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In 1889, Dr. Stephen Paget proposed 
the “seed and soil” hypothesis, which 

states that cancer cells (the seeds) need 
the proper microenvironment (the soil) 
for them to grow, spread and metas-
tasize systemically. In this hypothesis, 
Dr. Paget rightfully recognized that the 
tumor microenvironment has an impor-
tant role to play in cancer progression 
and metastasis. In this regard, a series of 
recent studies have elegantly shown that 
the production of hydrogen peroxide, by 
both cancer cells and cancer-associated 
fibroblasts, may provide the necessary 
“fertilizer,” by driving accelerated aging, 
DNA damage, inflammation and cancer 
metabolism, in the tumor microenviron-
ment. By secreting hydrogen peroxide, 
cancer cells and fibroblasts are mimick-
ing the behavior of immune cells (mac-
rophages/neutrophils), driving local and 
systemic inflammation, via the innate 
immune response (NFκB). Thus, we 
should consider using various therapeutic 
strategies (such as catalase and/or other 
antioxidants) to neutralize the produc-
tion of cancer-associated hydrogen per-
oxide, thereby preventing tumor-stroma 
co-evolution and metastasis. The impli-
cations of these findings for overcoming 
chemo-resistance in cancer cells are also 
discussed in the context of hydrogen per-
oxide production and cancer metabolism.

The “free radical theory of aging” states 
that progressive defects in mitochondrial 
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function lead to the increased production 
of reactive oxygen species (ROS), such as 
hydrogen peroxide, resulting in accumu-
lated DNA damage.1-3 Ultimately, this 
DNA damage also increases our suscepti-
bility toward the onset of cancer.4-6

But what if cancer cells could facilitate 
this process too, by producing hydrogen 
peroxide themselves? In fact, oncogene-
induced transformation of cells results in 
hydrogen peroxide and ROS production7-10 
(Fig. 1). And treatment with antioxidants 
blocks oxidative stress, and in some cases 
is sufficient to reverse cell transforma-
tion.11-13 Similarly, non-transformed cells, 
including stem cells, require ROS produc-
tion for cell proliferation.14,15

Normally, epithelial cells only pro-
duce hydrogen peroxide during wound 
healing, initiating the onset of inflam-
mation and myofibroblast conversion.16 
In this regard, epithelial cells behave like 
inflammatory cells, such as macrophages 
and neutrophils, which are responsible 
for the vast majority of hydrogen perox-
ide production during the inflammatory 
immune response.8-10 Similarly, oxidative 
stress, via hydrogen peroxide production, 
is sufficient to convert normal fibroblasts 
to activated myofibroblasts.17 These acti-
vated myofibroblasts then produce hydro-
gen peroxide themselves, propagating the 
inflammatory signal.18

In normal wound healing, the pro-
duction of hydrogen peroxide is shut off. 
However, in cancer cells and tumor tissues, 
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therapy” (either via i.v. or i.p. injection of 
catalase) in rodent animal models is suf-
ficient to almost completely prevent both 
tumor recurrence and metastasis.47-53

Transgenic overexpression of cata-
lase in MMTV-PyMT mice (a well- 
established model of breast cancer) reduces 
tumor aggressiveness (from high-grade to 
low-grade) and reduces lung metastatic 
tumor burden by >12-fold.54,55

Glutathione peroxidase family mem-
bers also function to detoxify hydrogen 
peroxide.56 Of the eight known family 
members (GPX1–8), it appears that GPX4 
is the most relevant to our discussion, as it 
is targeted to mitochondria. Interestingly, 
overexpression of GPX4 in fibroblasts pro-
tects against ROS production, NFκB acti-
vation and IL-6 secretion, as well as MMP 
production.56 In addition, overexpression 
of GPX4 in cancer cells effectively reduces 
cell proliferation, tumor growth and 
metastasis.56

Thus, it appears that hydrogen per-
oxide does function as “fertilizer” to 
promote tumor growth, progression and 
metastasis.

develop mammary tumors, which can 
be prevented by treatment of these mice 
with dietary Vitamin E, a known anti-
oxidant.40 In contrast, wild-type control 
mice do not show the development of 
mammary cancers.40 Thus, the inability 
to properly detoxify hydrogen peroxide is 
sufficient to promote tumor initiation.40 
A catalase-deficiency also appears to con-
tribute toward the onset of fibrosis,41-44 
possibly further promoting tumor growth.

