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Abstract

Genomic biomarkers for the detection of drug-induced liver injury (DILI) from blood are urgently
needed for monitoring drug safety. We used a unique data set as part of the Food and Drug
Administration led MicroArray Quality Control Phase-11 (MAQC-II) project consisting of gene
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expression data from the two tissues (blood and liver) to test cross-tissue predictability of genomic
indicators to a form of chemically-induced liver injury. We then use the genomic indicators from
the blood as biomarkers for prediction of acetaminophen-induced liver injury and show that the
cross tissue predictability of a response to the pharmaceutical agent (accuracy as high as 92.1%) is
better than, or at least comparable to, that of non-therapeutic compounds. We provide a database
of gene expression for the highly informative predictors which brings biological context to the
possible mechanisms involved in DILI. Pathway-based predictors were associated with
inflammation, angiogenesis, Toll-like receptor signaling, apoptosis and mitochondrial damage.
The results demonstrate for the first time and support the hypothesis that genomic indicators in the
blood can serve as potential diagnostic biomarkers predictive of DILI.

Keywords
prediction; acetaminophen; blood; cross tissue; liver injury; microarray gene expression

INTRODUCTION

Drug-induced hepatotoxicity is the most frequent cause for a drug to be withdrawn from the
market, to have its use restricted or to have a warning on the label associated with it.
Currently, preclinical models are not always predictive of an adverse response in humans
since sensitivity to certain drugs can be influenced by human-specific genetic variability and
other variables accounting for idiosyncratic drug reactions. Discovery of diagnostic
indicators of liver injury from a minimally invasive bio-available source is of interest to
monitor for adverse effects of a drug.

A few recent studies have shown that genomic markers obtained from blood gene expression
data are predictive of adverse effects of a drug or chemical compounds. Bushel et al. 1
demonstrated that gene expression profiles from rat blood samples could accurately predict
exposure levels of acetaminophen to the rat liver better than traditional clinical panels.
Lobenhofer et al. 2 used gene expression data from rats exposed to a compendium of
hepatotoxicants to show that blood gene expression patterns could be used to provide an
indication of the severity level of liver injury. Wang et al. 3 recently demonstrated the
potential of circulating microRNA molecules (small regulatory non-coding RNAS) as
biomarkers of drug-induced liver injury (DILI) in an acetaminophen-overdosed mouse
model system. Although these efforts are certainly pioneering they do not address the
question of whether or not genomic indicators in the blood are truly predictive of DILI.

In this paper we used the Lobenhofer et al. 2 gene expression data set that was contributed to
the Food and Drug Administration (FDA) led MicroArray Quality Control Phase-II
(MAQC-II) effort as a training data set and for internal validation to identify genes and
biological processes in the blood that are predictive of liver necrosis (a particular form of
DILI). This data set was chosen for analysis for several key reasons: 1) it was the only data
set publicly available at the time which contained gene expression measurements from the
two tissues of interest, histopathology, clinical chemistry and other ancillary biological data
from exposure to a compendium of compounds, 2) the experimental design and data
acquisition were performed in a rigorous, standardized fashion (i.e. a common array
platform, experimental procedure, data acquisition and analysis methods) in order to reduce
the amount of systematic variation in the data, and 3) it permitted a global view of the
landscape of the transcriptome of the rat as a model system to explore the possibility of
using expression profiles from a non-invasive tissue as potential biomarkers predictive of
DILI. We show that the classifiers derived from the gene expression data are highly
predictive across tissues (blood and liver) and microarray platforms (Agilent and
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Affymetrix). We then demonstrate that gene expression profile sets from the blood predict
acetaminophen-induced liver injury (samples classified as the subjects having either some or
no observable form of liver necrosis as an end-point) in an independent (validation) data set
better than (at an accuracy as high as 92.1%), or at least comparable to, that of non-
therapeutic compounds used in this study. Cumulatively, these data support the hypothesis
that genomic indicators in blood can serve as biomarkers that are highly predictive of a form
of DILI and as a model for the acquisition of gene expression signatures that potentially can
be used in a clinical setting for monitoring drug treatments and diagnosing adverse drug
effects in humans.

MATERIALS and METHODS

Compendium (standardized) gene expression data

The gene expression data set was derived from the studies of the exposure of rats to one of
eight compounds (1,2-dichlorobenzene, 1,4-dichlorobenzene, bromobenzene,
monocrotaline, N-nitrosomorpholine, thioacetamide, galactosamine and diquat dibromide).
The data are publicly available in the Gene Expression Omnibus (GEO) database under the
MAQC-II reference series accession GSE16716 and in the Chemical Effects in Biological
Systems (CEBS) database # under accession number 001-00001-0020-000-4. All eight
compounds were studied using standardized procedures, i.e. a common array platform,
experimental procedures and data retrieving and analysis processes. For details of the
experimental design see Lobenhofer et al.2. Briefly, for each compound, four to six male, 12
week old Fischer F344/N rats were exposed to a low dose, mid dose(s) and a high dose of a
compound and sacrificed at 6, 24 and 48 hrs later. For each time point, control animal
groups were treated with vehicle alone. At necropsy, liver and blood were harvested for
RNA extraction, histopathology, clinical chemistry and hematology assessments.

