuse plaque-like structures (a) and smaller, more filamentous-looking
AP deposits (b). Separate controls run in parallel without primary or secondary antibodies
were completely negative (c, d). All persons with DS eventually develop Alzheimer’s
disease (AD). This drives home the point that although much is still unknown about AD
pathobiology, genetic risk factors related to APP are of paramount relevance. Scale bars 50
uM (a), 20 uM (b), and 100 uM (c, d)
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Death rates for prostate and kidney carcinoma (CA) in American males according to the
SEER database [87]. These data are presented to show the different epidemiology of two
different urothelial-derived cancers in men. This is a case where the epidemiology can help
guide important research questions related to the biology of the cancers and the impact of
aging and senescence. Although cancer is considered an aging-associated disease, the
particular subtypes of cancer tend to inhabit particular ranges of the human age spectrum.
This paradigm also applies to human neurodegenerative diseases which (like kidney cancer)
may peak prior to extreme old age
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National Alzheimer’s Coordinating Center (NACC) Registry data provide important clues

about the correlations between aging, Alzheimer’s disease (AD), and cerebrovascular

disease (CVD). Data were obtained from 25 different Alzheimer’s Disease research centers
as described previously [23]. For the assessment of CVD pathology (a), all cases in the
relevant age range (N = 4,423) were included. These show that CVD is strongly increased in

advanced age with ~90% of centenarians showing at least subtle CVD pathology. In

assessing AD (b), we only evaluated individuals with Braak stages V or VI neurofibrillary
pathology (N = 2,073). Note that among brains with “definite” AD pathology, there is an
increasing tendency for Braak V (instead of VI) in older individuals
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Percent of cases with AD or HS-Aging pathology,
from UK-ADC autopsy cohorts (N=1,110 cases)
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Fig. 5.

In a large clinical-pathological study that incorporated the UK-ADC autopsy cohort, The
Nun Study [209], and The Georgia Centenarian Study [173], we evaluated 106 cases with
hippocampal sclerosis (HS-Aging) and 1,004 controls [152], including many with AD.
Collectively, these cohorts may be enriched for individuals with cognitive impairment at
death because of recruitment bias; however, N = 625/1,110 or 57% had neither HS-Aging
nor AD. Beyond 95 years of age at death, the prevalence of AD pathology (defined by
numerous neuritic amyloid plaques and Braak stages V or VI on autopsy) appeared to
decline, whereas the prevalence of HS-Aging pathology became almost as high as AD
pathology
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Epidemiology of clinical dementia and specific pathologies that contribute to dementia. The
epidemiology of dementia (a) is based on well-characterized clinical cohorts (for review see
[112]). The epidemiology of the different brain diseases—with autopsy confirmation—is far

harder to know for sure because the data are critically dependent on autopsy-derived

information including the neuropathological practices used at autopsy. Most autopsy series
lack large numbers of individuals of extreme advanced age, and each study has distinct

biases in terms of recruitment, inclusion, and neuropathological assessments. The chart (b)
is a subjective amalgamation of multiple published studies pertinent to this important topic
[19, 21, 61, 76, 79, 80, 96, 102, 105, 106, 115, 140, 145, 150, 156, 158, 171, 176, 184, 193,
198, 211, 217, 228, 231]
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Criteria for whether “aging mechanisms” specifically are linked with Alzheimer’s disease (AD)

Criteria for whether or not the mechanism of AD pathogenesis is
specifically linked to aging

Criterion satisfied?

Directly relevant research

1. There is not some other mechanism outside of aging that seems likely to
cause AD

2. Human genetic aberrations that appear to hasten the aging process also
increase incidence or prevalence of AD, and vice versa

3. An elderly person should have a higher likelihood of dying with AD with
every added year of life

4. As with wrinkled skin and subtle cognitive impairment relative to baseline,
everyone will experience AD if they live long enough (and cognitive loss in
aging relates specifically to AD)

5. Other aging-linked mechanisms (diabetes and synapse loss) contribute
specifically to AD

NO

NO

NO

NO

NO

Clinical trials, genetics, and cancer
biology

AD and dementia epidemiology

Diabetes and synapse loss
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Progerias, human genetic diseases with “accelerated aging”: features and relationship to AD pathology

Accelerated aging syndrome  Clinical features Mutated gene(s) Life expectancy  Definitive
increase of AD
pathology?

