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Abstract
We study propagation of a particle that jumps between two states, in which it moves with different
velocities and diffusion coefficients. To simplify analysis, in the main part of the paper we derive
formulas assuming that in one of the states the particle is immobile. A generalization to the case
when the particle is mobile in both states is given at the end of the paper. The formulas show how
the effective drift velocity and effective diffusion coefficient depend on jump rates between the
two states as well as on the particle velocities and diffusion coefficients in these states.
Specifically, we find that the effective diffusion coefficient can exhibit a non-monotonic behavior
as a function of the ratio of the jump rates.

1. Introduction
In many situations particle transport occurs intermittently and the particle motion consists of
phases wherein the particle has different drift velocities and diffusion coefficients. Examples
range from particle motion in the chromatographic column [1–3] to motion of proteins,
vesicles, and viruses in the cytoplasm [4–11]. Although motions of this type are very
different in details, they all have a common feature: after the particle changes its state
sufficiently many times, the distribution of its position at time t is given by a coarse-grained
propagator, which is Gaussian. For a particle that starts from the origin, x = 0, at t = 0 the
one-dimensional propagator in the x-direction has the form

(1.1)

where veff and Deff are the effective drift velocity and diffusion coefficient.

This coarse-grained propagator is completely defined by veff and Deff. In this paper we
discuss how to find these quantities for a simple model of a particle that jumps between
mobile (m) and immobile (im) states
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(1.2)

where km and kim are the rates constants, so that  and  are the particle mean
lifetimes in the two states, respectively. When the particle is in the mobile state, its motion is
characterized by the drift velocity, v, and diffusion coefficient, D.

Consider a particle that starts from the origin, x = 0, being in one of the two states. The fate
of this particle is described by the exact propagator, gαβ (x,t), which is the probability
density of finding the particle in state α at point x at time t on condition that the particle was
in state β at t = 0, α,β= m, im. On times that are much larger than the relaxation time, τrel =
(km + kim)−1, the propagator becomes independent of the initial state of the particle and takes
the form

(1.3)

where  is the equilibrium probability of finding the particle in state α:

(1.4)

The probability density of finding the particle at point x at t ≫τrel is given by the sum of the
two propagators,

(1.5)

since the sum of the equilibrium probabilities is equal to unity, .

The fact that the propagator, Eq. (1.1), is Gaussian implies that it is completely determined
by the first two moments of the particle displacement. We exploit this fact. To be more
specific, we derive long time asymptotic behaviors of the moments and use them to find veff
and Deff. The formulas for veff and Deff, Eq. (2.12) and (2.22), show how these quantities
depend on v, D, and the rate constants km and kim. Generalizations of these formulas to the
case when the particle jumps between two states, in both of which it moves with different
velocities and diffusion coefficients, are given at the very end of the paper, Eqs. (3.3) and
(3.4). These formulas are the main results of the present paper. Another result is the
approach we use to derive the formulas, which is straightforward and allows one to find the
moments with relative ease.

2. Theory
The propagator gαβ(x,t)satisfies

(2.1)
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with the initial conditions

(2.2)

Both the asymptotic behavior of the moments and the effective parameters, veff and Deff, are
independent of the initial state of the particle. To shorten the derivation, it is convenient to
consider the probability density of finding the particle in state α at point x at time t on

condition that initially (at t = 0) it was in state β with the equilibrium probability . The
new probability density, denoted by pα(x,t), is the equilibrium average of the two
propagators,

(2.3)

Functions pα(x,t)satisfy

(2.4)

with the initial conditions

(2.5)

We use the probability densities pα(x,t)to define the moments  by

(2.6)

The n = 0 moments are the probabilities of finding the particle in mobile and immobile
states at time t, Pm(t) and Pim(t). Integrating the equations in Eq. (2.4) with respect to x from
minus to plus infinity, we find that the probabilities Pα(t)satisfy the rate equations:

(2.7)

Solving these equations with the initial conditions  we obtain

(2.8)

This must be expected since the equilibrium initial distribution does not change with time.

Equations for the first moments 〈xα(t)〉 can be obtained by multiplying the equations in Eq.
(2.4) by x and then integrating with respect to x from minus to plus infinity. This leads to
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(2.9)

The initial conditions that should be added to these equations are

(2.10)

The mean displacement of the particle for time t, 〈x(t)〉, is the sum of the two moments,

(2.11)

Summing up the two equations in Eq. (2.9) we arrive at

(2.12)

where we have used the definition of the effective drift velocity

(2.13)

The advantage of the equilibrium initial distribution, , is that it leads to the time-
independent velocity, d 〈x(t)〉/dt, which is equal to veff from the very beginning of the
process.

