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Abstract Lesion segmentation, which is a critical step in
computer-aided diagnosis system, is a challenging task as
lesion boundaries are usually obscured, irregular, and low
contrast. In this paper, an accurate and robust algorithm for
the automatic segmentation of breast lesions in mammo-
grams is proposed. The traditional watershed transforma-
tion is applied to the smoothed (by the morphological
reconstruction) morphological gradient image to obtain the
lesion boundary in the belt between the internal and
external markers. To automatically determine the internal
and external markers, the rough region of the lesion is
identified by a template matching and a thresholding
method. Then, the internal marker is determined by
performing a distance transform and the external marker
by morphological dilation. The proposed algorithm is
quantitatively compared to the dynamic programming
boundary tracing method and the plane fitting and dynamic
programming method on a set of 363 lesions (size range, 5–
42 mm in diameter; mean, 15 mm), using the area overlap
metric (AOM), Hausdorff distance (HD), and average

minimum Euclidean distance (AMED). The mean ± SD of
the values of AOM, HD, and AMED for our method were
respectively 0.72±0.13, 5.69±2.85 mm, and 1.76±
1.04 mm, which is a better performance than two other
proposed segmentation methods. The results also confirm the
potential of the proposed algorithm to allow reliable segmen-
tation and quantification of breast lesion in mammograms.
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Introduction

Breast cancer is the leading cause of death for women all
over the world [1]. At present, the major risk factors for
breast cancer cannot be avoided and the survival is closely
related to early detection [2]. Mammography is the most
common modality for detecting the early-stage breast
cancer and the only modality recommended for population
screening programs [3]. Many computer-aided diagnosis
(CAD) systems based on mammograms have been devel-
oped to improve the detection rate of breast cancer [4–6].
Lesion segmentation is one of the most important steps in
CAD systems. It can produce approximate contours of
suspicious regions to provide features which enable
discrimination between true lesions and regions
corresponding to normal tissue. Since lesion boundaries
are usually embedded and hidden in varying densities of
parenchyma structures and may become obscured, irregular,
and low contrast, lesion segmentation is a challenging task.

In recent years, a number of methods have been
developed for lesion segmentation. Yuan et al. presented a
dual-stage method for lesion segmentation in a region of
interest (ROI) [7]. Their method consisted of a radial
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gradient index-based segmentation method to yield an
initial contour and a geometric active contour model for
shape refinement. The boundaries obtained by the segmen-
tation method were compared to hand-drawn results in
terms of area overlap metric (AOM). Timp and Karsse-
meijer presented a robust and automated segmentation
technique based on dynamic programming boundary
tracing (DPBT) to segment lesions [8]. At the heart of the
dynamic programming method is the so-called local cost
function, which is used to find the path that most efficiently
represents the contour of lesions. Rojas Domínguez and
Nandi modified the local cost function and designed two
improved DPBT methods [9]. Song et al. segmented breast
lesions using plane fitting and dynamic programming
(PFDP) [10]. First, the edge candidate points were obtained
using a plane fitting method. Then, dynamic programming
technique was used to find the optimal contour of a lesion
from the edge candidate points. All these dynamic
programming-based methods were compared to radiolog-
ist’s manual segmentation using the AOM metric. Rojas
Domínguez and Nandi’s method is difficult to reproduce; so
we compared our proposed algorithm to Timp and
Karssemeijer’s method and Song et al.’s method, using
the AOM, Hausdorff distance (HD), and average minimum
Euclidean distance (AMED) metrics.

The watershed transformation is a powerful tool for
image segmentation based on mathematical morphology
[11–14]. We can consider the image as a landscape or
topographic relief where the gray level of each pixel
corresponds to a physical elevation. Immersing the land-
scape in a lake with holes pierced in local minima,
catchment basins will fill up with water starting at these
local minima. At points where water coming from different
basins would meet, dams are built. This process ends when
the water level has reached the highest peak in the
landscape. As a result, the landscape is partitioned into
regions or basins separated by dams, called watershed lines
or simply watersheds [15].

