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Abstract
Studies are beginning to emerge that demonstrate intriguing differences between human induced
pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Here, we investigated
the expression of key members of the Nodal embryonic signaling pathway, critical to the
maintenance of pluripotency in hESCs. Western blot and Real-time RT-PCR analyses reveal
slightly lower levels of Nodal (a TGF-β family member) and Cripto-1 (Nodal’s co-receptor) and a
dramatic decrease in Lefty (Nodal’s inhibitor and TGF-β family member) in hiPSCs compared
with hESCs. The noteworthy drop in hiPSC’s Lefty expression correlated with an increase in the
methylation of Lefty B CpG island. Based on these findings, we addressed a more fundamental
question related to the consequences of epigenetically reprogramming hiPSCs, especially with
respect to maintaining a stable ESC phenotype. A global comparative analysis of 365 microRNAs
(miRs) in two hiPSC vs. four hESC lines ultimately identified 10 highly expressed miRs in hiPCSs
with >10-fold difference, which have been shown to be cancer related. These data demonstrate
cancer hallmarks expressed by hiPSCs, which will require further assessment for their impact on
future therapies.

The technologies developed to produce induced human pluripotent stem cells (hiPSCs),
derived by epigenetic reprogramming of human fibroblasts, have provided an exciting new
platform for generating dedifferentiated somatic cells -- thought to be almost identical to
human embryonic stem cells (hESCs) (Yu et al., 2007) and of great promise for patient-
tailored regenerative medicine therapies. However, recent reports are beginning to highlight
noteworthy differences in gene expression signatures (Chin et al., 2009) and differential
DNA methylation patterns (Doi et al., 2009) between these two stem cell types that
collectively prompt additional comparative analyses. Equally important is the challenge we
face in the scientific community promoting the use of embryonic stem cells, for regenerative
medicine therapies, fully recognizing their tumorigenic potential in immunocompromised
mouse models and our lack of understanding how to regulate normal pluripotency and
differentiation over tumorigenic potential (reviewed by Knoepfler, 2009). Therefore, the aim
of our study was to initially assess the expression levels of three major components of the
embryonic Nodal signaling pathway, which is of critical significance in stem cell
pluripotency and differentiation (Schier, 2003). Nodal is a member of the TGF-β family and
an important morphogen and regulator of cell fate in embryological systems and requires
tight control of its biological function (Schier and Shen, 200). Extracellular Nodal inhibitors,
such as Lefty A and Lefty B (divergent members of the TGF-β family), control Nodal
signaling by binding directly to Nodal, or by binding to Cripto-1 (Nodal’s co-receptor and a
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member of the Epidermal Growth Factor-Cripto-1/FRL-1/Cryptic [EGF-CFC] family). Our
results demonstrate lower levels of Nodal (a TGF-β family member) and Cripto-1 (Nodal’s
co- receptor) and a dramatic decrease in Lefty (Nodal’s inhibitor and TGF-β family
member) in hiPSCs compared with hESCs (with an accompanying increase in the
methylation of Lefty B CpG island). Based on these findings, the second part of our study
addressed the implications associated with the epigenetic reprogramming of hiPSCs,
consisting of a global comparative analysis of 365 microRNAs (miRs) in hiPSC vs. hESC
lines. The data reveal 10 highly expressed miRs in hiPSCs with >10-fold difference, which
have been shown to be cancer related, thus serving as a catalyst for further assessment with
respect to their clinical use in regenerative medicine.

MATERIALS AND METHODS
Cells and culture

Two hiPSC cultures IMR90-1, Foreskin -1 (WiCell; Madison, WI) and four hESC cultures
H7, H14 (WiCell) and CM7, CM14, established at CMRC (Laurant et al., 2010), (currently
pending approval for addition to the NIH Stem Cell Registry) were used for this study. The
cells were grown in StemPro medium (Invitrogen; Carlsbard, CA) on a Matrigel substrate
(BD Bioscience; San Jose, CA). The cultures were split mechanically using the StemPro EZ
Passage tool (Invitrogen). For miR analysis, confluent cultures were lifted using trypsin and
then washed in ice-cold PBS and pellet stored at −80 °C.