Both Agilent (Agilent Technologies, Inc., Santa Clara, CA) and Affymetrix (Affymetrix,
Inc., Santa Clara, CA) platforms were used for the gene expression profiling. The cross
tissue predictions used the Agilent data only whereas the cross platform predictions used
both Agilent and Affymetrix data. For the Agilent platform, RNA isolated from the liver
from each of the treated rats was labeled and hybridized against the time- and compound-
matched control pool to Rat #G4130A oligonucleotide (22,075 probes) arrays. Fluorescent
pixel intensities measurements were acquired using an Agilent DNA Microarray Scanner
and processed with the Agilent Feature Extraction software. The averaged dye-swap ratio of
the pixel intensity values (background subtracted and channel normalized red and green
processed signals) were used to represent the gene expression profiles for 318 samples. The
same approach was carried out for the rat blood samples. For the Affymetrix platform, the
gene expression data were generated only for the rat liver. Specifically, the RNA samples
from individual animals were profiled, one hybridization per animal on Rat Genome 230 2.0
(31,099 probe-sets) arrays for a total of 418 liver hybridizations. The data were processed
using the MAS5 algorithm . The signals were background subtracted, averaged (across
probes within a probe-set) using a mean Tukey biweight function and then scaled to account
for differences between chips. The intensity data from the compound-treated samples were
used to represent the gene expression profiles for 318 samples. The classification of the
samples is described in the “Histopathology and sample classification” subsection.

Independent (non-standardized) validation gene expression data

The gene expression data is from the Agilent platform only and is comprised from liver
samples of rats exposed to one of three hepatotoxicants (acetaminophen, carbon
tetrachloride, and allyl alcohol) with a time-matched vehicle control pool made for each
compound and tissue by pooling equal amounts of RNA from the control animals.
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Acetaminophen: Groups of four male Fischer F344/N rats each received 0 (vehicle), 50,
150, 1,500 or 2,000 mg/kg body weight of acetaminophen at two different times: between 12
(noon)-1PM (“light” subjects) or between 12 (midnight)-1AM (*night” subjects). The
animals were sacrificed after 6, 18, 24 or 48 hrs. RNA samples from eight subjects were
either not available or did not produce high quality RNA for hybridization leaving a total of
152 samples. Carbon Tetrachloride: Groups of six male Fischer F344/N rats each received
15, 750 or 2,000 mg/kg body weight of carbon tetrachloride. The animals were sacrificed
after 3, 6, 24 or 72 hrs. There are a total of 72 samples. Allyl Alcohol: Groups of six male
Fischer F344/N rats each received 10, 20, 40 or 50 mg/kg body weight of allyl alcohol. The
animals were sacrificed after 6, 24, 48 or 72 hrs. The RNA from one subject was not
available or did not produce high quality RNA for hybridization leaving a total of 95
samples.

Each treated animal was hybridized against a time matched control pool to Agilent Rat
#G4130A oligonucleotide arrays with a dye-swap technical replicate. The data were
acquired and extracted in a similar fashion as the Compendium gene expression data. The
averaged dye-swap ratio of the pixel intensity values (background subtracted and channel
normalized red and green processed signals) were used to represent the gene expression
profiles for the 319 validation samples. For more details see Huang et al. 8 and Bushel et
al. 1. The acetaminophen data is publicly available in the CEBS database 4 under accession
number 002-00001-0011-000-5. The allyl alcohol and carbon tetrachloride data are stored in
the NIEHS MicroArray Project System (MAPS) database / under project ID 221 and 236
and is available upon request. The classification of the samples is described in the
“Histopathology and sample classification” subsection. ArrayTrack 8 was used to manage
the microarray data, histopathology observations and clinical chemistry measurements for
this study.

For comparison of the prediction of the blood and liver samples across array platforms, the
gene expression data (ratio values for Agilent [blood] and intensity measurements for
Affymetrix [liver]) were batch corrected as follows: After log transformation, the mean of
the gene expression for each array feature across all the samples within each batch (array
platform type or Compendium and validation data sets) is set to zero. This approach is also
referred to as Mean Shift, Mean-Centering, or One-Way ANOVA Adjustment.