The advantages of the watershed transformation are that
it is simple, intuitive, and can be parallelized. The main
drawback of this method is the over-segmentation due to
the presence of many local minima. To decrease the effect
of severe over-segmentation, marker-controlled watershed
transformations have been proposed [15–17]. These are
robust and flexible methods for segmenting objects with
closed contours, such as breast lesions. The internal marker
(a region completely inside the lesion) and external marker
(a region completely free of pixels containing a lesion) are
initially defined. The boundaries, even if not clearly
defined, are expressed as ridges between two markers and
located. Initial definition of the markers is critical in these
methods. Yan and Zhao proposed a marker-controlled
watershed method to segment lymphoma in sequential

computerized tomography images [16]. In their method, the
external marker is obtained manually by drawing a circle
enclosing the lymphoma. The internal marker is determined
automatically by combining techniques including Canny
edge detection, thresholding and morphological operation.
Cui et al. also proposed a semi-automated method based on
marker-controlled watershed transformation to segment
breast lesion volumes on magnetic resonance imaging
[17]. They manually selected the ROI in a single image,
followed by a Gaussian mixture model applied to a
histogram of the pixels inside the ROI to distinguish the
lesion class from other tissues. The internal and external
markers are determined on the basis of the ROI and the
intensity distribution of the lesion, and the lesion contour is
delineated using a marker-controlled watershed transform.
These methods can hardly be applied to mammogram CAD
because of their semi-automated nature.

In this study, a robust and accurate marker-controlled
watershed (MCWS) method is proposed to achieve higher
segmentation performance and get more accurate lesion
contours in mammograms. The focus is mainly on
smoothing the gradient image and determining internal
and external markers, which is crucial in the marker-
controlled watershed method. To assess the performance of
this method, we compared it to the DPBT and PFDP
methods using the AOM, HD, and AMED metrics.

Materials and Methods

Data Acquisition

Our test set consists of 363 ROIs (173 benign and 190
malignant lesions) of 355 mammograms which were
randomly selected from the Digital Database for Screening
Mammography [18]. These lesions come from 264 different
patients and have different margin types, sizes, and
densities, as shown in Table 1. Image analysis of screening
mammograms is challenging for the image size. A typical
mammographic view ranges from 20 MB to more than
70 MB because of the high spatial requirements. There are
two lesion types—masses and microcalcifications in mam-
mograms, we focused on the mass detection in this study.
Although the segmentation using the original high-
resolution images may help improve accuracy slightly,
considering the typical size of masses is greater than
1,000 μm (5,000 μm in this study) in diameter, image
reduction is a common step among many different CAD
schemes. In our CAD system, taking into account the
accuracy and efficiency, the mammograms were reduced by
a factor of 8 (from 50 to 400 μm per pixel), and the range
of image pixel gray level was reduced from 12 to 8 bits
(256 gray levels). The outlines provided by the radiologist

J Digit Imaging (2011) 24:754–763 755



were used as ground truth in our experiments to evaluate
the performance of the segmentation methods. The geo-
metric center of each lesion based on the radiologist’s
marked outline was estimated to be the center of the ROI
with a size of 125×125 pixels extracted from the reduced
image.

Overview of Proposed Method

The flow chart of the proposed marker-controlled water-
shed method is shown as Fig. 1. In this study, we focus
mainly on smoothing the gradient image and determining
internal and external markers. The morphological gradient
image is calculated and smoothed by morphological
operations. To automatically determine the internal and
external markers, the rough region of the lesion is identified
by a template matching and a thresholding method. The
internal marker is then determined by performing a distance
transform and the external marker is determined by
morphological dilation. Details of the algorithm are given
in the following sections.

Morphological Gradient Image Calculation and Smoothing

Generally, the watershed transformation is computed on the
gradient image so that the boundaries are located at high
gradient points. Several distinct gradients are used in image
processing to detect contours. One of them is called the
morphological gradient. Its computation is simple: for each
point in the image, a structuring element is centered to it
and the difference between the maximum and the minimum
gray levels inside the structuring element is computed [19].
That is,

G x; yð Þ ¼ I x; yð Þ � b x; yð Þ � I x; yð Þ � b x; yð Þ ð1Þ

where I, b, and G are the original ROI, the structuring
element, and the morphological gradient, respectively. ⊕
and ⊖ are respectively the morphological dilation and
erosion operators. In mammograms, lesions are somewhat
circular [8]. Therefore, the structuring element b used in
this work is a flat, disk-shaped structuring element with a

radius of three pixels based on experience. This structuring
element is isotropic and can eliminate the dependence on
the direction of the edge.

Many regional minima may exist in the morphological
gradient image (see Fig. 2b). These regional minima may
lead to over-segmentation in the watershed method. To
“clean” up the gradient image, “opening by reconstruction”
and “closing by reconstruction” operators are employed in
this study. Figure 2 shows this process.

