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Primary effusion lymphoma (PEL) is a non-Hodgkin’s
B-cell lymphoma driven by Kaposi’s sarcoma-associ-
ated herpesvirus. It is uniquely sensitive to mTOR,
PI3K, and Akt inhibitors; however, the basis of this
requirement for the mTOR pathway remains to be
elucidated. The phosphatase and tensin homolog
gene (PTEN) on chromosome 10 controls the first
step in the phosphatidylinositol 3 kinase (PI3K)-Akt-
mammalian target of rapamycin (mTOR) pathway
and is genetically inactivated in many solid tumors.
We find an absence of PTEN deletions, mutations,
or protein mislocalization in PEL. However, we find
consistent hyperphosphorylation at serine 380 of
PTEN, which is an inactivating modification, in PEL
cell lines and in tumor xenografts. We also evalu-
ated a large tissue microarray of Kaposi’s sarcoma
biopsies and observed concordant high levels of
phospho-PTEN, phospho-Akt, and phospho-S6 ribo-
somal protein. Reintroduction of PTEN into PEL in-
hibited colony formation in soft agar, verifying the
functional dependence of PEL on PI3K signaling.
This was also true for PEL cell lines that carried
mutant p53 and for KS-like cell lines. Activating
PTEN in these cancers may yield a new treatment
strategy for PEL, KS, and similar PTEN wild-
type lymphomas. (Am J Pathol 2011, 179:2108–2119;

DOI: 10.1016/j.ajpath.2011.06.017)

Primary effusion lymphoma (PEL) was initially identified
as an AIDS-associated non-Hodgkin’s lymphoma with
a poor prognosis.1 PEL also occurs in the absence of
HIV infection (eg, in transplant recipients taking im-

mune-suppressive drugs).2,3 PEL is strongly associ-
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ated with Kaposi’s sarcoma-associated herpesvirus
(KSHV) infection.2– 4 KSHV, known formally as human
herpesvirus 8 (HHV-8), shows primary tropism for B
cells and endothelial cells. In addition to KSHV infec-
tion, PEL cells can be coinfected with Epstein-Barr
virus [EBV; formally known as human herpesvirus 4
(HHV-4)].5

KSHV is also the causative agent of Kaposi’s sar-
coma (KS), a tumor of endothelial cell lineage. KS is
characteristically seen in HIV-infected patients, but
also occurs with reduced frequency in other settings of
immune suppression (eg, in solid organ transplant re-
cipients).6 In addition, KS is found in elderly patients in
the absence of overt immune deficiency (classic KS)
and in children in KSHV-endemic regions, such as
Sub-Saharan Africa. Stallone et al7 reported on a series
of transplant patients who developed KS. On switching
from cyclosporine to another immunosuppressant,
rapamycin, the KS lesions regressed; however, the
same patients maintained normal graft function, be-
cause rapamycin maintained T cell-targeted immuno-
suppression7. Multiple studies have confirmed this
finding,8 –11 although others have described cases of
KS and PEL that responded only partially or did not
respond to rapamycin.12–16 There has also been spec-
ulation on whether rapamycin acts in a direct or indi-
rect manner via immune modulation only.17 Thus, there
is a need to understand the molecular mechanism of
both rapamycin and its analogs in PEL and KS, and to
evaluate potential biomarkers that could help in pre-
dicting response.
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Rapamycin binds to and inhibits the activity of mam-
malian target of rapamycin complex-1 (mTORC1),18 a
downstream effector of the phosphatidylinositol-3-kinase
(PI3K) signaling cascade. Phosphorylation of receptor
tyrosine kinases results in activation of the p110 catalytic
subunit of phosphatidylinositol 3 kinase (PI3K), which
then phosphorylates membrane-associated phospho-
lipid phosphatidylinositol-4,5-biphosphate (PIP2) to be-
come phosphatidylinositol-3,4,5-triphosphate (PIP3).
PIP3 recruits the protein serine-threonine kinase Akt to the
plasma membrane. Akt is phosphorylated on serine 473
by mTORC2 and by PI3K-dependent kinase 1 (PDK1) on
threonine 308. Activated Akt then phosphorylates down-
stream targets, mTORC1 being one of its effectors.19–23

The protein encoded by the phosphatase and tensin
homolog gene (PTEN), located on band q23 of chromo-
some 10, constitutes a key negative regulator of the PI3K-
mTOR signaling pathway. It can revert phospholipid PIP3

to PIP2, thereby counteracting the activation of Akt by
PDK1.19,22,24–30 PTEN is frequently mutated in human
cancers.22,24–28,30 Ectopic expression of PTEN in tumor
cells results in cell cycle arrest or apoptosis.31,32 PTEN
exists either in a hypo- or hyperphosphorylated state,
corresponding to active (open) and inactive (closed) en-
zymatic states, respectively.33 PTEN expression and
phosphorylation status thus serve as markers for PTEN
activity. Various solid tumors that require PI3K-mTOR sig-
naling have either a deletion or mutation in PTEN34; how-
ever, the status of PTEN in PEL and KS remains a subject
of investigation. Our research group has previously re-
ported that rapamycin inhibits PEL in culture, in a mouse
model, and in a patient.35 These findings suggest that
PEL belongs to a class of cancers, such as Mantle Cell
Lymphoma, that depend on PI3K-Akt-mTOR signaling.
KSHV proteins may activate mTORC1 through cellular
receptor engagement (by vIL6) or through PI3K activa-
tion (by viral proteins such as vGPCR and K1),36–38 fur-
ther corroborating the dependence of KSHV-infected
cells on PI3K-mTOR signaling. In the present study, we
examined whether, in addition to viral factors, host ge-
netic aberrations in PTEN contribute to the required ac-