Histopathology and sample classification

Two sections were taken from the left liver lobes and fixed in 10% formalin. After
dehydration with ethanol, the liver sections were embedded in paraffin and H&E stained
slides were made. The slides were evaluated by independent pathologists and any
disagreements were resolved by a pathology working group review °. The severity of
necrosis was graded into five levels by the pathologists, i.e., 0, 1, 2, 3, and 4 representing
none, minimal, mild, moderate and marked levels of necrosis respectively. The necrosis
severity levels were used as a class label for the samples. Specifically, histopathological
severity scores (1-4) of any one of four areas (centrilobular hepatocyte necrosis,
centrilobular mid-zonal hepatocyte necrosis, mid-zonal hepatocyte necrosis or focal
hepatocyte necrosis) were used to classify samples with at least some observable sign of
necrosis (class 1; n = 154 Compendium data set samples and n = 127 validation data set
samples). All other liver injuries and no injury observed samples were classified as having
no observable sign of necrosis (class 0; n = 164 Compendium data set and n = 192
validation data set samples). See the Supplementary files A and B for the specific
classification assignments of the Compendium and validation data sets samples respectively.
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Clinical chemistry

At sacrifice, blood was collected into serum separation tubes (BD Microtainer® Tubes,
Becton-Dickinson, Franklin Lakes, NJ) and serum was separated. Clinical chemistry
analyses were performed on all rats in the Compendium data set at study termination. Serum
levels of the established liver injury marker alanine aminotransferase (ALT) are used
routinely to assess hepatocyte injury in both animals and humans. Data from the other
analytes were not used in this study but are publicly available 2 4.

Classifier building and prediction

Classifiers were built and used for prediction according to the MAQC-11 common practices
for developing and validating microarray-based predictive models. For gene-based
classifiers a sequential forward array feature selection approach with Welch t-test (fold
change [FC] > 1.5 or 2 and P <0.05 criteria) comparisons of two groups (class 1: some
observable form of necrosis vs class 0: samples with no observable form of necrosis) was
used. The data are considered to be independent and assumed to be normally distributed.
The measure of variability is the standard deviation. Optimization of the features selected as
predictors was performed by a five-fold internal cross-validation strategy with the
Compendium data set samples split into training (n=175) and testing (n=143) subjects.
Support vector machines (SVM), k-nearest neighbors (KNN) and nearest centroid (NC)
classifiers or a random forest (RF) classifier with 100 trees were used to predict the class of
the samples (subjects having either some or no observable form of liver necrosis). The
prediction using GeneGo’s canonical pathway maps (CPMs) was performed using the
randomForest package in R. GeneGo’s canonical pathway maps were derived from an
ontology of experimentally-confirmed signaling and metabolic multi-step pathways in
human, mouse and rat 10. The pathways were manually inferred and curated from primary
scientific literature. To date there are over 1100 pathway maps in total for normal and
disease states. The genes of each of the CPMs were mapped to the array probes and
considered as features for prediction using the RF classifier 11. As a result, there are about
350 classifiers built. An internal out-of-bag (OOB) process (a variant of cross validation)
was used to estimate prediction performance and to rank the CPMs classifiers by cross
validation accuracy. Briefly, 2000 bootstrap (random) samples were taken where at each
iteration about one-third of the blood samples from the Compendium data set are left out of
the construction of the k" tree [k=100] and then used for prediction. OOB error is estimated
as the proportion of times that the predicted class of the samples is not equal to the true class
averaged over all predicted cases. The best pathways (those with the highest cross validation
prediction accuracy) were chosen for final prediction on the liver test data. On average, the
probability of the informative genes in one of the best pathways to be highly predictive of
drug-induced liver injury (DILI [characterized as the subjects having either some or no
observable form of liver necrosis]) by chance given the blood and liver Compendium data
set is 1x10™4. This means that the probability of any random set of genes with the same size
as the one of the best pathway to be as predictive, or better than, the informative genes for
the considered pathway is substantially small.

Coherent co-expression (cc) - biclustering

In the first step of cc-Biclustering 12 of the Compendium (Agilent) microarray data set, we
use a pairwise approach to obtain subsets of the liver gene expression samples and the genes
as initial coherent biclusters. Then we apply the Extracting Patterns and Identifying co-
expressed Genes (EPIG) method 13 to the initial coherent biclusters in order to further subset
the genes into final biclusters that contain coherent and highly co-expressed genes. EPIG
uses a filtering process to extract gene expression patterns and then categorizes each gene to
one of the patterns for which it has the highest correlation with the gene profile. Briefly, the
relationship between two gene expression vectors ajx and ajk (ith and jt" genes) for the
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samples within the ki group is assessed with a binary coherent matrix H(hgj) k) according to
an inclusion\exclusion criterion function

hooo= ] b CMaix, aji)<p:
Dk 0 otherwise ’ ®

where i and j are from 1 to N number of genes and k is from 1 to K number of groups (a
given compound used for exposure). The ki group contains the samples exposed to the
compound at the treatment doses and time points. CM represents a coherent measure
between these two vectors. CM is the p-value of the Pearson correlation (r-value) between
ajk and ajk. Py is a user-defined threshold for the p-value and is set to 0.001.