Morphological reconstruction processes one image,
called the marker, based on the characteristics of another
image, called the mask. The peaks in the marker image

Table 1 Distributions of lesions in different margin types, sizes, and densities in the selected dataset

Statistics of lesion size in radius (mm) Number of lesions with various margin type Number of lesions with various density

Min. 2.5 Circumscribed 90 Almost entirely fatty 92

First Qu. 5.1 Spiculated 56 Scattered fibroglandular 174

Mean 7.5 Ill-defined 110 Heterogeneously dense 64

Median 6.5 Microlobulated 64 Extremely dense 33

Third Qu. 8.8 Obscured 43

Max 21.0

Fig. 1 The flow chart of the marker-controlled watershed method
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should identify the location of objects to emphasize in the
mask image. Denoting Im ⊆ I as the marker, reconstruction
operators can be expressed by iterating the dilation of
marker Im with a structuring element B, making sure that, at
each iteration, the dilation is restricted inside the mask I.
The dilations of the marker image are repeated until the
contour of the marker image fits under the mask image:

d1B Im; Ið Þ ¼ ^ Im � B; Ið Þ
dkB Im; Ið Þ ¼ ^ dk�1

B Im; Ið Þ � B; I
� �

; k ¼ 1; 2; 3; � � �

(
ð2Þ

Where d1B Im; Ið Þ and dkB Im; Ið Þ are the dilations of size 1 and
k on image Im, respectively, using a structuring element B.
The operator “⋀” denotes a point-wise minimum operation.
The grayscale reconstruction [20] RB(Im, I) of I from Im is
then obtained by iterating grayscale dilations of Im “under”
I, until stability is reached:

RB Im; Ið Þ ¼ _
k�1

dkB Im; Ið Þ ð3Þ

where the operator “⋁” denotes point-wise maximum
operation.

In this study, the marker image is obtained by setting
Im = G ⊖ b, where G is the image of morphological
gradient, and b is the disk-shaped structuring element used
previously. The opening by reconstruction operator is used
to darken small bright areas and to reduce sharp peaks in
the morphological image G (see Fig. 2c):

ΨopenðGÞ ¼ RB G� B;Gð Þ ð4Þ

where RB is the morphological reconstruction defined in
formula (2). Let Go represent the reconstructed image Ψopen

(G). The closing by reconstruction operator is used to
brighten small dark areas and to fill valleys in image Go:

Ψclose Goð Þ ¼ RB Go � Bð Þc;Go
cð Þ½ �c ð5Þ

where Go represents the complement of the image Go.
Through gradient image reconstruction, important region

contours are preserved while most small regular details and
noise are removed, as shown in Fig. 2d.

Determination of Internal and External Markers

In our segmentation method, we focus mainly on deter-
mining the internal marker, which is completely within the
lesion, and the external marker, which is completely free of
pixels containing a lesion. Figure 3 shows this process.
First, a rough region of the lesion is estimated by a template
matching [21–23] and a thresholding method. The internal
and external markers are then determined by distance
transformation and morphological operation, respectively.

In mammograms, lesions tend to have a greater intensity
than their neighboring pixels, and are somewhat circular in
shape, although they display weak or fading boundaries
with neighboring tissue [24]. Based on this prior informa-
tion of lesions, a hyperbolic secant (Sech) template that
exhibits visual and statistical properties of lesions is
proposed to locate and obtain the rough region of lesions
in this study. Assume that the coordinates of the center of
the template image are (0, 0). Then,

T x;yð Þ ¼ 2

exp b�
ffiffiffiffiffiffiffiffiffi
x2þy2

p� �
þexp �b�

ffiffiffiffiffiffiffiffiffi
x2þy2

p� � ð6Þ

where T(x, y) is the gray level of the template image at the
position (x, y). Parameter β controls the rate of change on
gray level, and it has been set to 0.08 by making the best
match between the template and targets. Suppose the size of
the template image is L×L (35×35 in this study), then the
template image obtains the maximum gray level at the
center and the minimum value at a distance of L/2.

