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This paper describes an automated procedure for creating detailed patient-specific pediatric dosimetry phantoms from a small set
of segmented organs in a child’s CT scan. The algorithm involves full body mappings from adult template to pediatric images using
multichannel large deformation diffeomorphic metric mapping (MC-LDDMM). The parallel implementation and performance
of MC-LDDMM for this application is studied here for a sample of 4 pediatric patients, and from 1 to 24 processors. 93.84% of
computation time is parallelized, and the efficiency of parallelization remains high until more than 8 processors are used. The
performance of the algorithm was validated on a set of 24 male and 18 female pediatric patients. It was found to be accurate
typically to within 1-2 voxels (2–4 mm) and robust across this large and variable data set.

1. Introduction

Measuring the radiation dose a patient accumulates through
life is an important matter that has been receiving much
attention recently, in particular for growing children (e.g., in
the New England Journal of Medicine’s recent critique of CT
use [1], and the adoption of the Image Gently program [2]
by the Society of Pediatric Radiology, the American Society
of Radiologic Technologists, the American College of Radiol-
ogy, the American Association of Physicists in Medicine, and
others). While directly measuring dose to individual organs
is impractical, the development of computational phantoms
containing dosimetric information (e.g., [3]), such as the
extended cardiac-torso (XCAT) phantom used in this study
[4] have begun to be a reliable substitute. A key shortcoming
of this strategy is that standard phantoms cannot adequately
reflect variability between patients, especially for children
of different sizes and ages, and defining new phantoms for
each patient manually would be unfeasible. The strategy used

here consists of manually segmenting a small subset of organs
from pediatric CT data and calculating a full body mapping
to a similarly segmented adult XCAT phantom [5]. The
resulting transformation is used to map rich anatomical and
dosimetric information to the child’s body.

To map dense image data as well as point-based manifold
data between adult and child, this application requires a
smooth invertible transformation (a diffeomorphism) to be
defined everywhere on the background space of the CT scan.
Such transformations are an important focus of computa-
tional anatomy [6], where anatomical variability is under-
stood by studying diffeomorphisms mapping anatomical
manifolds to one another. Formally, anatomy is modelled as
the quadruple (Ω, G, I, P ), where Ω is the background space
(i.e., subsets of R3), G is a group of diffeomorphisms on Ω,
I is the orbit of a template I0 under G, and P is a family
of probability measures on G. Geodesic paths, φt ∈ G for
t ∈ [0, 1], are used to evolve a template according to I0 ◦φ−1

t ,
and a mapping to a target I1 is defined when I1 = I0 ◦ φ−1

1 .
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Large deformation diffeomorphic metric mapping
(LDDMM) [7] generates such mappings (φ1(x)) by inte-
grating a smooth time dependent velocity field vt(x) [8],

φt(x) =
∫ t

0
vt′
(
φt′(x)

)
dt′, (1)

with the initial condition being identity, φ0(x) = x.
A functional of the velocity field, which enforces image
matching as well as smoothness and ensures the path is a
geodesic, is minimized as discussed below.

2. The Multichannel LDDMM Algorithm

There are existing algorithms for full body image registra-
tion, which are used (e.g.) in registering PET to CT data
[9–11] and compensating for deformations such as breath
holds. However, these tend to use elastic models, which are
suitable for describing the small deformations that register
two images of the same patient but are unable to accurately
describe the widely varying deformations between adults and
children of various ages. In addition to the constraints on
smoothness and invertibility, transformations generated by
LDDMM are well suited to this application, because its fluid
model (rather than elastic) allows for large deformations to
be generated [12] and because the submanifold preserving
property of diffeomorphisms [13] allows a transformation
calculated from a handful of segmented structures to be
accurately applied to the thousands of anatomical structures
defined in the XCAT phantom. Moreover, additional prop-
erties are well suited to future exploration. For example,
LDDMM allows metric distances to be defined between
template and target anatomies [8, 14] and allows statistical
codification of anatomy [15, 16].

In this work, we use multichannel LDDMM (MC-
LDDMM), an algorithm which treats each segmented organ
as a separate image linked by a common background space
[17] to calculate diffeomorphisms. This is accomplished by
calculating the velocity field minimizing the energy func-
tional

E =
∫
dt‖Lvt‖2

2 +
M∑
i=1

1
σ2
i

∥∥∥Ii0 ◦ φ−1
t=1 − Ii1

∥∥∥2

2
, (2)

where Ii1 and Ii0 are the ith (out of M) channels (organs)
of the target and template images, φt=1 is a diffeomorphism
generated by integrating the velocity field vt from t = 0 to
1, and σ2

i describes the contribution of the ith channel to
the overall energy. The operator L = −γId + α∇2, where
γ = −1 is fixed and α is varied, Id is identity, and ∇2 is
the Laplacian operator, ensures smoothness of the velocity
field and resulting deformations, with larger α corresponding
to smoother deformations, and smaller α corresponding to
more accurate transformations.