Conversely, in humans, the CC allele 
of the catalase gene is associated with 
increased serum catalase activity and 
a 20% reduction in breast cancers.45 
This reduction in breast cancer risk was 
increased to 40%, if women with the CC 
allele ate large amounts of vegetables and 
fruit, that contain antioxidants.45 Similarly, 
treatment of breast cancer patients with 
antioxidants (Vitamins C/E) results in 
substantial reductions in both mortality 
and recurrence (approaching 40–50%), 
if patients with radiation therapy are 
excluded.46

In Japan, a plethora of pre-clinical 
studies have now shown that “catalase 

the production of hydrogen peroxide con-
tinues, leading to further DNA damage, 
inflammation and changes in cellular 
metabolism. Hydrogen peroxide drives the 
onset of inflammation, via the activation 
of NFκB, a master regulator of the innate 
immune response.19 Hydrogen peroxide 
also damages DNA, cellular membranes 
and organelles, resulting in the onset of 
autophagy and mitophagy, and HIF1 
activation.20-24 Mitophagy (the autopha-
gic destruction of mitochondria) results in 
aerobic glycolysis and lactate production 
under conditions of oxidative stress.22,25

Similarly, during scar formation, keloid 
fibroblasts produce hydrogen peroxide, 
undergo aerobic glycolysis and secrete lac-
tate.26-28 Thus, myofibroblasts also have 
the capacity to undergo the Warburg 
Effect (i.e., aerobic glycolysis),26,28 a pro-
cess that was previously thought to be 
confined to cancer cells.29,30

This is all consistent with the idea that 
cancers are wounds that do not heal,31 
likely due to the continued production of 
hydrogen peroxide.

Does Hydrogen Peroxide Function 
as “Fertilizer” for Tumor Growth 

and Metastasis?

In the “seed and soil” hypothesis, the 
cancer cells (the seeds) require the proper 
local and systemic environment (the soil) 
to facilitate tumor growth and metas-
tasis.32-34 Several independent lines of 
evidence now suggest that hydrogen per-
oxide may function as the “fertilizer” in 
this process, by driving accelerated aging, 
DNA damage, inflammation and cancer 
metabolism.35-39

Catalase is one of the major enzymes 
that detoxifies hydrogen peroxide in the 
body, functioning as a powerful catalytic 
anti-oxidant. Catalase converts hydrogen 
peroxide to water and oxygen. It is one 
of the most catalytically active enzymes 
known; one molecule of catalase can “neu-
tralize” 40 million molecules of hydrogen 
peroxide per second.

Thus, it might be predicted that a 
catalase-deficiency predisposes toward 
the development of cancer, due to 
increased levels of hydrogen peroxide. 
Interestingly, by 9 months of age, female 
catalase-deficient mice spontaneously 

Figure 1. Cancer cells initially produce hydrogen peroxide, which “fertilizes” the tumor microen-
vironment. see text for details. in this model, cancer cells initially produce and secrete hydrogen 
peroxide that induces oxidative stress in adjacent cancer-associated fibroblasts. then, cancer cells 
mount an anti-oxidant defense by expressing key proteins, such as the peroxiredoxins and tiGAr. 
Oxidative stress and rOs production in cancer associated fibroblasts then “fertilizes” the tumor 
microenvironment via myofibroblast differentiation and DNA damage, autophagy/mitophagy, 
aerobic glycolysis and inflammation. Oxidative stress activates two major transcription factors in 
cancer-associated fibroblasts, namely HiF1α (aerobic glycolysis) and NFκB (inflammation), which 
both contribute to the induction of autophagy and mitophagy. rOs production in the tumor 
microenvironment also has a mutagenic “Bystander effect” on cancer cells, driving their evolution 
toward a more aggressive phenotype, aneuploidy and genomic instability. importantly, anti-
oxidants that neutralize hydrogen peroxide [such as catalase and N-acetyl-cysteine (NAC)] should 
prevent “fertilization” of the soil.
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autophagy.23,24 Then, autophagy, mitoph-
agy and aerobic glycolysis in cancer-asso-
ciated fibroblasts provides high-energy 
nutrients and recycled building blocks 
(such as lactate, ketones and glutamine) 
to literally “feed” cancer cells.23,24 These 
high-energy nutrients (such as lactate) 
are sufficient to promote mitochondrial 
biogenesis and oxidative mitochondrial 
metabolism in cancer cells, thereby driv-
ing tumor growth.23,24,69,70 Under these 

in the cancer-associated fibroblasts.23,35 
Thus, it appears that cancer cells initially 
secrete hydrogen peroxide, which then 
triggers oxidative stress in neighboring 
fibroblasts.