Table 1. Summary of PEL Cell Lines, with Literature Citations

Cell line
Lymphoma

type KSHV EBV

BCP139 PEL � � S262;
BC140 PEL � � Wild ty
BC240 PEL � � Wild ty
BC341 PEL � � Wild ty
BC542 PEL � � Wild ty
BCBL143 PEL � � M246I
BCLM44 PEL � � Wild ty
BJAB45 Burkitt’s � � Deletio
DG7546 Burkitt-like � � R283H
JSC148 PEL � � Wild ty
TY149 PEL � � S262;
VG150 PEL � � Wild ty

*Present study.
tivity of the PI3K-Akt-mTOR pathway in PEL and KS.
Materials and Methods

Cell Culture

B-cell lines were cultured in RPMI Medium 1640 supple-
mented with 100 �g/mL streptomycin sulfate, 100 U/mL
penicillin G (Invitrogen Life Technologies, Carlsbad, CA),
2 mmol/L L-glutamine, 0.05 mmol/L 2-mercaptoethanol,
0.075% sodium bicarbonate, 1 U/mL IL-6 (PeproTech,
Rocky Hill, NJ), and 10% fetal bovine serum (Mediatech,
Manassas, VA) at 37°C in 5% CO2. The cell lines are
characterized in Table 1.

Comparative Genomic Hybridization Analysis

Genomic DNA was isolated from the PEL cell lines using
a Wizard genomic DNA purification kit (Promega, Madi-
son, WI) according to the manufacturer’s protocol.
Genomic profiles were obtained by hybridizing the DNA
to GeneChip 250K Nsp and 250K Sty human mapping
arrays (Affymetrix, Santa Clara, CA), which contain mark-
ers for copy number determination, in addition to single
nucleotide polymorphisms. All data were analyzed using
the Partek Genomics Suite version 6.0 (Partek, St. Louis,
MO). Raw data were imported and adjusted for back-
ground using a robust multiarray algorithm. Copy num-
bers were assessed using the software suite’s unpaired
analysis and were compared with baseline created using
normal tonsil control DNA. Copy number variation was
represented in both the heat map and the dot-plot profile
along the length of the individual chromosomes using a
visualization scheme from the Partek software suite.

PCR and Sequencing

Genomic DNA was isolated using a Wizard genomic
DNA purification kit (Promega). PCR amplification was
performed using GoTaq PCR master mix (Promega).
Specific primers, flanking individual exons, were as
given in Table 2. The amplified fragments were sub-
jected to Sanger sequencing. mRNA expression was
determined using cDNA subject to RT-PCR, using
primers as given in Table 2. cDNA was synthesized

p53 PTEN Rapamycin sensitivity

ygous insertion Wild type �50 nmol/L
Wild type �10 nmol/L
Wild type �50 nmol/L
Wild type �50 nmol/L
Wild type �50 nmol/L

ozygous mutation Wild type 5.5 mmol/L
Wild type �50 nmol/L

functional Wild type �1 nmol/L
ozygous47 Wild type Not tested

Wild type �50 nmol/L
n; M246I Wild type �50 nmol/L

Wild type �50 nmol/L
homoz
pe
pe*
pe
pe*
; heter
pe
n; non
; heter
pe
insertio
pe
from total RNA isolated from PEL cells using TRIzol



2110 Roy and Dittmer
AJP October 2011, Vol. 179, No. 4
extraction and an ABI high capacity cDNA reverse
transcription kit (Invitrogen Life Technologies) accord-
ing to the manufacturer’s protocol.

Immunoblot Analysis

Western blot analysis of cells (1 � 106 to 5 � 106) was
performed as described previously.35 The primary antibod-
ies used were rabbit PTEN-specific and phospho-PTEN-
specific (S380) (Cell Signaling Technology, Danvers, MA)
diluted 1:1000 in blocking solution. Horseradish peroxi-
dase-conjugated secondary antibody (Vector Laboratories,
Burlingame, CA) was diluted 1:5000 and blots were visual-
ized using Pierce ECL Western blotting substrate (Thermo
Scientific, Rockford, IL). We used horseradish peroxidase-
conjugated actin-specific monoclonal antibody (Abcam,
Cambridge, MA) at 1:10,000 dilution as control.