The energy gradient can be computed as [17]

∇vEt = 2vt − K

⎡
⎣ M∑
i=1

2
σ2
i

∣∣Dφt,1∣∣∇J0i
t

(
J0i
t − J1i

t

)⎤⎦, (3)

where K is the operator inverse of L†L, | · | denotes deter-
minant and D denotes the Jacobian. The transformation
generated by integrating (1) from time t′ = s to time t′ = t
is denoted φs,t (i.e., φs,t = φt ◦ φ−1

s = φ−1
t,s ). The quantity J0i

t is
the ith template channel transformed up to time t (i.e., J0i

t =
Ii0 ◦ φ−1

t = Ii0 ◦ φt,0), J1i
t is the ith target channel transformed

backwards from time 1 to time t (i.e., J1i
t = Ii1 ◦ φt,1), and ∇

is simply the spatial gradient.

It can be seen that the transformation and its inverse
must be defined at all times, which was discretized here into
11 equally spaced time points from t = 0 to t = 1. Calcu-
lating this transformation from the velocity field is a large
part of the computational load. Integration in time is per-
formed using semi-Lagrangian advection, a technique used
in numerical weather prediction [18]. We use an implicit
method for numerical integration, with 3 iterations per voxel
at each timestep.

Moreover, a deformed target and template image must
be calculated at each timestep. We use trilinear interpolation,
which corresponds to another large computational load.
To optimize calculations, the images for each channel were
computed in the same loop (loop fusion).

Finally, application of the operator K is implemented by
multiplication in the Fourier domain. The FFT calculations
were performed and parallelized using Intel Math Kernel
Library’s (MKL) FFT routines.

Since many steps of this algorithm involve independent
calculations on a regular 3D voxel grid, it is well suited to
parallelization. In our C++ implementation of the LDDMM
algorithm, OpenMP (open multiprocessing) library routines
were used. As stated in [19], “the OpenMP Application
Program Interface (API) supports multi-platform shared-
memory parallel programming in C/C++ and Fortran on all
architectures. . . .OpenMP is a portable, scalable model that
gives shared-memory parallel programmers a simple and
flexible interface for developing parallel applications for plat-
forms ranging from the desktop to the supercomputer.” In
our algorithm, at each iteration of gradient descent, different
operations defined on data over the voxel grid were paral-
lelized using work-sharing constructs, and loop iterations
were split among the threads. The program was compiled
using Intel C++ compiler version 12.0, with automatic
compiler optimizations. It was run on a Dell R900, a 4 socket
node with 6 cores per socket, with an Intel Xeon CPU E7450
at 2.40 GHz.

3. Methods

3.1. Calculation of Full Body Maps. In previous work [5],
the feasibility of using multi-MC-LDDMM for this purpose
was explored. A mapping to a single pediatric patient was
calculated, and a reasonable subset of segmented organs
was determined. However, generalizing this algorithm to a
population of patients proved difficult. For example, where
initial overlap of organs or bony details between template and
target was poor, the diffeomorphism tended to shrink organs
close to a point. Such distortions would also negatively affect
the registration of nearby structures. Furthermore, when
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(a)a (b) (c)

Figure 1: An example of how the standard MC-LDDMM algorithm
fails for full body mapping. (a) axial, (b) coronal, and (c) sagittal
images of a deformed adult template. Notice that the abdominal
organs have been catastrophically shrunk causing distortions in
nearby neck and thoracic structures and that details in the face and
skull have been lost.

structures were shrunk by the diffeomorphism details were
lost, and when structures were expanded, their initial
voxelized character was spuriously reproduced at the larger
scale. These difficulties are illustrated by showing a deformed
adult template in Figure 1, where abdominal organs are seen
contracting to a very small size, nearby structures in the neck
and thorax are distorted, and features in the face and skull
are lost. Further investigation resulted in the algorithm being
made more robust [20] but at the expense of increased
computation time.

