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SYMPOS IUM REVIEW

Protective conditioning of the brain: expressway
or roadblock?
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Abstract The brain responds to noxious stimulation with protective signalling. Over the last
decades, a number of experimental strategies have been established to study endogenous brain
protection. Pre-, per-, post- and remote ‘conditioning’ are now widely used to unravel the
underlying mechanisms of endogenous neuroprotection. Some of these strategies are currently
being tested in clinical trials to protect the human brain against anticipated damage or to boost
protective responses during or after injury. Here we summarize the principles of ‘conditioning’
research and current efforts to translate this knowledge into effective treatment of patients.
Conditioning to induce protected brain states provides an experimental window into endogenous
brain protection and can lead to the discovery of drugs mimicking the effects of conditioning.
Mechanisms of endogenous brain tolerance can be activated through a wide variety of stimuli that
signal ‘danger’ to the brain. These danger signals lead to the induction of regulator and effector
mechanisms, which suppress death and induce survival pathways, decrease metabolism, as well as
increase substrate delivery. We conclude that preclinical research on endogenous brain protection
has greatly benefited from conditioning strategies, but that clinical applications are challenging,
and that we should not prematurely rush into ill-designed and underpowered clinical trials.
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‘That which does not kill us makes us stronger’ Friedrich
Nietzsche, Ecce Homo – Warum ich so weise bin 2 (1908)

The multiple flavours of ‘conditioning’

Cells, tissues, organs, as well as whole organisms respond
to sublethal stress by activating protective signalling
cascades (Dirnagl et al. 2003). In aerobic organisms, strong
evolutionary pressure for the development of endogenous
mechanisms of protection is generated by hypoxia, as well
as by infection and inflammation. Protective responses
may be generated either in anticipation of a stressor, during
stress against its immediate harmful consequences, or as a
response to delayed secondary mechanisms after stress.
Various medical disciplines, in particular cardiology,
neurology/neurosurgery, anaesthesiology, as well as trans-
plantation medicine, are studying the pathways underlying
this signalling of endogenous protective responses. It is the
ultimate goal of this research to develop therapeutic organ
protection based upon nature’s own strategies (Dirnagl
et al. 2009; Keep et al. 2010; Gidday, 2010). Early milestones
in this quest were the discoveries that pre-exposure to
hypoxia can prolong anoxic survival by preserving brain
metabolism (Dahl et al. 1964); that brain can adapt to
anoxia by hypoxic pre-exposure (Schurr et al. 1986); and
the description of ischaemic preconditioning in ischaemic
myocardium (Murry et al. 1986) and brain (Kitagawa et al.
1990). Since then, various types of organ ‘conditioning’
have been described (Fig. 1): preconditioning , in which the
conditioning stimulus (e.g. ischaemia, hypoxia, metabolic
inhibition or inflammation below the threshold of
damage) is given several days (‘delayed preconditioning’)
or minutes (‘classic preconditioning’) before a noxious
stimulus presents (e.g. ischaemia); perconditioning , in
which the conditioning stimulus is given while the noxious
stimulus is still present; postconditioning , in which the
conditioning stimulus is given shortly after the noxious
stimulus (e.g. after reperfusion), and remote conditioning ,
in which not the organ which is affected by the noxious
stimulus is conditioned, but another, remote organ or
bodily system (e.g. limb ischaemia to induce protection
of heart or brain). Robust experimental protocols have
been developed for each of these types of conditioning,
and a number of the underpinning signalling pathways
have been established (Kirino, 2002; Gidday, 2006; Dirnagl
& Meisel, 2008; Obrenovitch, 2008; Zhao, 2009; and see
below). Some of these conditioning strategies are either
directly applicable to patients (e.g. remote conditioning by
limb ischaemia), or can be pharmacologically mimicked,
such as prolyl-hydroxylase (PHD) inhibitors activating
hypoxia inducible factor (HIF)-related pathways, or
growth and survival factors such as erythropoeitin (EPO)
or granulocyte colony stimulating factor (G-CSF). A
number of clinical trials have been concluded in cardio-
logy, and several are underway in patients with brain

disease (see below and Table 1). At least in cardio-
logy, where clinical development of conditioning-related
strategies is most advanced, their translation into effective
therapies has so far been hugely disappointing (Ludman
et al. 2010). It is therefore timely to ask what we know
about the mechanisms underlying brain conditioning, and
what the chances are that brain conditioning will become
a clinical reality in the near future.