Immunofluorescence Analysis

Cells were cultured overnight on glass coverslips in six-
well plates (Falcon; BD Biosciences, San Jose, CA). They
were washed in PBS and stained for immune fluores-
cence as described.53 Primary antibodies used were rab-
bit PTEN-specific, rabbit phospho-PTEN-specific (S380)
(Cell Signaling Technology) diluted 1:100 and mouse
LANA-specific (Leica Microsystems-Novocastra Labora-
tories, Newcastle, UK), diluted 1:600. Images were cap-
tured with a Leica DM4000B fluorescence microscope
(Leica Microsystems, Wetzlar, Germany) equipped with a
63/1.4 to 0.6 numerical aperture objective and a Q-Imag-
ing Retiga 2000RV camera. Raw single microscopy im-
ages were deconvoluted using SimplePCI (Hamamatsu,
Sewickley, PA) two-dimensional blind deconvolution,
which iteratively applies an AutoQuant Imaging (Media
Cybernetics, Bethesda, MD) proprietary algorithm to re-
move blur and generate high-clarity images. Images

Table 2. Primer Sequence and Annealing Temperature for PCR A

Exon Forward primer

Exon 124 5=-ATTTCCATCCTGCAGAAGAAGC-3=
Exon 224 5=-AGTTTGATTGCTGCATATTTCAGA-3=
Exon 324 5=-ATGGTATTTGAGATTAGGAA-3=
Nested exon 4,

Outer24
5=-GTTAAACACAGCATAATATGTGTCACAT

Nested exon 4,
Inner24

5=-AAAGATTCAGGCAATGTTTGTTAGT-3=

Alternate exon 451 5=-CATTATAAAGATTCAGGCAATG-3=
Exon 524 5=-ATCCAGTGTTTCTTTTAAATA-3=
Exon 624 5=-CTAATGTATATATGTTCTTAA-3=
Exon 724 5=-GTATATTGCTGATATTAATCATT-3=
Exon 824 5=-TTTTGGGTAAATACATTCTT-3=
Alternate exon 851 5=-TGTCATTTCATTTCTTTTTCTTTTC-3=
Exon 924 5=-TGTTGAACATCTTAAGAAGA-3=
RT-PCR52 5=-CGAACTGGTGTAATGATATGT-3=
were stored as TIFF files.
Tissue Microarray

Unstained and LANA-stained tissue microarrays were
obtained from the AIDS and Cancer Specimen Re-
source.54

Immunohistochemistry

Solid tumors were removed from SCID mice injected sub-
cutaneously with BC-1 cells in growth factor-reduced
Matrigel and fixed in 5 mL 10% neutral buffered formalin
(Fisher Diagnostics, Pittsburgh, PA) for 2 days, embed-
ded in paraffin, and cut into sections (7 �m thick). Sec-
tions were deparaffinized and rehydrated using Histo-
Choice clearing agent (Sigma-Aldrich, St Louis, MO) and
then incubated in 3% hydrogen peroxide diluted in 10%
methanol to block the endogenous peroxidase activity.
For antigen retrieval, samples were heated in a micro-
wave oven for 20 minutes in Retrivagen A (pH 6.0) solu-
tion (BD Biosciences) and blocked with 10% horse serum
(Vector Laboratories) diluted in PBS supplemented with
5% bovine serum albumin and 0.3% Triton X-100. Sam-
ples were then incubated with primary antibody diluted
1:100 (except 1:500 for Ki67) in blocking buffer at room
temperature for 1 hour and then, after a series of PBS
washes, were developed with VectaStain ABC kit (Vector
Labs). Sections were developed with Vector NovaRed
substrate (Vector Labs) for 5 to 10 minutes and counter-
stained with hematoxylin. Sections were dehydrated us-
ing an alcohol series and HistoChoice clearing agent
washes and then mounted using CytoSeal mounting me-
dium (Richard-Allan Scientific, Kalamazoo, MI). Primary
antibodies were Ki67 (Novocastra Laboratories) phos-
pho-PTEN serine 380 (S380) residue (Millipore, Billerica,
MA), phospho-Akt threonine 308 (T308) residue, and
phospho-S6-ribosomal protein serine 235/236 (S235/
236) residues (Cell Signaling Technology). Sections were
imaged using a Leica DM LA histology microscope
equipped with a 10/0.25 numerical aperture or a 40/0.75
numerical aperture N Plan objective and a Leica DPC 480

s, with Literature Citations

Reverse primer

Annealing
temperature,

°C

5=-CATCCGTCTACTCCCACGTTCT-3= 55
5=-TCTTTTTCTGTGGCTTAGAAATCTTTT-3= 55
5=-TGGACTTCTTGACTTAATCGGTTT-3= 55
5=-TTAAAGATAATTCTTAAAT-3= 51

5=-TGTATCTCACTCGATAATCTGGATG-3= 51

5=-GACAGTAAGATACAGTCTATC-3= 58
5=-ATCTGTTTTCCAATAAATTCT-3= 55
5=-CTTCTAGATATGGTTAAGAAA-3= 50
5=-ATTATAGTTCCTTACATGTCA-3= 55
5=-CGCACCTTTGCCCCAGAT-3= 55
5=-AAGTCAACAACCCCCACAAA-3= 56
5=-ATGACACAGCTACACAACCTT-3= 55
5=-CATGAACTTGTCTTCCCGT-3= 60
nalysi

T-3=
camera. Images were stored as TIFF files under Macin-
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tosh OS X10.5. Image intensity was quantified using
FRIDA software (Framework for Image Dataset Analysis;
available at http://bui2.win.ad.jhu.edu/frida). Data were
normalized to intensity per core, and the square root of
the intensity count was used for linear regression analy-
sis. Linear regression was conducted using GNU open-
source R statistical software (version 2.12.1; available at
http://www.r-project.org).