Importantly, we observed using this 
MCF7-fibroblast co-culture system, that 
hydrogen peroxide secretion activates 
NFκB and HIF1 in cancer-associated 
fibroblasts, driving stromal inflamma-
tion and aerobic glycolysis, as well as 

In accordance with this simple notion, 
hydrogen peroxide production and chronic 
inflammation (also due to viral and bac-
terial infections), may be the major driv-
ers of tumor initiation. In fact, the most 
common “root causes” of cancer world-
wide are thought to be due to infectious 
agents, such as in liver (HBV),57 cervical 
(HPV),58 nasopharyngeal (EBV),59,60 lung 
(TB),61 and stomach (H. pylori) 62 cancers. 
Similarly, chronic inflammatory diseases, 
such as scleroderma,63 ulcerative colitis,64 
and Crohn’s disease,65 all predispose to the 
onset of cancer. ROS-producing bacteria 
have even been implicated in the patho-
genesis of colon cancer, which induce 
aneuploidy (genomic instability) in nor-
mal colonocytes via a “bystander effect.”66

Likewise, H. pylori increases the local 
production of ROS species (including 
hydrogen peroxide) and RNS (such as 
nitric oxide) in the stomach.62 This also 
fits well with the possibility that Wasabi 
consumption [a condiment that actively 
produces hydrogen peroxide (horserad-
ish)] could explain the observation that 
Japanese men have the highest rate of 
gastric cancer in the world, ~7–10 times 
higher than in the United States.67

As discussed below, ROS-induced 
cytokine production and inflammation65 
also further drive autophagy (the produc-
tion of high-energy nutrients) in the tumor 
microenvironment,36 thereby producing 
“fuel” to feed “hungry” cancer cells.

Hydrogen Peroxide  
and the  Warburg Effect  
in the Tumor Stroma:  
Metabolic Coupling

If cancer cells produce and secrete hydro-
gen peroxide, then this also has important 
metabolic consequences for the tumor 
microenvironment.

These stromal effects were recently 
observed by co-culturing MCF7 breast 
cancer cells with immortalized fibro-
blasts.23,24,68 Interestingly, at day 2 of 
co-culture most of the ROS production 
occurred in MCF7 cells.35 This ROS pro-
duction was reduced to baseline levels by 
co-incubation with extracellular catalase, 
identifying the predominant ROS species 
as hydrogen peroxide.35 In contrast, by day 
5, most of the ROS production occurred 

Figure 2. transcriptional overlap between Alzheimer brain disease and the breast cancer tumor 
stroma: association with metastasis. venn diagrams show that the gene signature for Alzheimer 
disease brain (1,133 gene transcripts; a signature for inflammation and oxidative stress) is most 
closely related to the primary tumor stroma of breast cancer patients that will undergo metastasis 
(1,182 gene transcripts), with a p value of nearly 10-6 (lower part). this finding is consistent with 
the idea that oxidative stress in the tumor stroma is associated with metastasis. virtually identical 
results were also obtained with the gene signature for Cav-1-deficient stromal cells (a model for 
oxidative stress), which showed striking similarities toward both Alzheimer disease brain and 
breast cancer metastasis. reproduced with permission from.72,73
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tumor recurrence, metastasis, tamoxifen-
resistance and poor clinical outcome.84 
For example, in triple negative breast can-
cer patients, a loss of stromal Cav-1 pre-
dicts a 5-year survival of less than 10%. 
In the same patient cohort, high stromal 
Cav-1 was associated with a good prog-
nosis, with >75% survival at 12 years 
post-diagnosis.83

Laser-capture micro-dissection of the 
tumor stroma from Cav-1-negative human 
breast cancer patients also reveals the pres-
ence of transcriptional gene signature(s) 
that are consistent with the local damag-
ing effects of chronic hydrogen peroxide 
production.37 These gene signature(s) 
include aging, Alzheimer disease, DNA 
damage, oxidative stress, inflammation, 
HIF1 and NFκB-activation, as well as 
autophagy and aerobic glycolysis.37 Thus, 
localized hydrogen peroxide production 
may underlie the prognostic value of a loss 
of stromal Cav-1 as a biomarker. In this 
context, the Alzheimer disease brain gene 
signature (a marker of oxidative stress) was 
specifically associated with breast cancer 
metastasis (Fig. 2).72,73