Biological processes over-representation and pathway analysis

RESULTS

The Expression Analysis Systematic Explorer (EASE) 14 was used to identify biological
processes over-represented by sets of genes identified as predictors or contained within
biclusters. The over-represented processes were confirmed by the Gene Ontology (GO)
Enrichment Analysis Software Toolkit (GOEAST) 15 using the Adrian Alexa's improved
weighted scoring algorithm to account for the hierarchical structure of GO 16 and the
Benjamini-Yekutieli procedure to control the false discovery rate under the assumption of
gene-to-gene dependency 17.

Hepatocellular injury classified by severity of necrosis

As detailed in Table 1, exposure to any one of the eight compounds in the Compendium data
set resulted in necrosis of the liver which was scored using a five-point scale (0, 1, 2, 3, and
4 representing none, minimal, mild, moderate and marked levels of necrosis respectively).
The majority of the rats showed no histopathological (observable) evidence of necrosis of
the liver. Few samples were found to have a necrosis score that was concordant with levels
of alanine aminotransferase (ALT) and the variation of the ALT measure among samples
sharing the same necrosis severity score is wide (Figure 1a). When the samples were
classified based on the presence or absence of necrosis and a t-test was performed on the
blood gene expression data, six genes (Table 2) were found to partition the liver samples
fairly well (Figure 1b).

Cross tissue predictability

Several classifier building strategies were used to predict the Compendium data set liver
tissue samples (classified as subjects having either some or no observable form of liver
necrosis) using gene expression data from the blood and the reciprocal prediction (liver to
blood) (Figure 2a). Figure 2b and Table 3 present the accuracies of the predictions using the
gene-based models. When considering all cases of the models, the genes selected using the
fold change (FC) > 2.0 criteria coupled with a p-value < 0.05 performed better than using a
1.5 cut-off with the same p-value. The nearest centroid (NC) classifier yielded the highest
accuracy (~90%) of all predictions except when the blood training set was used for training
the model and then for prediction of the blood test set (Line 1, accuracy = 77.7%). Building
the classifiers on the samples from the entire blood data set to predict the same samples but
profiled in the liver (Line 0, accuracy = 86.2%-88.9%), using the classifiers built on the
blood training data set samples to predict the liver training data set samples (Line 2,
accuracy = 84.0%-89.7%) and to predict the liver test data set samples (Line 3, accuracy =
82.0%-87.9%) performed better than directly predicting the blood test set samples (Line 1,
accuracy = 77.7%-80.4%).
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The frequency of the genes selected for prediction revealed that nine genes occurred most
often in the classifiers (Figure 3 and Table 2). The genes for interleukin 1 receptor-type 11
(111r2), chemokine (c-c motif) ligand 2 (Ccl2 also known as monocyte chemoattractant
protein-1 [MCP-1]) and chemokine (c-x-c motif) ligand 10 (Cxcl10) top the list. Six of these
predictor genes were found to have blood gene expression profiles that partitioned the liver
samples well based on the presence or absence of necrosis (Figure 1b).

As revealed in Table 3, when considering the reciprocal prediction (i.e., from liver to blood)
the training of the classifiers on the liver training data set samples and using them to predict
the liver test data set samples (Line 4, accuracy = 83.9%-89.5%) performed much better than
a) predicting the blood data samples (Lines 5 and 6, accuracy = 58.7%-62.9%) and b) the
classifiers that were built on the entire liver data samples directly in order to predict the
blood samples (Line 0’, accuracy = 52.0%-56.0%). Moreover, the liver-to-liver prediction
(Line 4, accuracy = 83.9%-89.5%) performed better than the blood-to-blood prediction
(Line 1, accuracy= 77.7%-80.4%). In all cases, using the classifiers built with the blood data
set samples to predict the liver samples performed much better than the converse (Lines 0, 2,
3, versus Lines 0°, 5, 6) (Figure 2b and Table 3).