Growth Suppression Assay

The human PTEN cDNA pORF-hPTEN was obtained from
InvivoGen (San Diego, CA) and cloned into pMONO-
blasti-mcs, pDD1538 (InvivoGen), under the control of
the constitutive ferritin promoter to yield pMONO-blasti-
hPTEN. The construct was verified by restriction analysis
and two independent clones, pDD1540 (clone 1) and
pDD1541 (clone 7), were used for further analysis.
pMONO-blasti-mcs carries the blasticidin selection
marker. DNA was introduced into PEL cells (5 � 106 to
7 � 106) by nucleofection, according to the manufactur-
er’s protocol (Lonza, Basel, Switzerland; Walkersville,
MD). Nucleofected cells were recovered in complete me-
dium overnight and suspended in 0.3% agar before plating
on 0.5% soft agar in complete RPMI Medium 1640 supple-
mented with 6 �g/mL of blasticidin (selection marker) and
growth was assessed 2 weeks later. In the case of KS-like
endothelial cells, cells were transfected using SuperFect
transfection reagent (Qiagen, Valencia, CA) according to
the manufacturer’s protocol and plated on 10-cm dishes.
Colonies were allowed to form over a period of 2 weeks.
Colonies were then stained with 200� Magic Stain (3 g
Crystal Violet and 0.8 g ammonium oxalate in 20%
ethanol) diluted to approximately 10� in water and
counted. Data were plotted using the R statistics envi-
ronment (v2.12.1) and significance was determined
using the nonparametric Wilcoxon signed rank test.

Results

The PTEN Gene Is Wild Type in PEL

To determine whether PEL carries gross genomic abnor-
malities at the PTEN locus, we performed copy number
analysis using the Affymetrix 500K array for a large set of
PEL cell lines (GEO accession ID GSE28684). We did not
detect any loss of heterozygosity or amplifications or
deletions associated with the PTEN locus on chromo-
some 10, with the exception of the BC2 cell line (Figure
1A). On chromosome 3, which served as control; all PEL
cell lines showed a loss specifically at a common fragile
site locus encoding the fragile histidine triad gene (FHIT),
in an otherwise normal region (Figure 1B). Amplification
of the short p-arm of chromosome 3 was observed in 4/10
PELs. The normal distribution of markers along chromo-
some 10 indicates the absence of any gross genomic
aberrations of the 10-kb PTEN locus in PEL.

To further investigate the status of the PTEN locus, we
amplified each of the nine exons of the PTEN gene (Figure
1C) individually from 10 PEL and 2 non-PEL lymphoma cell

lines. This represents a majority of all PEL cells lines that can
successfully be grown in culture and form tumors in immu-
nodeficient mice (Refs. 35,55 and D.R., unpublished data).
All nine exons were present in the BCBL-1 cell line (Figure
1, C and D). We found no gross deletions in any of the PTEN
exons in any of the 10 independent PEL cell lines. We
sequenced each of the PTEN exons for the individual PEL
cell lines and were unable to detect any aberrations in the
genomic sequence. These data have been submitted to

Figure 1. PTEN is wild type in PEL. A and B: Using an Affymetrix 500K
single nucleotide polymorphism array, we observed that the majority of
PELs do not show genomic gain or loss at the PTEN locus on chromosome
10 (A). Chromosome 3 served as control; distinct loss was noted at the
FHIT locus, a known common fragile site gene (B). Heat maps indicate
loss (blue) and gain (red). The dot profiles show the distribution of
markers along the chromosome; an asterisk marks a small region that is
specifically lost in an otherwise normal chromosomal region. On chro-
mosome 10 (A), this does not correspond to any known transcripts; on
chromosome 3 (B), it corresponds to FHIT. The labeled cytobands indi-
cate location of PTEN (A) and FHIT (B). C and D: Genomic DNA was
isolated from individual PEL cell lines and each of the exons was ampli-
fied using specific primers (listed in Table 2). C: Schematic of the orga-
nization of the primers used. D: A representative PCR gel showing de-
tection of all nine exons in BCBL-1 cells.
GenBank (submission ID 1367943).

http://bui2.win.ad.jhu.edu/frida
http://www.r-project.org
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The PTEN Protein Is Expressed and
Hyperphosphorylated in PEL

Because PTEN can be epigenetically silenced in some
cancers,24,56 we wanted to determine whether PTEN
mRNA and PTEN protein are expressed in PEL. Using
RT-PCR, we detected PTEN mRNA in all of our PEL cell
lines (Figure 2). These data led us to exclude the possi-
bility of promoter silencing of the PTEN locus in PEL.