A window into endogenous brain protection

Pre-, per-, post-, remote as well as pharmacological
(‘mimics’) conditioning serve as highly valuable tools
to understand the mechanisms of endogenous brain
protection. It appears that these mechanisms are
independent of the conditioning strategy, or have at least
a vast overlap. This reflects the fact that these mechanisms
have evolved as unspecific responses to a number of
challenges to the organism (hypoxia, injury, infection).
In the following we discuss them briefly and without
reference to specific conditioning strategies (Fig. 2).

Sensors of danger. Mechanisms of endogenous brain
tolerance can be activated through a wide variety of
stimuli that signal ‘danger’ to the brain. Both hypo-
xia and infection endanger the entire organism and are
fundamental challenges for most organisms and hence
for organs and their cells. Therefore, multiple redundant
cascades to adapt to these conditions have evolved. Many
aspects of (anti-)inflammatory and hypoxic signalling
overlap, and cascades mediating endogenous tolerance are
very similar in different organs. For comprehensive over-
views the reader is referred to Dirnagl et al. (2003); Gidday
(2006); Dirnagl & Meisel (2008); Obrenovitch (2008), and
the references therein.

Hypoxia-inducible factor-1 (HIF-1) is the key regulator
of cellular oxygen homeostasis. Under hypoxic conditions
HIF-1 activates highly conserved transcriptional profiles
ultimately geared to adapt cellular homeostasis to reduced
oxygen availability. Among others, these adaptations
include changes in cellular energy metabolism, regulation
of Bcl2-family proteins, cell proliferation, cell cycle
control and vasomotor control or angiogenesis (Sharp
& Bernaudin, 2004; Semenza, 2009). Likewise, toll-like
receptors (TLRs), which are present on many if not all
mammalian cells, are responsible for inducing cellular
responses to counteract infection.

HIF-1 induces adaptation to decreased oxygen on two
levels. First, cellular homeostasis, including mitochondrial
respiration, is adapted to hypoxic conditions rather
quickly (within hours, Semenza, 2010). Second, chronic
hypoxia induces angiogenesis to increase blood supply
to hypoxic tissue through a variety of HIF-1-dependent
factors such as vascular endothelial growth factor (VEGF;
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Table 1. Examples of currently recruiting clinical trials with neurological endpoints as listed at ClinicalTrials.gov (as of 3/2011):
preconditioning, remote conditioning and agents that mimic endogenous neuroprotection

Trial name Condition Intervention NCT registration

Preconditioning for aneurismal subarachnoid
haemorrhage

Subarachnoid haemorrhage Remote limb
preconditioning

NCT01110239

Remote ischaemic preconditioning in
subarachnoid haemorrhage (RIPC-SAH)

Subarachnoid haemorrhage
Aneurysmal subarachnoid
haemorrhage
Cerebral vasospasm
Intracranial aneurysm

Remote ischaemic
preconditioning

NCT01158508

The neuroprotection of sevoflurane
preconditioning on intracranial aneurysm
surgery

Brain ischaemia Sevoflurane continuous
inhalation

NCT01204268

Effect of remote ischaemic preconditioning on
clinical outcomes in CABG surgery (ERICCA)

Coronary heart disease Remote ischaemic
preconditioning

NCT01247545

Effect of remote ischaemic preconditioning on
cognitive function after cardiac surgery

Cardiac surgery Remote ischaemic
preconditioning

NCT00877305

New acute treatment for stroke – the effect of
remote PERconditioning

Acute stroke Remote preconditioning NCT00975962

Neuroprotective study of electroacupuncture
pretreatment in patients undergoing cardiac
surgery

Stroke
Brain injuries

Electroacupuncture
pretreatment

NCT01020266

Thrombolysis and deferoxamine in middle
cerebral artery occlusion (TANDEM-1)

Acute ischaemic stroke Deferoxamine NCT00777140

AX200 for the treatment of ischaemic stroke
(AXIS 2)

Acute ischaemic stroke Filgrastim (G-CSF) NCT00927836

Figure 1. ‘Conditioning’ paradigms to protect the brain
Typically, preconditioning uses a sublethal stimulus given minutes or days before the insult against which it aims
to protect. Stuttering reperfusion is the prototypical per- or postconditioning strategy, by which one aims to
prevent ‘reperfusion damage’ by repetitively opening and blocking brain perfusion before permanent reperfusion
is allowed. Remote ischaemia is another per- or postconditioning strategy which typically produces repetitive, short
phases of ischaemia of a peripheral limb to induce humoral and neural mechanisms of protection of a remote
organ, such as the brain. Pharmacological mimics are drugs that either boost endogenous protective signalling
cascades (such as the HIF pathway), or exogenously provide the effectors of endogenous protection, such as EPO.
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Semenza, 2009). In general, under normoxic conditions
the HIF-1α subunit is targeted to rapid proteasomal
degradation through post-translation modification by
prolyl-hydroxylation, whereas under hypoxic conditions
HIF-1α is stabilized and HIF-1-dependent transcription
is initialized (Sharp & Bernaudin, 2004; Semenza, 2009).
Furthermore, transcription of HIF-1α is increased upon
growth-factor signalling, in particular upon activation
of the PI3K–Akt–mTOR (mTOR, mammalian target of