To detect the lesion, we use the template image to match
with the corresponding region of the ROI image. Let I
denote the ROI image, μT and μI (x, y) denote the average
gray levels of the template image and the subregion of the
ROI image (with the same size as the template image)
around the center point (x, y), respectively. The overlapping
region of the template and the ROI image is represented by

Fig. 2 The process of calculating the morphological gradient image. a
An Original ROI image with a lesion at the center. b The
morphological gradient image; c sharp peaks in image (b) are reduced

using the opening by reconstruction operator; d valleys in image (b)
are filled using the closing by reconstruction operator
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x0 ¼ 0 . . . L� 1,y0 ¼ 0 . . .L� 1. The similarity measure
between the template and the ROI image at point (i, j) is
defined as

R x; yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x0;y0

T 0 x0; y0ð Þ2
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x0;y0

I 0 xþ x0; yþ y0ð Þ2
r

�
X
x0;y0

T 0 x0; y0ð Þ � I 0 xþ x0; yþ y0ð Þð Þ ð7Þ

Where

T 0 x0; y0ð Þ ¼ T x0; y0ð Þ � mT

I 0 xþ x0; yþ y0ð Þ ¼ I xþ x0; yþ y0ð Þ � mI x; yð Þ

The value of the similarity measure of every pixel in the
ROI image form a correlation image, as shown in Fig. 3b.
To obtain the rough region of the lesion, the correlation
image is segmented by the Otsu thresholding method. The
pixels with correlation value above the Otsu threshold are
set to be the candidate pixels of the lesion, as shown in
Fig. 3c.

In mammography CAD systems, the detection method
generates some markers/prompts at suspicious regions in
mammograms. Then, the segmentation method, which is
able to detect the precise outline of the potential lesion, is
implemented on the ROI. In our CAD system, the ROI is
defined as a rectangular region (125×125 pixels) extracted
from the mammograms with its center at the center of the

marker/prompt. Therefore, by grouping geometrically
connected nonzero pixels and assigning an identical
number to the pixels in each individual group, the
component that is nearest from the center of the ROI is
selected as the rough region of the lesion. All other nonzero
areas (isolated regions) are set to zero to avoid any further
processing, as shown in Fig. 3d. Based on the rough region,
the approaches to the obtaining of the external and internal
markers are described as follows.

In order to make the external marker that contains the
lesion region as complete as possible, the rough region is
selected to be the external marker after a dilation with a
disk-structuring element with a radius of 10 pixels, as
shown in Fig. 3e.

On the other hand, utilizing the rough region of the
lesion, a circular internal marker inside the lesion is
automatically determined. First, a distance transformation
is applied to the binary image that contains the rough region
of the lesion. The Euclidean distances from every pixel in
the rough region of the lesion to its nearest zero pixel are
calculated to form a distance image, as shown in Fig. 3f.
Second, on the distance image, the point with the largest
distance value is selected to be the center of the circular
internal marker. As mentioned previously, the center of the
lesion is close to the center point of the ROI. In order to
ensure that the center of the internal marker is close to the
lesion center, the selection of the marker center is limited in
the range of pixels with the distance less than 14 from the
ROI center. Finally, to avoid an over-presented internal
marker (i.e., the internal marker is too large), which will

Fig. 3 The process of determining of the external and internal
markers. a The original ROI of Fig. 2a; b the correlation image; c the
binary mask of the correlation image calculated by the Otsu thresh-
olding method; d the nearest isolated region from the center of ROI is
selected as the rough region of the lesion; e the rough region dilated

with a morphological operator forms the external marker; f the
distance image of the rough region; g the internal marker; h the
modified morphological gradient image: internal marker (the black
region inside the lesion) and external marker (the black region outside
the lesion) imposed on the morphological gradient image
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decrease the performance of the marker-controlled water-
shed segmentation, the radius of the internal marker is set to
be 0.8 (which is obtained by trial and error method) times
the value of its center point, as shown in Fig. 3g.

Marker-Controlled Watershed Segmentation

The internal and external markers, and the image of
smoothed morphological gradient are obtained by the
methods described above. Each marker indicates a specific
place within the morphological gradient image (also called
“segmentation function”) to force that region to be a global
minimum of the image by using the minima imposition
technique [15], as shown in Fig. 3h. That is to say, the

Fig. 4 Six examples of segmentation results by the three segmenta-
tion methods. a–c Three examples of benign lesions; d–f three
examples of malignant lesions. The top line is the original ROIs. The

next four lines are the corresponding contours marked by radiologist,
our marker-controlled watershed method, the DPBT method and
PFDP method, respectively

Fig. 5 Histograms of AOM values for the lesions in the test dataset.
AOM area overlap metric, MCWS marker-controlled watershed, PFDP
plane fitting and dynamic programming, DPBT dynamic programming
boundary tracing
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modified morphological gradient image only has regional
minima in the locations of the markers. Finally, the
traditional watershed transformation is applied to the
modified gradient image to obtain the lesion boundary in
the belt between the internal and external markers.