Hydrogen Peroxide  
and the  Lactate Shuttle

As discussed above, cancer cells use 
hydrogen peroxide as a weapon to extract 
nutrients from adjacent fibroblasts, via 
the stromal induction of autophagy and 
mitophagy.23,24,35 This results in the pro-
duction of L-lactate in cancer-associated 
fibroblasts, via aerobic glycolysis. Then, 
these fibroblasts secrete L-lactate as a waste 
product and cancer cells use L-lactate 
as “fuel” to burn in their mitochondrial 
TCA cycle, via oxidative phosphoryla-
tion.23,24,35 As such, there is metabolic-
coupling between “glycolytic” fibroblasts 
and “oxidative” cancer cells.90 We have 
previously termed this phenomenon the 
“reverse Warburg effect,” as aerobic gly-
colysis takes place in fibroblasts, rather 
than cancer cells.74

Interestingly, the concept of a “lactate 
shuttle” and that glycolytic and oxidative 
cells share L-lactate is not new (Fig. 3). 
Lactate shuttles are now known to occur 
in skeletal muscle, the brain and even the 
female genital tract, and this is a normal 
physiological process. In skeletal muscle, 

peroxide and oxidative stress.37,71,72 Cav-
1-deficient fibroblasts show increases 
in mitochondrial oxidative stress, with 
a shift toward aerobic glycolysis.71-74 In 
this regard, they behave like “glycolytic” 
myofibroblasts, which also show a loss of 
Cav-1 expression.26,75,76 Most importantly, 
Cav-1-deficient fibroblasts promote tumor 
growth up to ~4-fold, when co-injected 
with MDA-MB-231 triple negative 
human breast cancer cells.77,78 Cav-1-
deficent fibroblasts and hydrogen peroxide 
treated fibroblasts also share the same pro-
teomic profile, with the upregulation of 
myofibroblast markers, glycolytic enzymes 
and anti-oxidant proteins.22,74,78-80

Consistent with these findings, a loss 
of stromal Cav-1 is a powerful biomarker 
for a lethal tumor microenvironment, in 
breast and prostate cancers.37,81-89 More 
specifically, in breast cancer patients, a loss 
of stromal Cav-1 is associated with early 

conditions, most of the DNA damage 
occurs in the cancer-associated fibroblasts, 
as the MCF7 cancer cells effectively mount 
an anti-oxidant defense by upregulating 
key proteins, such as peroxiredoxin-1 and 
TIGAR.23,24 Thus, hydrogen peroxide 
helps produce “glycolytic fibroblasts” to 
feed hungry “oxidative cancer cells.”

In order to pheno-copy the effects of 
hydrogen peroxide on cancer-associated 
fibroblasts, we overexpressed activated 
HIF1α or NFκB in normal stromal fibro-
blasts.22 Notably, both HIF1α and NFκB-
expressing fibroblasts undergo mitophagy, 
produce more lactate and stimulate the 
growth of human breast cancer xenografts, 
by up to ~3-fold.22 Similarly, a loss of cave-
olin-1 (Cav-1) occurs in fibroblasts under-
going oxidative stress, as it is destroyed by 
lysosomal degradation/autophagy.23,24,68 
In this sense, loss of stromal Cav-1 is 
a marker for the effects of hydrogen 

Figure 3. energy transfer in normal metabolism and cancer: the lactate shuttle. the concept 
that glycolytic (green) and oxidative (red) cells can share L-lactate is shown. this is known as the 
“lactate shuttle,” and normally occurs in skeletal muscle, the brain and the female genital tract. in 
skeletal muscle, fast-twitch fibers are glycolytic and slow-twitch fibers are oxidative. in the brain, 
astrocytes take up glucose and secrete lactate that is then transferred to neurons. this is known 
as “Neuron-Glia Metabolic Coupling.” in the female genital tract, granulosa cells are glycolytic and 
produce L-lactate to “feed” the oocyte, which is oxidative and uses mitochondrial metabolism. 
thus, this metabolic-coupling mechanism is widely used by the body, to maintain proper homeo-
stasis or energy balance. similarly, in human tumors, cancer-associated fibroblasts are glycolytic 
and cancer cells are oxidative. this is known as the “reverse Warburg effect.” Mono-carboxylate 
transporters (MCts) function to shuttle the L-lactate from glycolytic cells (MCt4) to oxidative cells 
(MCt1/2).
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induced apoptosis in co-cultured MCF7 
cancer cells.35 Thus, in co-culture, cat-
alase has the same anti-oxidant and 
pro-apoptotic effects on MCF7 cancer 
cells, as tamoxifen plus dasatinib.35,106 
Mechanistically, this may explain why 
“catalase therapy” in pre-clinical mod-
els prevents both tumor recurrence and 
metastasis, as it “cuts off the metabolic 
fuel supply.”