Western Blot, Real-time RT-PCR DNA methylation analyses
Thirty micrograms of total cell lysate from hiPSCs or hESCs were loaded per lane in pairs
onto a 4–12% Tris-Bis SDS-PAGE (Invitrogen). After transblotting onto an Immobilon
membrane (Millipore; Billerica, MA), the membrane was cut into thirds and each section
probed for either Nodal (antibody Clone EP2058Y; Epitomics; Burlingame, CA), Lefty
(antibody AF746; R&D Systems; Minneapolis, MN) or Cripto-1 (antibody 600-401-997;
Rockland; Gilbertsville, PA). The membranes were then stripped and reprobed for actin
(antibody MAB1501; Millipore) as a protein loading control. For Real-time RT-PCR, RNA
was isolated using TRizol reagent (Invitrogen) and 1 μg reverse transcribed as previously
described (Postovit et al., 2008). Real-time RT-PCR was performed as described (Postovit et
al., 2008) using TaqMan (Applied Biosystems; Carlsbad, California) gene expression human
primer/probe sets for Nodal (Hs00250630.s1), Lefty (Hs009996632.g1) and Cripto-1
(Hs02339499.g1) and gene levels normalized using HPRT-1 (433768F). Data were analyzed
using Applied Biosystems’ Sequence Detection Software (V. 1.2.3) and error bars represent
mean gene expression normalized to hESC values, +/−S.D. DNA from hiPSCs and hESCs
was extracted by phenol-chloroform, bisulfite converted and sequenced for the Lefty B gene
CpG island as previously reported (Costa et al., 2009). Six to ten positive clones were
sequenced and percentages of DNA methylation were calculated.

miR analysis
Total mRNA isolation from the cell lines was performed with the PureZOL RNA isolation
reagent (Bio-Rad; Hercules, CA), according to the manufacturer’s instructions. TaqMan
Low-Density Arrays (TLDA Human MicroRNA Panel v1.0) were used to detect and
quantify mature miRs in accordance with the manufacturer’s instructions (Applied
Biosystems’ 7900HT Micro Fluidic Cards). The cards were processed in the ABI 7900 HT
Fast Real Time PCR System (Applied Biosystems) and analyzed with Real-Time StatMiner
(Integromics; Philadelphia, PA). The difference in miR expression between hiPSCs and
hESCs was calculated by the comparative 2− Δ ΔCt method with RNU44 and RNU48 as
endogenous controls (Livak and Schmittgen, 2001) (P<0.05 was considered as significant).
Hierarchical clustering was performed by the Ward’s method using Pearson’s correlation for
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miR similarity measure. miRs with ΔCt<5 (RNU48 as endogenous controls) were
considered to be at high level of expression.

To verify the accuracy of our TLDA data, we performed individual qRT-PCR experiments
for representative miRs using TaqMan miR assays (Applied Biosystems) in triplicates,
according to the manufacturer’s instructions (RNU48 as endogenous controls). miR
expression levels were analyzed as above and the miRs were confirmed to be significantly
up-regulated in the hiPSC compare to the hESC lines by the individual qRT-PCR
experiments.

RESULTS AND DISCUSSION
This study initially performed a comparative analysis of the major components of the
embryonic Nodal signaling pathway in hESCs and hiPSCs. Western blot and Real-time RT-
PCR results reveal slightly lower levels of Nodal (a TGF-β family member) and Cripto-1
(Nodal’s co-receptor) and a dramatic decrease in Lefty (Nodal’s inhibitor and TGF-β family
member) in hiPSCs compared with hESCs (Fig. 1A). Based on the unanticipated noteworthy
drop in hiPSC’s Lefty expression, we performed DNA sequence-based methylation analysis
of Lefty B CpG island and found increased methylation (Fig. 1A), suggesting silencing of
this critical regulator of Nodal. The implications associated with a significantly lower level
of Lefty expression in hiPSCs vs. hESCs, together with our earlier findings of the re-
emergence of aberrant Nodal signaling in metastatic tumor cells in the absence of Lefty
(Postovit et al., 2008), prompted us to address a more fundamental question focused on the
implications associated with the epigenetic reprogramming of hiPSCs, particularly related to
the fidelity of these cells to maintain a stable ESC phenotype.