Evaluation

The widely used performance evaluation methods in image
segmentation can be grouped into two categories: one is
based on matching of the regions obtained with different
methods; the other is in terms of the distance between
boundaries obtained with different methods. We use the
area overlap metric [9, 10, 25], the Hausdorff distance
metric, and the average minimum Euclidean distance metric
[26–28] to quantify the consistency between the segmented
results and the ground truth provided by a radiologist’s
manually delineated outlines. The AOM metric is defined
as the ratio of the intersection to the union of the two areas
to be compared:

AOM ¼ Aseg \ Ags

Aseg [ Ags
ð8Þ

where Aseg denotes the area of the automatically segmented
lesion, and Ags is the corresponding ground truth area. The
HD metric is defined as the maximum distance between the
contours obtained with the computerized segmentation meth-
od and the radiologist’s marked outlines which are denoted as
A ¼ a1; a2; � � � ; amf g and B ¼ b1; b2; � � � ; bnf g, respectively.
And the AMED metric computes the average distance:

HD A;Bð Þ ¼ max max
i2 1;���;mf g

d ai;Bð Þf g; max
j2 1;���;nf g

d bj;A
� �� �� �

ð9Þ

AMED A;Bð Þ ¼ 1

m

Xm
i¼1

d ai;Bð Þ; 1
n

Xn
j¼1

d bj;A
� � !

2=

ð10Þ

where d ai;Bð Þ ¼ min
j2 1;���;nf g

ai � bj
		 		 is the distance from ai

to the closest point on the contour B.

Results and Discussion

To test the performance of the method, all the 363 ROIs
were segmented by our proposed method and the DPBT
and PFDP methods. The methods of DPBT and PFDP were
implemented on the basis of the descriptions in Timp and
Karssemeijer’s study [8] and Song et al.’s study [10],
respectively. Figure 4 shows six results of these segmenta-
tion methods: the lesions of the left three columns are
benign, and the other three are malignant. The results of our
method are, visually inspected, closer to the radiologist’s
outlines than the other methods.

For each lesion in the test dataset, AOM, HD, and
AMED metrics are calculated with each of the three
segmentation methods. Generally, the segmentation result
is considered to be good when the value of AOM is higher
than 0.6, and poor when lower than 0.4. Figures 5 shows
the numbers of lesions correctly segmented at overlap
threshold levels of 0.4 and 0.6 for each of the three
segmentation methods. It can be seen that the proposed
method can achieve more good results and less poor results
than the other two methods. For instance, the number of

Method Min. First Qu. Median Third Qu. Max. Mean SD

HD (mm)

MCWS 1.60 3.62 5.24 7.21 18.03 5.69 2.85

PFDP 1.69 4.45 6.73 8.86 20.83 7.28 4.43

DPBT 1.25 4.16 5.61 8.80 20.35 7.07 4.27

AMED (mm)

MCWS 0.48 1.17 1.54 2.04 9.18 1.76 1.04

PFDP 0.50 1.21 1.67 2.90 16.49 2.98 3.16

DPBT 0.50 1.27 1.83 3.06 14.07 2.77 2.61

Table 2 Distributions of the
HD and AMED criteria for the
three segmentation methods

MCWS marker-controlled
watershed, PFDP plane fitting
and dynamic programming,
DPBT dynamic programming
boundary tracing, HD Hausdorff
distance, area overlap metric,
AMED average minimum
Euclidean distance

Table 3 The Wilcoxon statistic for the statistical differences between
the segmentation-metrics distribution of MCWS, PFDP, and DPBT
methods