In the modified MC-LDDMM algorithm, (2) is min-
imized by initializing the velocity field to 0 and using a
gradient descent routine with a large value of α. At conver-
gence, the value of α is decreased, and minimization resumes,
starting with the previously calculated velocity field. This
procedure is iterated a total of four times. This sequential
reduction of the parameter α (denoted “cascading α”) allows
for a coarse to fine registration and is responsible for the
increased robustness as well as increased computation time
of the modified algorithm. Beginning with a large value of
α is analogous to Tikhonov regularization, encouraging a
desirable solution to an ill posed problem. The final small
value for α is chosen to give the desired level of accuracy
in our mapping. Decreasing the value for α abruptly often
results in nondiffeomorphic transformations due to numer-
ical instability. So, we include 2 intermediate values to
mitigate this effect and unfortunately must bear the price of
considerably increasing computation time.

The MC-LDDMM algorithm with cascading α was used
to generate mappings between one of two adult templates
(one male and one female), and pediatric patients (24 male
and 18 female). Each was defined on an 256×256×520 2mm3

voxel grid. The patients varied in size between 0.072 and
0.472 times the volume of the adult, with an average of 0.233
times. Males ranged from 0.072 to 0.472 times the adult vol-
ume with a mean of 0.246, while females ranged from 0.076
to 0.372 times the adult volume with a mean of 0.215. The
images were segmented into 8 channels with corresponding

Table 1: Segmented organs used for full body maps.

Organ Weighting

Body σ1 = 1

Bones σ2 = 1

Kidneys σ3 = 0.5

Lungs σ4 = 1

Liver σ5 = 1

Spleen σ6 = 0.5

Stomach σ7 = 0.5

Brain σ8 = 1

organs and weightings defined in Table 1, and 87 landmarks
were placed automatically [4] mainly on easily reproducible
bony structures. Images were initially aligned with an affine
transformation minimizing distances between correspond-
ing landmarks, followed by nonlinear landmark LDDMM
[21]. Following this, cascading α MC-LDDMM was used
with the four values α = 0.05, 0.025, 0.01, 0.005. In previous
work, we found this particular sequence to give qualitatively
good results in 2D simulations and 3D full body data [20].

The sequence of transformations used to generate the
final mapping is illustrated in Figure 2. Each transforma-
tions for each pediatric patient were combined to yield a
double precision displacement vector at each voxel of the
adult template images. This transformation was trilinearly
interpolated to map NURBS (nonuniform rational B-spline)
surfaces defined in the XCAT phantoms to the coordinate
system of the child.

3.2. Analysis of Computation. The bulk of the computational
work was performed during cascading α MC-LDDMM, and
as such, its performance was investigated more thoroughly.
Four patients were selected, 2 males and 2 females, cor-
responding to the largest, smallest, and 1/3 interquartile
sizes, denoted “small”, “med-small”, “med-large”, and “large”.
Mappings were calculated on these patients using each of
1, 2, 4, 8, 16, and 24 (the maximum readily available)
processors. The total computation time excluding input-
output (IO) operations was analyzed for each case as well
as the time spent in specific functions. This allowed us an
understanding of how computation time scales with the
number of processors used, and in particular identify at
what point computation time begins to increase beyond what
would be expected.

To be more thorough, the portions of the program that
were affected by parallelization, including IO operations,
were analyzed. Speedup, cn, due to parallelization on n
processors was calculated (using “Amdahl’s Law” [22] as in
[23]) to be

cn = T(1)
T(n)

= A + B

A + B/n
, (4)

where T(n) is the total computation time for n processors,
and for a single processor, A is the time spent that cannot be
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Figure 2: The robust sequence of transformations leading to the final mapping. Top row: sagittal slice, middle row: coronal slice, bottom row:
axial slice. (a) Initial placement, (b) after affine registration, (c) after LDDMM landmark, and (d)–(g) after 1–4 iterations of MC-LDDMM.

Table 2: Summary of 4 subjects used to analyze computational
performance.

Subject Voxels Iterations ∼No. of calculations

Small 2459200 439 1.08e + 09

Med-Small 6182224 942 5.82e + 09

Med-Large 9358976 640 5.99e + 09

Large 16082000 544 8.75e + 09

parallelized, and B is the time spent that can be parallelized.
These two quantities are easily estimated from a two param-
eter fit to the above equation, which allows determination
of the fraction of the total computational time that can be
parallelized. Furthermore, the efficiency of parallelization
was calculated according to

en = cn
n
. (5)

3.3. Accuracy of Mappings. Finally, the quality of the map-
pings produced was validated. For each segmented organ, a
triangulated surface was produced using isosurface genera-
tion via marching tetrahedra [24]. For each template (target)
vertex, the minimum distance to a vertex on the target
(template) surface was measured. Distances for template and
target vertices were combined, and their distributions were
analyzed. Breaking down this analysis into categories allows
an understanding of the robustness of the algorithm. As such,

distributions were analyzed separately for males, females, as
well as for each segmented organ.