Clinical Utility of Hydrogen 
 Peroxide for Cancer Diagnosis

Since cancer cells and tumors both pro-
duce large amounts of hydrogen perox-
ide,7-10 the detection of hydrogen peroxide 
production may be an important new 
approach toward cancer diagnosis and 
for the development of novel imaging 
techniques.51,107-109

For example, cancer patients (such 
as those with breast and lung tumors) 

stromal-based tamoxifen-resistance. In 
this context, we observed that the addi-
tion of tamoxifen plus dasastinib was 
indeed sufficient to prevent stromal-based 
tamoxifen-resistance and restore sensitiv-
ity toward tamoxifen-induced apoptosis 
in cancer cells.35,106 Under these condi-
tions, we observed that MCF7 cancer cells 
were shifted back toward the “glycolytic” 
state and hydrogen-peroxide production 
was reduced to baseline levels.35,106 Thus, 
tamoxifen plus dasatinib maintained both 
fibroblasts and cancer cells in a “glycolytic 
state,” with minimal ROS production 
and high-sensitivity toward apoptosis, 
likely due to an absence of metabolic-cou-
pling.35,106 This is consistent with idea that 
tamoxifen plus dasatinib has a generalized 
anti-oxidant effect.

Interestingly, under these same co- 
culture conditions, treatment with cata-
lase to neurtralize hydrogen peroxide, pre-
vented ROS production and dramatically 

fast-twitch fibers are glycolytic and slow-
twitch fibers are oxidative.91 In the brain, 
astrocytes take up glucose and secrete lac-
tate that is then transferred to neurons.92-95 
This is known as “neuron-glia metabolic 
coupling.”92-95 Finally, in the female geni-
tal tract, granulosa cells are glycolytic and 
produce L-lactate to “feed” the oocyte, 
which is oxidative and uses mitochondrial 
metabolism.96-104 Thus, this metabolic-
coupling mechanism appears to be widely 
used by the body, to maintain proper 
homeostasis or energy balance.

In this context, it is believed that can-
cer-associated fibroblasts produce ROS 
(including hydrogen peroxide), and that 
this helps to maintain their glycolytic 
state.23,24,35 Similarly, fast-twitch skeletal 
muscle fibers are glycolytic and are the 
largest producers of hydrogen peroxide, 
as compared with slow-twitch fibers.105 
Consistent with this hypothesis, MCT4, 
the main transporter for the extrusion of 
L-lactate from glycolytic cells, is induced 
by oxidative stress in fibroblasts.38

Oxidative Stress, 
 Metabolic-Coupling  

and Drug Resistance

What if acquired resistance to chemo-
therapeutic agents was a metabolic and 
stromal phenomenon? Then, we might be 
able to reverse drug-resistance with drug 
combinations that target both the tumor 
stroma and the epithelial cancer cells, 
resulting in metabolic uncoupling.

We recently tested this idea using the 
MCF7-fibroblast co-culture system.35,68 
MCF7 cells are a well-established ER(+) 
breast cancer cell line (Fig. 4). As pre-
dicted, MCF7 cancer cells cultured 
alone were extremely sensitive to tamox-
ifen-induced apoptosis, which targets 
ER-signaling.106 Remarkably, under co-
culture conditions with fibroblasts, MCF7 
cells became nearly completely resistant to 
the pro-apoptotic effects of tamoxifen.106

Metabolic analysis of this phenom-
enon indicated that tamoxifen-resistance 
in co-cultured MCF7 cancer cells was 
due to a shift from a “glycolytic” to an 
“oxidative state,” with increased mito-
chondrial activity and decreased glucose 
uptake.35,106 Thus, we searched for a drug 
combination that could overcome this 