Werner syndrome Short stature, gray hair, hoarse voice, =~ WRN 40-50s No but see [126]

cataracts, wrinkled skin, diabetes,
osteoporosis, cancers

Hutchinson—-Gilford syndrome  Hair loss, thickened/wrinkled skin, LMNA Teens No

atherosclerosis, premature frailty,
usually die in teens

Cockayne syndrome Small stature, photophobia, small CSA/ERCCS8, CSB/ERCC6  Childhood-30s No

head, mental retardation, neurological
symptoms (e.g. ataxia)
Trichothio-dystrophy Short stature, brittle/sparse hair and XPB, XPD, TTDA/GTF2H5  Childhood-40s No

nails, intellectual impairment,
photosensitivity, infections
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Table 3

Sample of relatively prevalent conditions in advanced age that can adversely affect cognition or performance
on cognitive tests independent of AD status

Brain diseases in advanced age Systemic illness that can affect cognition

Occlusive or embolic infarct(s), hemorrhagic infarct(s), Side effect of chemotherapy or other medication, side effect of other
frontotemporal lobar dementias, a-synucleinopathies, including disease including cancers, heart failure and other causes of vascular
Parkinson disease dementia and dementia with Lewy bodies, HS- insufficiency, hyperglycemia, hypoglycemia, renal dysfunction, liver
Aging and other TDP-43 pathologies, tangle-predominant dysfunction, pulmonary disease including emphysema and other causes of
dementia, subdural or epidural hematomas, chronic traumatic chronic hypoxia, metabolic fluxes (e.g. electrolyte imbalances), infection
encephalopathy, depression, anxiety, normal pressure (CNS or outside CNS), vasculitis or other autoimmune/rheumatic disease,
hydrocephalus, and many others substance abuse, and many others

Number of the above that have been proven to specifically induce Alzheimer’s disease, as opposed to co-morbidly altering the cognitive
symptoms?

None
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Table 4

Clinical-pathological studies that correlate the presence of antemortem diabetes with autopsy-confirmed
Alzheimer’s disease (AD) and cerebrovascular disease (CVVD) pathology

Study Diabetics Non-diabetics  In diabetics, versus nondiabetics

N N Risk of AD pathology  Risk of CVD pathology
Heitner and Dickson [89] 49 52 Not increased Not evaluated
Peila et al. [166] 216 total autopsies Not increased@ Increased
Janson et al. [98] 28 19 Not increased? Not evaluated
Beeri et al. [24] 61 324 Decreased Increased
Arvanitakis et al. [15] 36 197 Not increased Increased
Nelson et al. [149] 50 189 Decreased Increased
Sonnen et al. [210] 59 137 DecreasedC Increased
Abhtiluoto et al. [8] 70 221 Decreased Increased
Matsuzaki et al. [135] 135 total autopsies Not cleard Not cleard

aNo effect of “diabetes only” on AD pathology overall, but a synergy was seen between APOE4 allele and diabetes that correlated with increased

AD pathology for APOE4 + diabetics in this study

bNo effect of type 2 diabetes in terms of amyloid plaques (diffuse or neuritic) or neurofibrillary tangles. Duration of diabetes appeared linked to
AD pathology (although the significance of this is not clear) and clinical AD diagnosis was linked to diabetes although this impression was not

confirmed with pathology

c R . . .
Among individuals with dementia only; non-demented persons showed no difference

dAuthors focused on amyloid plaque and sub-threshold pathology and not diagnostic pathology or neurofibrillary pathology (Braak stages). Data
were interpreted to suggest insulin resistance correlates with increased amyloid plaques with synergy between glycemic factors, APOE, and AD

pathology. However, presented data could be interpreted differently
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Table 5

Summary

Summary points

Persons with many NFTs in neocortex always have cognitive impairment; in the presence of neuritic plaques this is the definition of AD
Genetic diseases that lead to premature aging (“progeria”) do not induce AD phenotype
Highly penetrant genetic diseases that lead to AD phenotype have no known link to aging but instead to APP processing

Persons with cognitive impairment may lack neocortical NFTs, especially in extreme advanced old age; this is probably due to the brain
diseases other than AD that affect aged persons’ brains including HS-Aging, CVD, and diabetes

HS-Aging and CVD, unlike AD, increase in aged persons’ brains every year after age 95

Other human diseases including specific cancer subtypes have increased prevalence in seventh and eighth decade of life but lower prevalence
thereafter

Aging-linked mechanisms, including HS-Aging, CVD, diabetes and synapse loss, have not been proven to induce AD pathology

There is no particular senescence-related biochemical mechanism that has been definitively linked to AD
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