4. Results

4.1. Computational Performance. A summary of the 4 sub-
jects used to analyze computation performance is included
in Table 2. The number of voxels in each image is shown
in the second column, giving more precise meaning to the
labels “small”, “med-small”, “med-large”, and “large”. The
total number of iterations of gradient descent across the 4
applications of MC-LDDMM is shown in the third column.
Due in part to adaptive stepsize selection in gradient descent,
the number of iterations until convergence cannot be known
before hand. In the fourth column, the product between
number of voxels and number of iterations is shown as a
rough approximation of the number of calculations used.
This value can be used to better understand the timing results
that follow. In particular the “med-small” case required the
most iterations to converge, and the approximate number
of calculations was much less for the “small” patient than
for the other three. We stress that these four patients were
chosen with interquartile spacing of their total number of
voxels, as opposed to uniform spacing across number of
voxels, or uniform spacing across number of calculations.
Such a choice is reflective of the pediatric population to be
examined, rather than properties of the algorithm itself.

The total computational time in hours, excluding IO
operations, is shown in Table 3. The two largest components
of calculations are also shown. Numerically integrating the
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Table 3: Total timing (in hours) excluding IO operations.

Processors Small Med-small Med-large Large

1 8.94 33.5 31.3 28

2 4.9 18.2 17.3 15.2

4 2.62 9.68 9.05 7.92

8 1.49 5.41 5.07 4.47

16 1.06 3.64 3.5 3.1

24 0.935 3.25 3.17 2.8

Table 4: Semi-Lagrangian timing (in hours).

Processors Small Med-small Med-large Large

1 2.72 8.87 9.16 8.34

2 1.37 4.52 4.73 4.26

4 0.691 2.28 2.39 2.14

8 0.347 1.15 1.19 1.07

16 0.186 0.625 0.647 0.582

24 0.14 0.473 0.494 0.441

Table 5: Image interpolation timing (in hours).

Processors Small Med-small Med-large Large

1 2.28 8.27 9.24 7.91

2 1.25 4.59 5.07 4.3

4 0.653 2.45 2.63 2.21

8 0.352 1.29 1.38 1.16

16 0.251 0.869 0.88 0.771

24 0.219 0.776 0.767 0.685

velocity field using semi-Lagrangian interpolation is shown
in Table 4, and trilinearly interpolating the images is shown
in Table 5. Surprisingly, the longest amount of time was spent
on the “med-small case”. While this is partially explained by
the large number of iterations for this case shown in Table 2,
other factors such as the specific implementation of the fast
Fourier transform on a grid of this size, contribute as well.

To better understand this behavior, the same data is
shown graphically, on a log-log axes in Figure 3. Figure 3(a)
shows the total time, Figure 3(b) shows the time spent calcu-
lating semi-Lagrangian advection, and Figure 3(c) shows the
time spent interpolating images. It appears that computation
time scales with number of processors up until around 8,
when efficiency starts to break down.

Again, this data must be interpreted with caution, be-
cause the images used are different sizes and a different num-
ber of iterations of gradient descent is required to converge
in each case, as shown in Table 2. Therefore, the timing data
was also plotted after being normalized by total number of
voxels times total number of iterations in Figure 4. It should
be noted that the smallest image actually takes the most time
per voxel per iteration, while the largest image takes the least.

The speedup factor and efficiency were calculated accord-
ing to (4) and (5) and are plotted in Figure 5. This analysis

confirms and quantifies the sharp drop in efficiency beyond 8
processors. From a 2 parameter fit to the data in Figure 5(a),
it was determined that 93.84% of the computation time is
parallelized, demonstrating the effectiveness of our imple-
mentation.

4.2. Accuracy of Transformations. To give a qualitative under-
standing of the mappings produced, an example of triangu-
lated surfaces, for target and mapped template, are shown
in Figure 6 with the body in Figure 6(a), the bones in
Figure 6(b), and the other organs in Figure 6(c). One can
see the quality of the mappings is good in most areas,
the exceptions being the inferior-most regions, where the
extent of template and target images vary, the scapula, where
sliding motions between the nearby ribs and body surface
are difficult to generate given the diffeomorphism constraint,
and the sharp borders of some abdominal organs, whose
curvature varies markedly from that of the template.