Cross-tissue predictability was further evaluated at the pathway level based on Line 0
(Figure 2a). In this case, all the genes on the Agilent Array were mapped to the ontology of
about 350 canonical pathway maps (CPMs). Classifiers for each pathway were constructed
using the genes that were annotated as being present in the pathway. The highest ranked
pathways identified in the blood based on the internal cross validation (column 2 of Table 4)
are related to PIP3 signaling in B lymphocytes, the Toll-like receptor (TLR) signaling
pathway leading to a cell proinflammatory response, and regulation of apoptosis by
mitochondrial proteins. These and other top predictive pathways are related to an
inflammatory response, apoptosis, mitochondrial damage and angiogenesis (see the VEGF-,
TPO- and angiotensin- signaling/activation processes). When pathway-based classifiers
from the blood were used to predict the liver samples (column 3 of Table 4), two of the top
three pathways identified in the blood as highly predictive, ranked high in the cross-tissue
prediction along with the anti-apoptotic TNFs, NF-kB, Bcl-2 pathway, which conferred high
degrees of predictability of necrosis between the blood and liver tissues (accuracies ranging
between 83.6 % and 89.3%). Interestingly, the cumulative impact of the gene expression
signal in the regulation of apoptosis by mitochondrial protein pathway was found to be
higher in liver than in the blood. This is evident by a larger number of pro-apoptotic genes
up-regulated in case of necrosis in liver compare to blood (Supplementary materials Figure
1).

Expression signatures transferable across tissues

The investigation of the blood gene signatures transferred to the liver was carried out in
order to determine whether or not the high accuracy of predictability across tissues is
sustainable. Classifiers for the blood using random forest (RF), support vector machine
(SVM), k-nearest neighbor (KNN) and NC were constructed and the resulting expression
signatures were used to develop classifiers based on the gene expression data from the liver
samples (Supplementary materials Figure 2). The transferability of expression signatures
results summarized in Supplementary materials Table 1 (top section) used a gene expression
filter selection criteria of FC > 2 or FC >1.5 and P<0.05. Similar to cross tissue
predictability, the prediction using the blood training classifiers on the blood test data set
samples (Supplementary materials Table 1 top section: 75.9%-78.6%) was slightly worse
when compared to the prediction of the liver training classifiers on the liver test data set
samples (Supplementary materials Table 1 bottom section: 83.4%-88.8%). However, using
the transferred expression signatures from the blood classifiers to the liver test data set
samples gave much better prediction results (Supplementary materials Table 1 top section
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81.7%- 88.8%). When the transferability was evaluated in the reverse order, the gene
expression signatures transferred from the liver (Supplementary materials Table 1 bottom
section: 58.6%-72.0%) performed worse than the gene expression signatures transferred
from the blood.

Cross tissue predictability extendable across platforms

The two-way cross platform predictability of genomic indicators was also assessed from the
blood (Agilent platform) to predict liver samples (Affymetrix platform) and vice versa by
correcting the data for batch (array platform differences) and building classifiers using
SVM, KNN and a diagonal linear discriminant analysis (DLDA). As shown in
Supplementary materials Table 2, the accuracy of prediction from blood to liver was much
higher with the batch corrected data (Lines 2 vs 2’ and 3 vs 3’, i.e., before vs after the batch
correction) but about the same as the uncorrected data when predicting liver to blood (Line 5
vs 5’ and 6 vs 6”). In addition, the accuracy of the within-tissue prediction (blood to blood
and liver to liver) generally produced higher accuracies than predicting cross tissue (Lines 1
vs 2’ and 3’ and Line 4 vs 5’ and 67), with the only exception of using the DLDA classifier
for prediction from blood to liver (Lines 1 vs. 2’ and 3’). In all cases of the classifiers,
higher accuracies were observed when the blood from the Agilent platform was used for
training to predict the liver on the Affymetrix platform than the converse (Lines 3’ vs 67).
For all three classifiers, the within-tissue (and platform) training and testing using the liver
data is higher than that of the blood (Lines 4 vs 1). The highest (cross tissue) prediction
accuracy obtained was 81.0% when the DLDA classifier with sequence mapping and the
blood Agilent data set samples were used for training and then applied to predict the liver
samples profiled by the Affymetrix platform.

External validation of the predictors across tissues

To validate the ability of the gene-based and pathway-based classifiers constructed from the
blood to predict DILI, we leveraged an independent gene expression data set derived from
rat liver samples exposed to a different set of hepatotoxicants, one of which is a
pharmaceutical agent (acetaminophen) and the other two are non-therapeutic compounds
(carbon tetrachloride and allyl alcohol). The accuracy of prediction was determined to be the
proportion of samples predicted correctly according to their class label (samples classified as
subjects displaying either some or no observable form of liver necrosis as an end-point [see
the Materials and Methods section for the number of samples binned in each class and the
exposure conditions]). As shown in Table 5, the accuracies of the blind predictions using the
four gene-based classifiers (RF, KNN, SVM and NC) and three pathway-based classifiers
(corresponding to the ones with high accuracy in cross-tissue prediction as shown in Table
4) are typically higher for acetaminophen and carbon tetrachloride than for allyl alcohol.
The gene-based classifiers performed slightly better than the pathway-based classifiers. The
NC gene-based classifier performed the best across all the independent validation data set
samples and achieved a 92.1% accuracy of prediction on the acetaminophen data. The RF
pathway-based classifiers consisted of genes in the a) regulation of apoptosis by
mitochondrial proteins pathway, b) anti-apoptotic TNFs/NF-kB/Bcl-2 pathway or ¢) Toll-
like receptor (TLR) ligands and common TLR signaling pathway and performed poorly on
the allyl alcohol data set (average accuracy = 66.3%). The RF-b pathway-based classifier,
which exhibited the best cross-tissue predictability (Table 4), predicted the acetaminophen
and carbon tetrachloride samples slightly better than the other two pathway-based
classifiers.
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DISCUSSION