Figure 2. General principles of action of ‘conditioning
strategies’ to protect the brain
A pre-, per-, post-, remote-conditioning stimulus may either: directly
protect the brain via release of locally or remotely acting metabolites
(e.g. adenosine); after activation of sensors (e.g. HIF-1) lead to a
complex signalling cascade which may include genetic as well as
epigenetic responses; or activate genetic and epigenetic responses
via neuronal pathways (e.g. activating the sympathetic nervous
system or the hypothalamic–pituitary axis). The signalling pathways
of the various conditioning strategies may converge in similar or
even identical effector mechanisms, such as suppressed death
pathways, induced survival pathways, decreased metabolism
(‘hibernation’), and increased substrate delivery.

rapamycin) pathway (DeBerardinis et al. 2008). While
the brain has developed some unique sensors of systemic
hypoxia, such as central and arterial chemoreceptors
(Sharp & Bernaudin, 2004), the molecular cascades
involved in oxygen sensing are highly conserved in all cell
types (Sharp & Bernaudin, 2004; Semenza, 2009, 2010).

TLRs are an integral part of the innate immune system,
providing the first line of defence against pathogens
at the cellular level. TLR signalling is an important
mediator of ischaemic damage in the brain, but it can
also mediate inflammation-induced cross tolerance such
as through stimulation with lipopolysaccharide (LPS) or
tumour necrosis factor-α (TNF-α) (Marsh et al. 2009).
In general, TLRs activate transcription factors through
common intracellular pathways, with distinct effects in
different cell types or tissues (Marsh et al. 2009). TLRs
are a major discriminator between ‘self’ and ‘foreign’
(Akira & Takeda, 2004). A signalling cascade resulting
in activation of nuclear factor NF-κB transcription and
an inflammatory response are initiated following ligation
of pathogen-associated molecular patterns (PAMPs) with
TLRs (Liew et al. 2005). Host-derived damage-associated
molecular patterns (DAMPs), which are released upon
ischaemic injury (Vartanian & Stenzel-Poore, 2010), can
also induce inflammatory signalling through the TLR
pathway (Seong & Matzinger, 2004) and contribute to
ischaemic damage in the brain (Kariko et al. 2004;
Lehnardt et al. 2007; Ziegler et al. 2007; Dirnagl et al.
2009). In turn, inflammatory signalling can boost HIF-1
transcription, which controls many genes involved in
regulation of inflammation and host defence (Nizet &
Johnson, 2009) and which has been found to be essential
for the cellular innate immune response in inflammation
(Cramer et al. 2003). Furthermore, mitochondria are very
sensitive to changes in homeostasis, and are important
sensors of cellular stress (see below). TLRs in the brain are
constitutively expressed in astrocytes, microglia and end-
othelial cells. TLRs can be upregulated upon inflammatory
stimulation in these cells, but also in neurons and
oligodendrocytes (Marsh et al. 2009). Little is known about
the differential role of the various TLR types and cell
types which express those TLRs in mediating endogenous
neuroprotection.

Regulators and effectors. Hypoxia induces substantial
changes in gene expression patterns in the brain
(Bernaudin et al. 2002). Preconditioning is thought to
reprogram the brain’s genomic response to a noxious
stimulus (Stenzel-Poore et al. 2007). For example,
many of the HIF-1 target genes are involved in
regulating cellular metabolism, survival, proliferation and
angiogenesis (Semenza, 2009). Furthermore, increasing
evidence suggests that different epigenetic regulatory
mechanisms are activated in the context of conditioning
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paradigms, and regulate the endogenous protective
response. Inhibition of DNA methylation and histone
deacetylation reduce ischaemic damage by altering the
transcriptional profile (Endres et al. 2000; Meisel et al.
2006; Yildirim et al. 2008). Micro RNAs (miRNAs),
small RNA molecules that function as post-transcriptional
regulators of gene expression (Lagos-Quintana et al.
2001), are important regulators of diverse aspects of
brain function, including development and maintenance
of brain plasticity (Saugstad, 2010). Furthermore, miRNAs
have emerged as important mediators of endogenous
tolerance in the brain (Dharap & Vemuganti, 2010; Lusardi
et al. 2010), and both HIF-1 and TLR signalling can be
modulated by miRNAs (Crosby et al. 2009; O’Neill et al.
2011).