Next, we used Western blot analysis to detect total
PTEN and PTEN phosphorylated at serine 380. This mod-
ification renders the protein inactive and unable to de-
phosphorylate PIP3 to PIP2.23,57,58 PTEN protein was de-
tectable at the appropriate molecular weight (�54kDa) in
every PEL cell line tested at similar levels to those ob-
served in HEK293-positive control cells. PTEN was pres-
ent in a majority of the cell lines (Figure 2C). In addition to
total PTEN, phospho-PTEN (S380) was also detected in
all PEL cell lines (Figure 2C). As negative control, we
used PTEN-null BJAB cells,29 which have previously
been shown to be sensitive to rapamycin.59 As expected,
protein extracts from these cells did not show a band for
either PTEN or phospho-PTEN (S380). We were able to

Figure 2. PTEN is phosphorylated at the serine 380 site in PEL. RT-PCR was
performed to determine PTEN mRNA expression in PEL; representative gels
are shown for PTEN (A) and GAPDH (B). NT, nontemplate control. C:
Immunoblots were performed on protein isolated from whole-cell lysate;
representative immunoblots are shown for total PTEN and phospho-PTEN
(S380). �-actin was used as loading control. Equivalent amounts of protein
were loaded in each case, except for HEK293, which served to indicate the
molecular weight of PTEN.
verify actin expression in BJAB and all PEL cell lines.
Additionally, phosphorylation of PTEN at serine 380
results in nuclear localization of PTEN, where it is involved
in mediating cell cycle arrest.58,60–62 Using immunofluo-
rescence analysis, we determined that, independent of
its phosphorylation status, PTEN was found in both the
nucleus and the cytoplasm (see Supplemental Figure S1
at http://ajp.amjpathol.org). We used KSHV-LANA stain-
ing as a positive nuclear control.63 LANA was distributed
in the characteristic nuclear speckles. There was no co-
localization between PTEN and LANA, irrespective of
PTEN phosphorylation status. After examining the gene
locus, gene sequence, mRNA levels, and protein levels,
we concluded that PTEN protein expression is intact in
PEL; however, PTEN was heavily phosphorylated at ser-
ine 380, which represents an inactivating modification.

Phospho-PTEN Is Readily Detectable in PEL
Xenograft Tumors

To test the hypothesis that the phosphorylation status of
PTEN is maintained in a more demanding tumor microen-
vironment, compared with the nutrient-rich culture condi-
tions, we analyzed expression of phospho-PTEN in pre-
viously established PEL tumor grafts.39,55,64 We stained
sections of PEL xenograft tumors for total PTEN (Figure 3,
A and E) and phospho-PTEN (S380) (Figure 3, C and G).
Both total PTEN and phospho-PTEN (S380) were ex-
pressed in a majority of tumor cells. The staining pattern
of total PTEN matched that of phospho-PTEN (S380):
both were present in the nucleus and cytoplasm. We
found no evidence of heterogeneity. The sections were
also stained for LANA, to determine presence of KSHV
(Figure 3, D and H). Because LANA was exclusively
localized to the nucleus, it served as an additional con-
trol, showing that the cytoplasmic signal we observed
with total PTEN and phospho-PTEN (S380) using two
independent PTEN antibodies was specific. Analogous to
our observation in culture, and irrespective of phosphor-
ylation status, there was no colocalization between PTEN
and LANA and the staining patterns were distinct. The
no-primary-antibody controls confirmed the absence of
staining in the absence of primary antibody (Figure 3,
B and F). These findings demonstrate that the high
phosphorylation status of PTEN is not a result of opti-
mal (10% serum) growth conditions in culture, but is
maintained even in a more stringent tumor xenograft
microenvironment.

Expression of PTEN Reduces Colony Formation
in PEL

Our research group and others have previously shown
that Akt is hyperphosphorylated in PEL cells in culture
and in xenografts.35,65 To test the hypothesis that inactive
PTEN contributes to hyperactivation of Akt and PEL
growth, we ectopically expressed human PTEN in PEL
and evaluated its effect on cell growth using the classic
soft agar assay.66,67 If PEL evolved downstream muta-
tions (eg, activating mutations in Akt) to be resistant to the

activity of PTEN, we would expect continued growth.

http://ajp.amjpathol.org
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Instead, PTEN reduced colony formation, as determined
independently in three distinct PEL cell lines (BC1,
BCBL1, BCP1) that differ in p53 status.68 Fewer to no
colonies were formed by PTEN-overexpressing BCP1
cells (Figure 4B), compared with vector-only control (Fig-
ure 4A). Given that a 1/10th amount of EGFP-Max plas-
mid (Lonza) was nucleofected in tandem with vector and
hPTEN plasmids, we used GFP expression to demon-
strate equivalent efficiency of nucleofection (Figure 4, C
and D). PTEN protein expression from our PTEN-express-
ing plasmid on nucleofection, was verified by Western
blot using BJAB cells that lack endogenous PTEN (Figure
4E). PTEN protein was expressed at the appropriate mo-
lecular weight after nucleofection of PTEN, but not vector
control. HEK293 cells served as positive control, showing
a band of the expected molecular weight. Inhibition of
colony formation in three PEL cell lines was significant,
with P � 0.005 for BC1 and BCP1 and P � 0.05 for
BCBL1 (Figure 4F). This functional assay suggests that
signaling components downstream of PTEN still respond
to PTEN.