As part of the Food and Drug Administration led MicroArray Quality Control Phase-I1
(MAQC-II) effort to develop and validate predictive signatures, we used gene expression
data acquired from the blood of rats chemically stressed to identify gene- and pathway-based
indicators of liver necrosis. Although others have used blood to either predict the exposure
of a single drug 1 or to survey a compendium of hepatotoxicants 2 ¢, we took a more formal
and comprehensive approach to evaluate the genomic indicators in blood for prediction of
liver necrosis across a variety of chemical compounds that target the liver. Our work is the
first demonstration of the usefulness of blood as a surrogate tissue to extract genomic
indicators for predicting the manifestation of necrosis in the liver based on hepatocellular
stress from a drug, therapeutic or across a wide variety of hepatotoxicants. Importantly, the
findings are verified by an independent data set comprised of gene expression data from
samples stressed by compounds with different characteristics. Acetaminophen is a
therapeutic agent while carbon tetrachloride and allyl alcohol are compounds with no
pharmacologic benefit. Furthermore, while as hepatotoxicants acetaminophen and carbon
tetrachloride require more P450 isoenzyme for bioactivation, allyl alcohol differs in that it
requires higher oxygen levels for oxygen-dependent bioactivation 18. Despite these salient
differences, from our analysis, the results demonstrate that using the genomic indicators in
blood to predict liver necrosis is somewhat of a general phenomenon and is presumably
independent of the choice of hepatotoxicant, the extent of chemical stress or the use as a
therapeutic.

Our findings are consistent with the role of organ-to-organ communication that has been
previously reported for acetaminophen-induced toxicity 1° and the role of transmigration of
leukocytes into the liver vasculature by inflammatory mediators at the onset of
hepatotoxicity contributing to acute liver injury 20- 21, In contrast to the blood-to-liver
prediction, the gene and pathway signatures from the liver to predict the blood were not as
highly predictive as those acquired from the blood to predict the liver (Figure 2b and Table
3). A possible reason for this phenomenon may be the fact that the dynamic range and
overall changes in gene expression that are statistically significant in the liver are quite
different and much greater than what is detected in the blood (Supplementary materials
Figure 3). Another possibility could be that many of the animals in this study had lesions
other than just necrosis or that the phenotypic response that the classifier captured was for a
general necrotic lesion whereas the end-point for the validation data set samples was for a
specific form of necrosis. An area for further investigation is the determination of a more
complex classification based on the histopathology data to predict a composite
representation of liver injury which encompasses many end-points.

The genes and pathways acquired from the blood expression data that comprised the
classifiers for prediction of necrosis of the liver represent biological mechanisms related to a
severe immune response, induction of apoptosis, targeting of the mitochondria and
angiogenesis. These mechanisms agree with the current literature on drug-related
hepatotoxicity 22-24 but the latter may be related to the formation of new blood vessels
during the regeneration of the liver to compensate for the loss of hepatocytes. Interestingly,
one of our top ranking pathway-based classifiers for predicting necrosis in the liver points to
the Toll-like receptor (TLR) signaling pathway leading to a cell proinflammatory response.
TLRs are a class of single membrane-spanning non-catalytic receptors that recognize
structurally conserved molecules derived from microbes and activate immune cell responses.
Recently, Yohe et al. 2° reported the role of TLR4 in acetaminophen-mediated
hepatotoxicity in endotoxin-responsive mice.
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We found that the genes for interleukin 1 receptor-type 11 (111r2), chemokine (c-c motif)
ligand 2 (Ccl2) and chemokine (c-x-c motif) ligand 10 (Cxcl10) were most frequently
selected for prediction among all the classifiers built and six of the nine most frequent genes
have blood gene expression profiles that separated the liver samples fairly well based on the
presence or absence of necrosis (Figure 1b). Two pathways with high predictability, the
regulation of apoptosis by mitochondrial proteins and the anti-apoptotic TNFs, NF-kB,
Bcl-2, have three genes that overlap: B-cell CLL/Lymphoma 2 (Bcl2), TNF receptor
superfamily member 1a (Tnfrsfla) and Bcl2-related protein Al (Bcl2al). The latter encodes
a member of the Bcl2 protein family. The proteins of this family form hetero- or
homodimers and act as anti- and pro-apoptotic regulators. Coincidently, the biological
processes that these predictor genes represent match several of the enriched Gene Ontology
(GO) categories and KEGG pathways from the biclusters of up- and down-regulated (co-
expressed) genes from the Compendium data set liver samples (Supplementary materials
Figure 4, Supplementary materials Table 3 and Supplementary file C).