A variety of kinases involved in proliferation and
survival are involved in eliciting an endogenous
protective response in the brain. Among others, these
include protein kinase C (PKC) (Speechly-Dick et al.
1994), mitogen-activated protein kinase (MAPK)/p38,
extracellular signal-regulated kinase (ERK), Akt-kinase
(Ruscher et al. 2002; Gao et al. 2008) and mTOR
(Pagel, 2008; Swiech et al. 2008). The PI3K–Akt–mTOR
pathway senses nutrient availability. Activation of this
pathway leads to increased transcription of HIF-1α,
further supporting adaptation of metabolism to substrate
deprivation (DeBerardinis et al. 2008; Swiech et al. 2008).

Ischaemia is associated with profound metabolic
imbalances and much of the cellular response initiated
by conditioning events is geared to alter metabolic
pathways to maintain basal metabolic integrity. Therefore,
under hypoxia, glycolytic flux is diverted from oxidative
phosphorylation to glycolysis. HIF-1 changes the
expression of genes of the entire glycolytic cascade to
adapt metabolism to hypoxic conditions (Iyer et al. 1998;
Semenza, 2009). As a consequence, the glycolytic inter-
mediate pyruvate is shunted away from the mitochondrial
tricarboxylic acid (TCA) cycle by pyruvate dehydrogenase
kinase 1 (PDK1). PDK1 inhibits pyruvate dehydrogenase
(PDH), thereby reducing flux through the TCA cycle
and ultimately reducing excess production of reactive
oxygen species (ROS) (Kim et al. 2006; Papandreou et al.
2006). In addition, lactate dehydrogenase A (LDHA)
converts pyruvate to lactate, which in the brain can
be rapidly taken up and shuttled away by astrocytes
(Gandhi et al. 2009). HIF-1 control over metabolism is
not only limited to states of hypoxia, but appears to
be of general relevance for survival and proliferation
(DeBerardinis et al. 2008). Furthermore, glycolytic
enzymes such as mitochondrial hexokinase (HK) or
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
are emerging as important regulators of cell death
(Majewski et al. 2004; Kim & Dang, 2005; Colell et al.
2007), with striking mechanistic similarities between
neurons and cancer cells (Vaughn & Deshmukh, 2008).

Mitochondria, equipped to efficiently generate ATP
through oxidative phosphorylation, also function as
oxygen sensors by inhibiting PHD activity through ROS
production, thereby stabilizing HIF-1α. Mitochondria are
highly susceptible to changes in oxygen concentration
and abruptly react by generating ROS (Kaelin, 2005;
Kim et al. 2006; Klimova & Chandel, 2008; Semenza,
2010). Importantly, ROS signalling not only contributes
to ischaemic damage, but is also involved in end-
ogenous protection evoked by pre-, per-, post- and
remote conditioning (Gidday, 2006; Tapuria et al. 2008;
Hausenloy, 2009; Ovize et al. 2010; Saxena et al. 2010;
Semenza, 2010; Xin et al. 2010).

As described above, inflammation mediated by the
innate immune system as well as by the adaptive immune
system (Yilmaz et al. 2006; Hurn et al. 2007; Liesz
et al. 2011) contributes to brain injury following stroke.
However, inflammatory stimulation using LPS can also
induce endogenous tolerance (Bastide et al. 2003; Kunz
et al. 2007; Orio et al. 2007). Additionally, cerebral
ischaemia, as well as other insults to the central nervous
system, lead to immunosuppression – a phenomenon
termed CNS injury-induced immunosupression (CIDS)
(Meisel et al. 2005). CIDS might therefore serve to contain
an autoaggressive immune response following stroke (Gee
et al. 2007). In humans, ischaemic preconditioning by
transient forearm ischaemia changes gene expression
patterns in circulating leukocytes, thereby suppressing
leukocyte activation and potentially modulating innate
and adaptive immune responses (Konstantinov et al. 2004;
Saxena et al. 2010).

Clinical applications: expressway or roadblock?