Figure 4. Understanding the stromal and metabolic basis of resistance to chemotherapy: parasitic 
cancer metabolism. Part 1: Fibroblasts cultured alone are oxidative, and show increased mito-
chondrial activity. in contrast, MCF7 cells cultured alone are glycolytic and are sensitive to tamox-
ifen-induced apoptosis. Part 2: However, during co-culture, cancer cells and fibroblasts undergo a 
complete reversal of their metabolic states. in this role reversal, MCF7 cells become oxidative and 
fibroblasts become glycolytic. this change is initially driven by hydrogen peroxide production 
in MCF7 cells, which shifts adjacent fibroblasts toward the glycolytic state, via oxidative stress. 
then, under these conditions, there is a net energy transfer (in the form of nutrients, such as 
L-lactate; see the black arrow) from glycolytic fibroblasts to oxidative cancer cells, which confers 
resistance to tamoxifen-induced apoptosis. Part 3: incubation of co-cultures with tamoxifen plus 
dasatinib shifts both cell types toward a glycolytic state, with decreased rOs production. As such, 
there is no net energy transfer. these conditions sensitize MCF7 toward apoptosis, reversing their 
tamoxifen-resistant phenotype. Mito, mitochondria.
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In fact, various known oncogenic stimuli 
are sufficient to drive hydrogen peroxide 
production, such as environmental stress-
ors, carcinogens, radiation (including UV 
exposure), as well as inflammation and 
normal aging.126-137 As such, hydrogen 
peroxide may be directly involved in the 
earliest tumor initiating events.126,127,137,138 
In accordance with this notion, addition 
of catalase to the extracellular tissue cul-
ture media is indeed sufficient to prevent 
or dramatically delay the onset of cell 
transformation and genomic instability, 
when normal cells are presented with an 
oncogenic stimulus.138

Thus, we propose that carcinogenesis 
may be a 3-step process, related to hydro-
gen peroxide production, as outlined in 
Figure 5A and B. In this cascade or chain 
of hydrogen peroxide production, ROS 
and oxidative stress is passed from the 

stress induced by hydrogen peroxide pro-
duction and inflammation.

In further support of this notion, PET 
imaging with F-2-DG can be effectively 
used to detect many distinct inflam-
matory diseases, both of infectious and 
non-infectious origins. These conditions 
include fever of unknown origin (FUO) 
and bacteremic foci, as well as graft rejec-
tion in liver and renal transplants.118-124

Summary: Hydrogen Peroxide  
in Tumor Initiation, Progression  

and Metastasis

In summary, hydrogen peroxide is a 
known carcinogen, and is associated 
with mutatgenic potential, resulting in a 
positive Ames test in bacteria.125,126 Thus, 
hydrogen peroxide may also induce DNA 
damage in normal epithelial cells.126,127 

can be distinguished from normal con-
trols, based on the detection of hydrogen 
peroxide in their exhaled breath.110-112 
Consistent with the idea that hydrogen 
peroxide may also originate from the 
tumor stroma, patients with interstitial 
pulmonary fibrosis show increased lev-
els of hydrogen peroxide in their exhaled 
breath.113 Also, patients with pulmonary 
fibrosis show a loss of stromal Cav-1 
expression, providing another mechanistic  
link.114-116

Finally, new imaging probes have also 
been invented that can detect hydrogen 
peroxide production in pre-clinical mod-
els, such as human tumor xenografts.117 
In this regard, PET imaging of human 
tumors, with Fluoro-2-deoxy-D-glucose 
(F-2-DG), may be already detecting can-
cer-associated fibroblasts,35 that are under-
going aerobic glycolysis, due to oxidative 

Figure 5. three-step carcinogenesis: hydrogen peroxide in tumor initiation, progression and metastasis. (A) tumor initiation (step 1). Oncogenic 
stimuli (such as carcinogens, Uv rays, inflammation and aging) initiate hydrogen peroxide production, leading to DNA damage in normal epithelial 
cells. such DNA damage mimics the “wounding process,” thus driving oncogene activation, tumor suppressor inactivation and cell transformation. 
this leads to the formation of cancer cells, via mutagenesis and ensuing genomic instability. (B) tumor Progression and Metastasis (steps 2 and 3). 
Once cancer cells are formed via oncogene activation in normal epithelial cells, then these cancer cells also begin to produce and secrete hydrogen 
peroxide (step 2) to promote tumor-stroma co-evolution and metastasis (step 3). in part a, cancer cells secrete hydrogen peroxide, which induces 
oxidative stress in neighboring stromal cells, such as fibroblasts. in part b, oxidative stress in fibroblasts leads to rOs production in the tumor stroma, 
which then further mutagenizes the cancer cells, allowing them to evolve to a more aggressive state, driving stromal lactate production and metasta-
sis. Finally, in part c, hydrogen peroxide and rOs production could also mutagenize adjacent normal epithelial cells, further driving the formation of 
new cancer cells. this step, part c, may also account for the “field effect,” in which an entire area of tissue appears normal, but has been “cancerized” by 
hydrogen peroxide, oxidative stress and DNA damage.
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