In order to assess the possible mechanisms that the predictor genes contribute to the liver
injury phenotype, we built a direct interaction (DI) network using signature genes as seed
nodes and the MetaCore collection of over 300,000 curated protein interactions as the source
of edges and connected genes (Figure 4). The network revealed that nine signature genes are
commonly regulated by 10 transcription factors (TFs) with Ccl2 regulated by seven TFs and
S100A9 by six. The downstream targets of the signature genes belong to many of the
biological processes ranked highly significant in enrichment and are involved in liver injury:
inflammation, extracellular matrix remodeling and apoptosis.

Although blood serum levels of alanine aminotransferase (ALT) have been historically used
as a gold standard clinical chemistry marker of liver injury, the enzyme measurements do
not always correlate well with histopathologic data 26 (i.e., the true nature and extent of the
liver damage is not always proportional to the elevation in the serum enzyme activity 27).
Recently, a study was performed that measured the level of gene expression of haptoglobin
(Hp) in blood and compared it to serum ALT as a marker of liver damage 28. The group
found that Hp gene expression was more sensitive as an indicator of liver damage. Other
genes in our predictor list play a role in inflammation. For instance, the chemokine Cxcl10 is
a marker of inflammation found in many models of inflammatory liver diseases 22 30 and is
thought to be mainly expressed by hepatocytes but also by macrophages and stellate cells 31.
S100A8 and S100A9 make up a complex found in leukocytes that appears to be an anti-
inflammatory protein 32, Finally, matrix metallopeptidase 8 (Mmp8), a neutrophil
collagenease, is involved in the control of the polymorphonuclear cell feed-forward
mechanism in an inflammatory process 33 and others have correlated peripheral blood
expression of Mmp8 as a marker of idiopathic pulmonary fibrosis 3.

Genome-wide expression profiling using microarray technologies provides a practical way
of surveying the global transcriptional response of a stressor on biological systems3°. Using
this system to assay peripheral blood for the identification of novel biomarkers of drug-
induced liver injury (DILI) is intriguing and may be a useful diagnostic test in the near
future 36, Other assay systems have been proposed or used as a model for identifying serum
biomarkers as candidates for liver injury 3 37-42, Qur results strongly support the claim that
genomic indicators in the blood can serve as biomarkers of necrosis as a form of a
chemically-stressed adverse effect on the rat liver and give credence to the acquisition of
gene expression signatures from minimal invasive biomaterial sources potentially for
diagnostic testing of DILI in humans.

Pharmacogenomics J. Author manuscript; available in PMC 2011 September 27.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Huang et al. Page 11

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

The Compendium data set samples partitioned by necrosis of the liver. a) Distribution of the
samples by ALT (x-axis) and necrosis score (y-axis). Necrosis score: 0 (164 samples), 1(82
samples), 2 (29 samples), 3 (14 samples), and 4 (29 samples). The total number of samples
is 318. b) Principal component analysis (PCA) of liver samples labeled according to an
indication of necrosis. PCA was performed on the liver expression data from the six genes
selected from the blood signature using a Welch t-test with P <0.05 and a fold change (FC)
>2.0 filtering criteria in ArrayTrack to compare the two classes of samples. Triangles = class
1 (154 samples showing some form of liver necrosis), circles = class 0 (164 samples
showing no sign of necrosis)]. The percent of variation captured by the first three principal
components (PCs): PC1=76.3% (x-axis), PC2=15.9% (y-axis), and PC3=2.8% (z-axis).
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Figure 2.

Prediction across tissues. a) Strategies for building classifiers and making predictions. The
line numbers represent the strategy taken. Line O: Building the classifiers on the entire blood
data set to predict the same data set profiled in the liver. Line 1: blood training set was used
for training the model and for prediction of the blood test set. Line 2: using the classifiers
built on the blood training data to predict the liver training data. Line 3: using the classifiers
built on the blood training data to predict the liver test data. Line 0' and 4-6 are the
reciprocal predictions from liver to blood. b) Gene-based classifier predictions from the
blood to the liver. The x-axis represents the strategies taken to build classifiers and make
predictions. The line numbers are as denoted in Figure 2a. FC means the fold change used to
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select the predictor genes (P <0.05). The y-axis represents the accuracy of prediction (from
the average of 100 trials). RF-random forest (# of trees = 100), SVM - support vector
machines (RBF kernel), KNN — k-nearest neighbors (k=15), NC-nearest centroids. SVM,
KNN and NC were individually combined with a forward array feature selection method
(Welch t-tests), evaluated with a five-fold internal cross validation to select best genes in the
model construction.
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Network analysis of the upstream and downstream regulation. The nine genes (marked with
solid circles) are direct targets of 10 transcription factors. The downstream genes belong to
three processes implicated in liver injury.
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Table 2