PTEN Is Expressed in Primary KS Tumor
Biopsies and Reduces Colony Formation in KS
Tumor Models

In addition to PEL, KSHV is also the causative agent of
KS, a tumor of endothelial cell lineage. We hypothesized
that this cancer too, would inactivate PTEN by phosphor-
ylation. Unlike PEL, for which multiple cell lines are avail-
able, only a few KS-derived tumor cell lines are available:

Figure 3. Immunohistochemical analysis of PEL xenograft tumors shows si
were stained for total PTEN (A and E), phospho-PTEN (S380) (C and G), a
hematoxylin (blue), which identifies the nucleus. Sections shown were incu
and H) or without primary antibody (B and F). No red staining was observed
�400 (E–H).
SLK,69 KS-IMM,70 and KS Y-1,71 as well as fully tumori-
genic human endothelial cell lines that carry KSHV epi-
some.72 We used the SLK cell line and the newly estab-
lished L1T2 cell line, explanted from L1-TIVE xenograft
tumor (unpublished data), to test the effect of introducing
PTEN on tumor cell growth. We tested colony formation of
SLK cells on transfection with vector alone expressing the
blasticidin selection marker or two independent clones
expressing either human PTEN or the blasticidin selec-
tion marker. After 2 weeks in selective medium, the num-
ber of colonies was reduced in cells transfected with
PTEN, but not with vector alone (Figure 4, G–I). We ob-
served a statistically significant reduction in the number
of colonies formed (Figure 4F), with P � 0.05 for SLK and
P � 0.005 for L1T2.

To verify these experimental results in biopsies from
patients with KS and to investigate PTEN phosphoryla-
tion, we used KS-TMAs. The main advantages of a tissue
microarray are that all cores are exposed to the same
exact conditions of antibody staining and that the cores
represent adjacent sections. This facilitates a direct com-
parison of protein expression. In our first array, we de-
tected total PTEN in 141/176 (80%) cases and intense
phospho-PTEN (S380) in 75/130 (58%) cases (Figure 5, A
and B). Often the same core also stained positive for
phospho-Akt (T308) (Figure 4C); that is, many KS tumors
exhibited activated Akt despite robust PTEN expression.
Phospho-Akt (T308) requires PI3K activation and PTEN
inactivation. No staining was observed in the no-primary-
antibody control of the same core or control tissue (Figure
5D). The control tissue was from an unaffected area of the
lung of an HIV� KS patient. It appears nontypical, in that

calization of total PTEN and phospho-PTEN. BC-1 xenograft tumor sections
A (D and H) (red; NovaRed substrate). Sections were counterstained using
ith dilution buffer either with primary antibody at 1:100 dilution (A, C, D, E
o-primary-antibody control (B and D). Original magnification: �100 (A–D);
milar lo
nd LAN
bated w
the tissue may have partially collapsed and shows alter-
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ations in response to episodes of non-neoplastic disease
in AIDS patients, such as past or ongoing pneumocystis
pneumonia. The correspondence between phospho-
PTEN (S380) and phospho-Akt (T308) was not observed
in normal tissue. We detected total PTEN in a normal
control lung sample (Figure 5A). Nonetheless, the same
core did not stain for phospho-PTEN (S380) (Figure 5B)
or for phospho-Akt (T308) (Figure 5C). This could be
expected for normal cells, in which high levels of hypo-
phosphorylated PTEN counteract the phosphorylation of
Akt. In a representative skin KS lesion, total PTEN, phos-
pho-PTEN (S380), and phospho-Akt (T308) were de-
tected in the same biopsy (Figure 5, A–C). These data
support our hypothesis that, in the majority of KS tumors,
the tumor suppressor PTEN is not deleted but instead is
post-translationally inactivated to allow phosphorylation
of Akt.

We used a newer, second independent AIDS-KS
TMA to statistically verify the correlation of phospho-
PTEN (S380) with activated Akt (Figure 5E). For each
core, the KS diagnosis and tissue of origin was rever-
ified (images of H&E stains for each core are available
on request). Altogether, we analyzed 130 cores of
AIDS-KS and normal controls. Of these, 29 were from
lymph node KS, 40 from oral KS (including tonsillar and
adenoid), and 71 from skin KS lesions. This TMA was
stained with antibodies to phospho-PTEN (S380),
phospho-Akt (T308), phospho-S6 ribosomal (S6r) pro-
tein (S235/236), LANA, and the proliferation marker

Ki67. Sections from three different sites (skin, lymph
node, and head and neck) were stained for phospho-
PTEN (S380), phospho-Akt (T308) phospho-S6r (S235/
236), KSHV marker LANA and Ki67; all sections were
counterstained with hematoxylin (Figure 5E). The sec-
tions were selected to include regions of no tumor and
no staining within an otherwise positive biopsy, thus
providing an internal negative control.

To support our visual impressions, we conducted a
quantitative analysis (Figure 6). Images were recorded
from each core, and staining intensity was quantified as
described under Materials and Methods. Linear regres-
sion analysis was performed to determine the correlation
between phospho-PTEN and markers of PI3K-mTOR ac-
tivation (phospho-Akt (T308) and phospho-S6r (S235/
236)), KSHV-infection (LANA), and active proliferation
(Ki67). Each of the plots in Figure 6 represents the rela-
tive staining intensity for different markers on the y axis
(phospho-Akt, phospho-S6r, LANA and Ki67) against
phospho-PTEN (S380) on the x axis. We found a strong
linear correlation between phospho-PTEN (S380) and
both phospho-Akt (T308) and phospho-S6r (S235/236).
This indicates that the PI3K-mTOR signaling pathway is
activated in KS and that PTEN is phosphorylated at S380
and thus is inactive in KS (P � 10�14), across all three
sites (Figure 6, A and B). By contrast, we found no sig-
nificant correlation between phospho-PTEN (S380) and
LANA or Ki67 (Figure 6, C and D). There were no signif-
icant differences in staining patterns across the different
tumor sites. Regardless of tumor site, KS presented with