We pursued a comparison of the expression profiles of 365 microRNAs (miRs) in two
hiPSC (fibroblasts reprogrammed with Oct4, Sox2, Nanog and Lin28) and four hESC lines,
recognizing that specific miRs are known to be associated with oncogenic pathways (Tong
et al., 2009). Although the ability of hESCs and hiPSCs to form teratomas in
immunocompromised mice is well documented (Yu et al, 2007; Thomson et al. 1998),
particularly noteworthy are the observations in chimeric mice derived from iPSCs generated
with exogenous c-myc, where malignant tumors developed in up to 20% of the mice (Okita
et al., 2007) vs. mice derived from iPSCs reprogrammed without exogenous c-myc, where
no tumors have been reported (Wernig et al, 2008). These disparate findings prompted
further inquiry into the potential pathways employed by normal cells resulting in
pluripotency vs. oncogenic transformation.

An unsupervised hierarchical clustering analysis of 157 miRs that were expressed in at least
one of the six cell lines tested (Fig.1B-1) revealed 72 miRs expressed at statistically
different levels in hiPSCs vs. hESCs (P<0.05), 31 exhibiting greater than 10-fold difference
(Fig. 1B-2; Table 1). Further statistical analysis of the 31 miRs indicated that 15 were
expressed at high levels (ΔCt<5), 10 of which have been shown to be cancer related (Fig.
1B-3). Specifically, differential expression of these 10 miRs have been shown to regulate
critical checkpoints in Hodgkin’s lymphoma, multiple myeloma, and breast, pancreatic and
prostatic carcinoma (Tong et al. 2009; Pichiorri et al., 2008; Griether et al., 2010; Mertens-
Talcott et al., 2007; Gibcus et al., 2009; Yan et al., 2008). The miR differences found in this
study between hiPSCs and hESCs further support the recent findings of Doi and colleagues
(Doi et al., 2009), who indicated that the target loci involved in epigenetic reprogramming to
pluripotency parallels aberrant oncogenic transformation programming, and advances the
observations of Feng and coworkers reporting early senescence of hiPSCs derivatives (Feng
et al., 2010). Our investigation also revealed that both hiPSCs fibroblasts -- isolated from
either fetal origin (IMR90) or newborn foreskin hiPSCs resulted in a similar miR expression
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profile between them as did hESCs miR expression among cell lines of different ethnic
origin. Collectively, these data demonstrate cancer hallmarks expressed by hiPSCs, which
will require further elucidation for their impact on clinical applications, especially with
respect to the fate of precancerous stem cells.
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Figure 1. Differences in pluripotent markers and oncogenic-associated miRs in hiPSCs vs. hESCs
(A) Upper, Western blot and Real-time RT-PCR analyses of hiPSCs (IRM90-1) and hESCs
(H9) for the expression of Nodal, Lefty and Cripto protein (relative values corrected against
Actin for protein loading); Right, mRNA expression (normalized to hESC values). Lower,
DNA methylation of the Lefty B CpG island. (B-1) Comparison of miR expression profiles
between two hiPSC and four hESC lines. Unsupervised hierarchical clustering of 157
microRNAs (ΔCt, Pearson’s correlation, P<0.05): A-hiPSC (Foreskin-1), B-hiPSC
(IMR90-1), C-hESC (CM7), D-hESC (H7), E-hESC (CM14), F-hESC (H14). (B-2)
Supervised hierarchical clustering using 10-fold change between hiPSC and hESC lines as a
cutoff (31 miRs-the same order of samples as in (B-1) (ΔCt, Pearson’s correlation, P<0.05):
(B-3) Cancer related miRs highly expressed (ΔCt <5) in both hiPSC lines. (*based on
literature search; **miR was also found to be differentially expressed between hiPSC and
hESC lines [Chin et al., 2009]; ***verified by individual qRT-PCR experiments [P<0.05]).
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