Multiplying the equations in Eq. (2.4) by x2 and then integrating with respect to x from

minus to plus infinity, we obtain the equations for the second moments, ,

(2.14)

The initial conditions imposed on the solution are

(2.15)

The mean squared displacement of the particle, 〈x2(t)〉, is given by the sum of the second
moments,
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(2.16)

Summing up the equations in Eq. (2.14), we find that 〈x2(t)〉 satisfies

(2.17)

with the initial condition 〈x2 (0)〉= 0. Function 〈xm(t)〉 can be found by solving the equations
in Eq. (2.9). The result is

(2.18)

Substituting this into Eq. (2.17) and integrating the resultant equation with the initial
condition 〈x2(0)〉= 0, we obtain

(2.19)

Effective diffusion coefficient, Deff, is defined as

(2.20)

According to Eq. (2.12) the mean displacement of the particle is

(2.21)

Substituting this and the expression for 〈x2(t)〉 in Eq. (2.19) into Eq. (2.20) we find that Deff
is given by

(2.22)

The approach we have used in our analysis, the formulas for veff and Deff, Eqs. (2.12) and
(2.22), as well as their generalizations, Eqs. (3.4) and (3.5), are the main results of the
present paper.

3. Discussion and concluding remarks
Expression for the effective drift velocity, Eq. (2.12), has a transparent physical
interpretation. According to Eq. (2.21) the mean displacement of the particle is given by
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. This formula, as might be expected, gives the mean displacement in time
t as a product of the particle velocity v in the mobile state and the mean time that the particle
spends in this state. The latter is given by  leading to .

Expression in Eq. (2.22) presents Deff as a sum of two terms: the first gives Deff at v= 0,
, while the second gives Deff at D= 0, Deff|D=0 = v2τrel/(τm τim). The first term

has the same interpretation as the effective velocity: it takes into account the fact that the
random force acts on the particle only when the particle is in the mobile state. The second
term is due to fluctuations of the time spent by the particle in the mobile state: realizations
with larger or smaller times than the average time, , are responsible for the
displacements that are, correspondingly, larger or smaller than 〈x(t)〉. While the first term
determines Deff at small v, the second term determines Deff at large v when the inequality

 is fulfilled. The fractions of the total time spent by the particle in each of the
two states have been analyzed in Ref. 12 devoted to the single-molecule fluorescence
spectroscopy of two-state systems. As shown there, at large times, the cumulative residence
times in the two states fluctuate around their average values, and the fluctuations are
Gaussian. This results in the Gaussian form of the propagator in Eq. (1.1).

If the drift velocity is large enough, the dependence of Deff on the equilibrium binding
constant defined as the ratio of the rate constants, K = km/kim, exhibits non-monotonic
behavior. To make this point clear we rewrite Eq. (2.22) in the form

(3.1)

where V is dimensionless velocity,

(3.2)

Figure 1 illustrates this non-monotonic behavior of the normalized effective diffusion
coefficient Deff/D. At large V the second term in Eq. (3.1) dominates at most K values. This
term is non-monotonic in K with the maximum located at K = 2. It is seen that, indeed, the
effective diffusion coefficient exhibits a maximum in the vicinity of K = 2.

The non-monotonic behavior of the effective diffusion coefficient discussed above should
not be confused with similar behavior of Deff analyzed recently in Refs. 13–17, devoted to
driven transport in periodic systems. Though there could be some similarities in the physics
involved, it is important to indicate that Refs. 13–17 demonstrate non-monotonic
dependence of Deff on the strength of the applied driving force, while we consider the
effective diffusion coefficient as a function of equilibrium binding constant, K = km/kim.

Finally, we note that the approach we have used to derive the formulas for veff and Deff, Eqs.
(2.12) and (2.22), is equally applicable in a more general case when the particle jumps
between two states in which it moves with different velocities and different diffusion
coefficients. Although the derivation becomes more cumbersome, it eventually leads to
simple formulas for veff and Deff. Denoting the mean lifetimes of the particle in the two
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states by  and , where k1and k2are the rate constants, we can write veff and Deff
as

(3.3)

(3.4)

Here  and  are equilibrium probabilities of finding the particle in states 1 and 2,

(3.5)

in which the particle motion is characterized by velocities v1 and v2 and diffusion
coefficients D1 and D2, respectively.

To summarize, the paper is focused on the coarse-grained propagator of a particle that
randomly jumps between two states of different drift velocities and diffusion coefficients.
Since the propagator is Gaussian, Eq. (1.1), it is completely determined by two parameters,
the effective velocity and diffusion coefficient. These quantities can be readily found using
the definitions, Eqs. (2.13) and (2.20), and the solutions for the first two moments of the
particle displacement, Eqs. (2.19) and (2.21). Note that a similar approach based on finding
the moments has been used to determine the effective diffusion coefficient of a particle that
moves in a medium with fluctuating viscosity [18].
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Figure 1.
Effective diffusion coefficient, Eqs. (2.22) and (3.1), normalized to the particle diffusion
coefficient in the mobile state, as a function of the equilibrium binding constant, K = km/kim,
shows a non-monotonic behavior if the dimensionless velocity V defined in Eq. (3.2) is large
enough.
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