Figure 4. Growth suppression of BCP-1 and SLK cells
upon overexpression of PTEN. BCP1 cells colonies
formed in soft agar after vector-only nucleofection (A),
but no colonies formed on nucleofection of human PTEN
clone 1 (pDD1540) (B). GFP positive control for nucleo-
fection is shown in bright light (C) and fluorescence (D)
fields. E: Expression of protein in PTEN-null BJAB cells
on expression of the hPTEN only and not the vector
control. F: Quantification of colonies observed in the PEL
cell lines BC1, BCBL1, and BCP1 (P � 0.003, 0.02, and
0.005, respectively) and in the KS-like cell lines L1T2 and
SLK (P � 0.003 and 0.03, respectively). *P � 0.05; **P �
0.005. G–I: Representative images of colonies upon over-
expression of hPTEN, clones 1 (H) and 7 (I) compared
with vector only (G) in SLK cells.
characteristic spindle cell morphology and a similar pat-
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tern of PI3K-Akt-mTOR pathway member status. This
suggests that in KS, as in PEL, post-translational inacti-
vation of PTEN contributes to the activation of the PI3K-
Akt-mTOR pathway.

Discussion

Activation of the PI3K-Akt-mTOR signaling cascade is a
defining phenotype of the KSHV-associated cancers
PEL and KS. KS has been reported to respond to rapa-
mycin,7 and PEL also appears to respond to rapamycin
(D. Henry and D.P. Dittmer, unpublished data); however,
exceptions have also been noted.12–16 Other virus-asso-
ciated lymphoproliferative diseases such as EBV-associ-
ated post-transplant lymphoproliferative disease also rely
on activation of the PI3K-Akt-mTORC1 pathway73,74 and
respond to mTOR inhibitors in culture and in the clin-
ic.75–77 In EBV-associated tumors, however, similar to the
KSHV setting, exception from an overall favorable re-
sponse has been reported.78 Thus, there is urgent need
to understand the mechanism of rapamycin, and dis-
cover potential biomarkers of response. To activate this
pathway, either a positive regulator has to be hyperacti-
vated, or a negative regulator has to be inactivated, or
both. To date, most studies in PEL and KS have con-
centrated on positive regulators of the PI3K-Akt-mTOR

Figure 5. Expression of PI3K activation markers and phospho-PTEN (S380)
(A), phospho-PTEN (S380) (B), phospho-Akt (T308), a PI3K-dependent site
(upper row); �400 (lower row). In each panel (A–D), images at the left are o
(S380) or phospho-Akt (T308); images at the right are of a representative sk
(S380), and phospho-Akt (T308). E: Staining of a second TMA incorporatin
activation markers phospho-Akt (T308) and phospho-S6r (S235/236), KSHV m
of the biopsy was negative (asterisks), in an otherwise positive section, se
pathway. In the present study, we investigated the
principal negative regulator of PI3K-Akt-mTOR signal-
ing, the tumor suppressor PTEN.

PTEN antagonizes PI3K in the first step in the PI3K-
Akt-mTOR cascade by dephosphorylating PIP3 to PIP2

and thus constitutes a major step of regulation. Dimin-
ished PTEN activity in human cancer results in hyper-
activation of the PI3K signaling pathway, a condition
that has also been termed oncogene addiction to PI3K-
mTOR. In nonviral tumors, PTEN is typically inactivated
by deletion or mutation. The PTEN gene is deleted in
many solid tumors34 and in �40% of cell lines derived
from prostate, endometrial, and nervous system can-
cers (Cancer Genome Project, Wellcome Trust Sanger
Institute; http://www.sanger.ac.uk/perl/genetics/CGP/
core_line_viewer?action�bygene&ln�PTEN&start�1&end�
404&coords�AA:AA. Accessed August 11, 2011). In the
context of hematological malignancies, it was reported
that the majority of primary acute leukemias and non-
Hodgkin’s lymphomas, both primary and cell lines, show
abnormalities in PTEN gene and protein expression.79

The situation is different for PEL, which is a viral lym-
phoma. We conclude that genetic aberrations of PTEN
are infrequent in PEL and our data show that KSHV-
associated PELs invariably express high levels of PTEN
protein (Figures 1 and 2) and at the same time exhibit
high levels of phosphorylated Akt.35 We observed the

rimary biopsies. Immunohistochemistry showed the presence of total PTEN
d no-primary-antibody negative control (D). Original magnification: �100
l lung tissue, which stains positive only for PTEN but not for phospho-PTEN

y, in which the same tissue section is positive for total PTEN, phospho-PTEN
-KS from tissues of three different origins for phospho-PTEN (S380), PI3K
NA, and proliferation marker Ki67. Sections were selected such that a region
an internal control. Original magnification, �100.
in KS p
(C), an

f contro
in biops
g AIDS
same pattern in KS biopsies (Figure 5 and 6). We found

http://www.sanger.ac.uk/perl/genetics/CGP/core_line_viewer?action=bygene&ln=PTEN&start=1&end=404&coords=AA:AA
http://www.sanger.ac.uk/perl/genetics/CGP/core_line_viewer?action=bygene&ln=PTEN&start=1&end=404&coords=AA:AA
http://www.sanger.ac.uk/perl/genetics/CGP/core_line_viewer?action=bygene&ln=PTEN&start=1&end=404&coords=AA:AA
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no evidence of point mutations in PEL cell lines, and no
evidence of mislocalization. Rather, PTEN appeared to
be hyperphosphorylated in PEL and KS. Furthermore, we
showed that ectopic expression of PTEN in PEL or KS-
tumor derived cell lines inhibited colony formation (Figure
4). This suggests that downstream effectors of the PI3K-
Akt-mTOR pathway cannot override the growth-inhibitory
signal of PTEN in PEL and KS. This phenotype is in
contrast to the behavior of cells carrying activating mu-