The mappings produced were used to generate cus-
tomized dosimetry phantoms based on the adult XCATs. The
adult male XCAT is shown in Figure 6(d) and an example
pediatric dosimetry phantom is shown in Figure 6(e). Pre-
vious work has shown dosimetry measurements generated
with these phantoms to agree within 10% percent of ground
truth [5].

Cumulative distribution functions for final surface to
surface distances are shown in Figure 7. They are shown
for all patients pooled together as well as for males and
females separately in Figure 7(a). The differences in accuracy,
on average, between male and female patients is negligible.
Additionally, distribution functions are shown for each organ
in Figure 7(b). And they are shown for each of the 42 patients
in Figure 7(c).

The results show that the majority of surfaces (a fraction
of 1/e ∼ 1 standard deviation of the vertices) agree within
2–4 mm or 1-2 voxels. Moreover, accuracy for females tends
to be more variable than that for males, likely due to
larger differences in body proportions between child and
adult. Surprisingly, the least accurate case, apparent in
Figure 7(c), is an average seeming patient of intermediate size
between the med-small and med-large test cases. Further-
more, differences in accuracy for each organ are observed,
where the brain is matched with the most fidelity and the
stomach followed by lungs with the least fidelity. While these
differences are small when compared to the voxel size, it is
worth noting that the relatively poor performance for the
stomach was likely due to its internal location and close
proximity with many other abdominal structures, and the
relatively poor performance of the lungs was likely due to
large differences in curvature between the adult and child at
the apexes and inferior borders.

5. Conclusions

This work presented an interesting application of diffeomor-
phic image registration, generating pediatric patient specific
detailed dosimetry phantoms, made feasible on large scale
due to parallel computing. The need for parallelization
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Figure 3: Time spent on computations for the four patients examined, plotted on a log-log axis. (a) Total time, (b) time in semi-Lagrangian
advection, (c) time in image interpolation. Note that in (a) med-small takes the longest, followed by med-large, large, and small. In (b) and
(c), the order of the first two is reversed.
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Figure 4: Time spent on computations, per image voxel per gradient descent iteration, for the four patients examined, plotted on a log-log
axis. (a) Total time, (b) time in semi-Lagrangian advection, and (c) time in image interpolation. Note that in (a) small takes the longest,
followed by med-small, med-large, and large. In (b) (for all processors) and (c) (from 1 to 8 processors), the order of the middle two is
reversed.

in deformable image registration is well recognized [23,
25, 26], and other authors have investigated parallelization
of diffeomorphic registration from MASPAR [27] to GPU
implementations [28].

The algorithm used here for generating full body maps
involves a sequence of increasingly detailed transformations
between adult templates and child images. This procedure
ensures robustness to automate calculations across a wide
range of pediatric patients but comes at the price high
computational cost.

To overcome this cost, 93.84% of the algorithm compu-
tation time was parallelized. Running times for the various
patients examined ranged from over 30 hours on a single
processor to under 1 hour on 24 processors in parallel. An
analysis of speedup and parallelization efficiency shows that
performance begins to rapidly decline when implemented on
more than 8 processors. As applications for LDDMM
become more numerous and larger scale, an investigation
of this issue will be necessary. It is likely that the effects of
memory to cpu communication bandwidth, load balancing
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Figure 5: (a) Speedup due to parallelization (log scale) and (b) efficiency of parallelization (semilog scale), for the four patients examined.
With the exception of “small” being uniformly the lowest, the order of the other varies as number of processors increases, and differences
between each curve are quite small.
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Figure 6: Triangulated surfaces from an example deformed adult template (white) and target child (black) are of (a) body, (b) bones, and
(c) other organs. Adult male XCAT phantom is shown in (d), and an example custom dosimetry phantom is shown in (e).

overhead (due to workload not evenly distributed across the
available processors) play a major role.

The full body mapping algorithm is quite accurate for all
the patients examined, with the majority of vertices defined
on organ surfaces agreeing between template and target to
within 2 voxels. Overcoming a main drawback of the dif-
feomorphism constraint, namely, forbidding sliding motions
in the deformation, is the subject of ongoing research. One
strategy we are currently investigating involves relabelling a
strip of the segmented image, between two structures where
sliding would be expected, as “background”. The XCAT
phantoms generated are being further investigated for their
accuracy and clinical utility.

While generating mappings using a sequence of transfor-
mations results in a robust algorithm for this application, it
detracts from some of the theoretical appeal of LDDMM.
Describing transformations by a single time-dependent
vector field allows a rigorous study of anatomical variability.
Future work will involve combining these transformations,
for example, as described in [29], and beginning to engage in
shape analysis of full bodies.
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