Method P value
for AOM

P value
for HD

P value
for AMED

MCWS–DPBT <0.001 <0.001 <0.001

MCWS–PFDP <0.001 <0.001 <0.001

PFDP–DPBT 0.253 0.521 0.340

MCWS marker-controlled watershed, PFDP plane fitting and dynamic
programming, DPBT dynamic programming boundary tracing, AOM
area overlap metric, HD Hausdorff distance, area overlap metric,
AMED average minimum Euclidean distance
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lesions with good/poor segmentation result for the MCWS
method is 327 (90%)/14 (4%), for the PFDP 267 (74%)/58
(16%), and DPBT 255 (70%)/45 (12%), respectively. The
distributions, means, and standard deviation of the HD and
AMED metrics for all the three methods are given in
Table 2. The mean ± SD of the values of AOM, HD, and
AMED for our method are 0.72±0.13, 5.69±2.85 mm, and
1.76±1.04 mm, whereas those for PFDP and DPBT
methods are 0.67±0.22, 7.28±4.43 mm, and 2.98±
3.16 mm and 0.65±0.19, 7.07±4.27 mm, and 2.77±
2.61 mm, respectively. The higher value of AOM and

lower values of HD and AMED indicate that the results of
the proposed method are closer to the radiologist’s outlines
than the other two methods. All these indicate that the
performance of our proposed segmentation algorithm is
better than the other two methods.

Table 3 shows the results of the Wilcoxon statistic. The
differences between the segmentation-metrics distribution
of MCWS and the other two methods are found to be
statistically significant (P values are no more than 0.001).
It is clear from the test that a significant increase in all
metrics has been obtained with the marker-controlled

Fig. 6 An example of good
performance of segmentation. a
The original ROI; b the
smoothed morphological
gradient image; c the extracted
markers imposed on the gradient
image. The segmentation results
using the MCWS, PFDP, and
DPBT methods are shown in
(d–f), respectively, with the
white overlay. The black
overlays are the ground truth.
The AOM values for these three
segmentation results are 0.93,
0.85, and 0.83, respectively. The
AMED values are 1.29, 2.17,
and 2.18, respectively

Fig. 7 An example of poor
performance of segmentation. a
The original ROI; b the
smoothed morphological
gradient image; c the extracted
markers imposed on the gradient
image. The segmentation results
using the MCWS, PFDP, and
DPBT methods are shown in
(d–f), respectively, with the
white overlay. The black
overlays are the ground truth.
The AOM values for these three
segmentation results are 0.30,
0.13, and 0.13, respectively. The
AMED values are 11.97, 27.73,
and 28.49, respectively

J Digit Imaging (2011) 24:754–763 761



watershed method compared with the other two segmen-
tation methods.

The main reason for this improved performance is the
accurate positioning of the internal and external markers,
between which there is the contour of the lesion. However,
there are rare cases in which the performance of our
segmentation algorithm is not ideal. Figures 6 and Fig. 7
illustrate an almost perfect segmentation and a very poor
segmentation, respectively. In Fig. 6, the AOM and AMED
metrics for our segmentation method are 0.93 and 1.29,
respectively (whereas those for PFDP and DPBT methods
are 0.85 and 2.17 and 0.83 and 2.18, respectively). The
internal and external markers reduce the regional minima
and sharp peaks very well and the segmented region is
almost identical to the ground truth. In the poor perfor-
mance example shown in Fig. 7, the values of the AOM
and AMED metrics for our proposed method are 0.30 and
11.97, respectively (whereas those for PFDP and DPBT
methods are 0.13 and 27.73 and 0.13 and 28.49, respec-
tively). It can be observed that the main reason for the
failure of the algorithm in this case is the surrounding dense
background tissues inside the external marker. As can be
seen, a section of the lesion boundary is correctly located,
but the other section is pulled away from the lesion by the
edge of the dense tissues. The marker-controlled watershed
method would possibly perform better, if all this dense
tissue can be excluded from the external marker. This
aspect will be evaluated in further research.

Conclusion

Lesion segmentation can produce approximate contours to
provide features, and plays a crucial role in CAD systems
for classification of suspicious regions. In this study, we
propose an automatic, accurate, and robust marker-
controlled watershed algorithm to segment breast lesions
in mammograms. The morphological gradient image is
smoothed by reconstruction. The internal and external
markers are automatically obtained by combining techni-
ques including template matching, thresholding, distance
transformation, and morphological operation. The segmen-
tation algorithm has been applied to 363 lesions and
resulted in AOM, HD, and AMED of 0.72, 5.69 mm, and
1.76 mm, respectively. The experimental results have
confirmed the potential of the proposed method to allow
reliable segmentation and quantification of breast lesions in
mammograms.

The influence of the segmentation result on the perfor-
mance of a CAD system has not been studied yet. We will
concentrate our future work on studying the influence of
the proposed segmentation method on the performance of
our CAD system.
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