Genes that separated the samples and were found most frequent in the gene-based classifiers that predicted
liver necrosis as a form of DILI.
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Separates samfles
by necrosis Probe ID Symbol Description

A_42_P820657 | Il1r2 interleukin 1 receeptor, type Il

v A_42_P695401 | Ccl2, MCP1 | chemokine (C-C motif) ligand 2

v A_42_P597580 | Cxcl10 chemokine (C-X-C motif) ligand 10

v A_43 P12944 | S100a8 $100 calcium binding protein A8 (calgranulin A)

v A_42_P457572 | Serpinbla serine (or cysteine) proteinase inhibitor, clade B, member 1a
A_43 P12170 Mmp8 matrix metallopeptidase 8 (neutrophil collagenase)
A_42_P733209 | Dgat2 diacylglycerol O-acyltransferase 2
A_43 P17175 | Serpinbla serine (or cysteine) proteinase inhibitor, clade B, member 1a
A_42_P620915 | S100a9 $100 calcium binding protein A9 (calgranulin B)
A_43 PP11474 | Hp haptoglobin

*
Check mark denotes the six genes (seven probes) which separated the samples by necrosis in the PCA.
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Table 3

Prediction accuracies of the gene-based classifiers

8 hepatotoxicants- blood classifier predict the liver

Classifier Line 0 Line1 Line 2 Line 3
RF 0.862 0.804 0.840 0.867
SVM 0.874 0.785 0.867 0.844
KNN 0.859 0.763 0.845 0.820
NC 0.889 0.777 0.897 0.879

8 hepatotoxicants- liver classifier predict the blood

Classifier Line 4 Line5 Line 6 Line 0
RF 0.895 0.589 0.503 0.556
SVM 0.867 0.629 0.517 0.560
KNN 0.884 0.587 0.491 0.520
NC 0.839 0.620 0.489 0.529

Lines numbers denoted as in Figure 2a.
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Table 4

Prediction accuracies of the pathway-based classifiers

Pathway blood.acc™ | liver.acc™
P1P3 signaling in B lymphocytes 81.1 78.9
Toll-like receptor (TLR) ligands and common TLR

signalling*Eithway leading to cell proinflammatory

response 78.6 83.6
Regulation of Apoptosis by Mitochondrial Proteins e 783 88.1
Cytoplasm/mitochondrial transport of proapoptotic proteins

Bid, Bmf and Bim 78.3 72.3
Role of IAP-proteins in apoptosis 78.3 82.4
VEGF-family signaling 78.0 64.2
Leukocyte chemotaxis 78.0 78.6
Angiotensin signaling via STATSs 7.7 77.4
Receptor-mediated axon growth repulsion 77.7 79.6
Immune response BCR pathway 7.7 80.8
Membrane trafficking and signal transduction of G-alpha (i)

heterotrimeric G-protein 77.4 66.7
Anti-apoptotic TNFs/NF-kB/Bcl-2 pathway e 76.7 89.3
G-Protein alpha-12 signaling pathway 76.1 70.4
Brcal as transcription regulator 76.1 73.6
CXCR4 signaling via second messenger 76.1 78.9
G-Protein alpha-i signaling cascades 76.1 70.4
Caspases cascade 75.8 76.4
Apoptotic TNF-family pathways 75.8 80.2
CCR3 signaling in eosinophils 75.8 71.7
FAS signaling cascades 75.5 77.4
Activation of PKC via G-Protein coupled receptor 75.5 74.2
Galactose metabolism 75.5 60.1
Heme metabolism 75.5 814
G-Proteins mediated regulation p38 and JNK signaling 75.2 75.5
ChREBP regulation pathway 75.2 69.8
TPO signaling via JAK-STAT pathway 75.2 75.8
Angiotensin signaling via beta-Arrestin 75.2 74.5
PDGF signaling via STATs and NF-kB 75.2 79.6
Angiotensin activation of ERK 74.8 74.8
Angiotensin signaling via PYK2 74.8 76.7

*
Blood.acc is the internal cross validation accuracy based on the entire blood data set (see Methods);

Fk

Liver.acc is the accuracy of the blood classifiers to predict the liver based on Line 0 in Figure 2a;

Fk
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Top three pathways using the blood to predict the liver are highlighted
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