The discovery of ischaemic tolerance, the wealth of
knowledge that has subsequently been gathered on
mechanisms of endogenous organ protection, and the
development of clinically applicable strategies of pre-,
per- and postconditioning have precipitated a rush into
clinical trials in cardiology, nephrology, anaesthesiology
and neurology/neurosurgery, among other disciplines.
Some of these rather small proof of concept trials, often
using surrogate endpoints, have generated promising
results (e.g. Chan et al. 2005; Bøtker et al. 2010; Lonborg
et al. 2010; Schäbitz et al. 2010). For the brain, a putative
beneficial effect of transient ischaemic attacks (as ‘pre-
conditioning equivalents’) suggested the existence of end-
ogenous neuroprotection in the human brain (Weih
et al. 1999; Wegener et al. 2004), although this has
been disputed (Johnston, 2004). Meanwhile, however, a
number of negative or inconclusive randomized clinical
trials (RCT, e.g. Hong et al. 2010; Rahman et al. 2010;
Walsh et al. 2010) have been published on various
forms of conditioning in several organ systems, including
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heart and brain, and a less optimistic spirit prevails
(Ludman et al. 2010). This is reminiscent of ‘classical’
neuroprotection trials, where promising preclinical and
early clinical testing was not followed by evidence for
efficacy in large RCTs (Green, 2008; Tymianski, 2010).
Nevertheless, for conditioning strategies the jury is still
out: the search term ‘preconditioning OR perconditioning
OR ‘remote conditioning’ AND brain’ reveals 50 open
clinical trials in the trial registry of the National Institute
of Health (clinicaltrials.gov). This does not include RCTs
testing pharmacological strategies of endogenous neuro-
protection such as granulocyte-colony stimulating factor
(G-CSF), AX200 for the treatment of ischaemic stroke
(AXIS-2, NCT00927836) or erythropoietin (Safety Study
of Carbamylated Erythropoietin (CEPO) to Treat Patients
With Acute Ischemic Stroke, NCT00756249, publication
of results pending). Table 1 lists a selection of currently
recruiting RCTs with neurological endpoints in the field
of ‘conditioning’ or endogenous neuroprotection.

It has been argued that in contrast to conventional
neuroprotection trials, in which neuroprotective drugs are
given after the ischaemic event, preconditioning strategies
allow baseline assessment of neurological status before
patients experience the index event: patients can be
functionally tested before preconditioning them against
an index event, such as focal neurological deficits after
carotid or heart surgery, or delayed neurological deficits
after subarachnoid haemorrhage. This may help cut down
the variance in results and reduce the number of patients to
recruit (Dirnagl et al. 2009), which for a Phase III neuro-
protection trial in stroke may run into the thousands.
However, the downside of this approach is that only a
fraction of patients experience the index event (e.g. around
1% of strokes after coronary bypass surgery), potentially
annihilating the advantage of an individual baseline and
leading to the exposure of patients to possibly harmful
treatments they do not actually need.

Outlook

Basic research on endogenous mechanisms has established
a plethora of conditioning strategies and unravelled,
among others, neurogenic, immunological, genetic and
epigenetic mechanisms of brain protection. Nevertheless,
many issues remain unsolved, including questions such as
how remote preconditioning exerts its effects (humoral?
neuronal?), or whether the dogma that the conditioning
stimulus is subthreshold to damage is really true (it has
been proposed that in many cases, damage was simply not
assessed, or the tools were not sensitive enough; Dirnagl
et al. 2003; Sommer, 2008). In the current clinical arena,
many teams worldwide are testing the safety and efficacy
of such diverse strategies as the prevention or amelioration
of CNS damage when it can be anticipated (e.g. delayed

vasospasm after subarachnoid haemorrhage), the pre-
vention of CNS damage during potentially harmful inter-
ventions (e.g. neurosurgery), the induction of endogenous
CNS protection by remote procedures (e.g. repeated limb
ischaemia after acute stroke), or the pharmacological
induction of endogenous CNS protection (e.g. HIF-1
induction via Desferoxamine) (see Table 1). Over the next
few years some of those RCTs may provide evidence not
only for the existence of endogenous neuroprotection,
but also as to whether related mechanisms can be
therapeutically exploited to benefit patients at risk for
or with evolving CNS damage. Given the complexities
and challenges of the underlying pathophysiology, as well
as the design and implementation of clinical trials,
and given the frustrating experiences regarding neuro-
protection in the stroke field, we are well advised to learn
from previous mistakes and to conduct preclinical research
of the highest quality (Dirnagl, 2006) and not to pre-
maturely rush into ill-designed and underpowered clinical
trials (Weaver et al. 2004).
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