Figure 6. Significant correlation of phospho-Akt (T308) and phospho-S6
ribosomal protein (S235/236) with phospho-PTEN (S380) in KS. The square
root of the intensity count for phospho-Akt (A), phospho-S6r (B), LANA (C),
and Ki67 (D), is plotted on the vertical axis and that for phospho-PTEN is
plotted on the horizontal axis for KS sections from three body sites: lymph
node, oral, and skin. The solid line indicates the linear regression; the shaded
region indicates the 95% confidence interval of the fit. There was a significant
correlation of both phospho-Akt (T308) and phospho-S6r (S235/236) with
phospho-PTEN (S380), with P values of 3.09 � 10�13 and 2.6 � 10�13

respectively. There was no significant correlation between LANA positivity
(denoting viral infection) and Ki67 (denoting active proliferation) (P � 0.05).
tations in downstream players such as Akt.80,81
Boulanger et al82 reported similarly on the absence of
PTEN mutations in archived biopsies from PEL patients,
although they found mutations in some of their PEL cell
lines. For instance, they reported a homozygous deletion
of PTEN exons 6 to 9 in the BCP-1 cell line, whereas we
detect PTEN protein in this cell line. Uddin et al65 also
detected PTEN protein in the BCP-1 cell line. This sug-
gests that perhaps the subline used by Boulanger et al82

had changed as a result of prolonged passage in culture.
Such discrepancies are not unexpected, given that PEL
cell lines change on passage in culture (Roy and Dittmer,
unpublished data). Of note, BCP-1 is unique among
PELs, because it carries homozygous mutant p53 and
would thus be expected to be less genetically stable than
other PEL cell lines, all of which carry wild-type p53.83

At present, we do not know which kinase phosphoryl-
ates PTEN in PEL. KSHV proteins may mediate the phos-
phorylation of PTEN. Alternatively, casein kinase 2 (CK2),
glycogen synthase kinase 3� (GSK3�), LKB1, and rhoA-
associated kinase (ROCK) have all been implicated in
PTEN phosphorylation.33,84 The KSHV LANA protein can
bind and sequester GSK3� in the nucleus,85 which would
eliminate GSK3� from mediating PTEN phosphorylation
in PEL. Further studies are needed to elucidate the play-
ers in phosphorylation of PTEN in KSHV-associated ma-
lignancies.

What is the significance of our findings? Viral cancers
express viral oncogenes. Viral lymphomas in particular
express viral oncoproteins that involve the PI3K-Akt-
mTOR pathway. Several KSHV proteins, such as K1 and
vGPCR, can activate PI3K.36–38 This would lessen the
selective pressure to mutate and genetically inactivate
PTEN. EBV, a human herpesvirus closely related to
KSHV, is capable of silencing PTEN protein expression
by CpG island and promoter methylation in gastric can-
cers,86,87 but no such observations have been reported
for EBV-associated lymphomas. It appears that KSHV
silences PTEN protein function by inducing constitutive
phosphorylation, which, like deletion, relieves the nega-
tive regulation of PTEN on the PI3K-mTOR signaling path-
way. Phosphorylation of PTEN contributes to PI3K-Akt-
mTOR activation in KSHV-infected cells and can thus be
speculated to contribute to the proliferative advantage of
PEL and KS tumor cells. In addition, we found two reports
of nonviral lymphomas in which PTEN was also inacti-
vated post-translationally: cases of mantle cell lymphoma
(MCL) and some cases of T-cell acute lymphoblastic
leukemia (T-ALL) show hyperactivation of PI3K in the
context of wild-type PTEN.88,89 What seems to be the
default route for viral lymphomas (ie, post-translational or
epigenetic inactivation of PTEN) is also seen in the evo-
lution of nonviral cancers. It is intriguing that of all non-
Hodgkin’s lymphomas, only mantle cell lymphoma re-
sponds clinically to mTOR inhibitors.90 We speculate that
phospho-PTEN (S380) expression may serve (assuming
confirmation in a clinical trial) as a novel biomarker for
rapamycin sensitivity of human cancers.

A key finding of the present study is that expression of
wild-type PTEN in PEL inhibited growth in semisolid me-
dium.4 This implies that adding back PTEN can revert

virus- and/or cell-induced Akt activation.80,81 This result
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fuels the speculation that PTEN activation by small mol-
ecules may present a novel treatment modality for wild-
type PTEN tumors, similar to the rationale for p53 activa-
tion by Nutlin-368,91 as a possible treatment modality for
post-translationally inactivated but genetically wild-type
p53 cancers.
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