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Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder characterized by severe memory loss
and cognitive impairment. Neuroinflammation, in-
cluding the extensive production of pro-inflamma-
tory molecules and the activation of microglia, has
been implicated in the disease process. Tumor necro-
sis factor (TNF)-�, a prototypic pro-inflammatory cy-
tokine, is elevated in AD, is neurotoxic, and colocal-
izes with amyloid plaques in AD animal models and
human brains. We previously demonstrated that the
expression of TNF-� is increased in AD mice at ages
preceding the development of hallmark amyloid and
tau pathological features and that long-term expres-
sion of this cytokine in these mice leads to marked
neuronal death. Such observations suggest that TNF-�
signaling promotes AD pathogenesis and that thera-
peutics suppressing this cytokine’s activity may be
beneficial. To dissect TNF-� receptor signaling re-
quirements in AD, we generated triple-transgenic AD
mice (3xTg-AD) lacking both TNF-� receptor 1 (TNF-
RI) and 2 (TNF-RII), 3xTg-ADxTNF-RI/RII knock out,
the cognate receptors of TNF-�. These mice exhibit
enhanced amyloid and tau-related pathological fea-
tures by the age of 15 months, in stark contrast to

age-matched 3xTg-AD counterparts. Moreover, 3xTg-
ADxTNF-RI/RII knock out–derived primary microglia
reveal reduced amyloid-� phagocytic marker expres-
sion and phagocytosis activity, indicating that intact
TNF-� receptor signaling is critical for microglial-me-
diated uptake of extracellular amyloid-� peptide
pools. Overall, our results demonstrate that globally
ablated TNF receptor signaling exacerbates pathogen-
esis and argues against long-term use of pan-anti-
TNF-� inhibitors for the treatment of AD. (Am J Pathol

2011, 179:2053–2070; DOI: 10.1016/j.ajpath.2011.07.001)

The inflammatory responses associated with Alzheimer’s
disease (AD) and their contributions to the course of the
disease and resultant neurodegeneration are becoming
better appreciated.1 In contrast to normal brains, in which
microglia and astrocytes are relatively quiescent and
evenly distributed, in the AD brain, activated microglia
and astrocytes cluster in close proximity, with extracellu-
lar plaques and neurons harboring intraneuronal tan-
gles.2 Although the mechanisms underlying synapse loss
and eventual neuronal death have yet to be completely
elucidated, it is clearly evident that inflammatory mole-
cules and cytokines found at enhanced levels during
various stages of the disease play distinct and influential
roles throughout AD pathophysiology.3–7 Tumor necrosis
factor (TNF)-� is a pleiotropic pro-inflammatory cytokine
elevated in the serum of patients with AD8 and is proximal
to amyloid plaques on autopsy.9 Enhanced levels of
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TNF-� appear to be reflective of disease severity10 and
have been implicated in neurotoxicity.11–14 Our labora-
tory previously demonstrated a pre-pathological up-reg-
ulation of TNF-� and correlating enhancement of F4/
80-positive microglia/macrophage numbers in the 6-month-
old triple-transgenic AD (3xTg-AD) mouse model that
exhibits an age-related development of amyloid and tau
pathological features and deficits in synaptic plasticity,
including hippocampal long-term potentiation (LTP), rem-
iniscent of human AD.15,16 McAlpine et al17 recently re-
ported that viral vector-mediated expression of truncated
TNF receptor in lipopolysaccharide-infused 3xTg-AD
mice suppresses AD-related amyloid pathological fea-
tures in the short-term. In further support of a potential
contributory role of TNF-� to AD pathogenesis, long-term
TNF-� overexpression via viral vector-based gene trans-
fer leads to enhanced inflammation and marked neuronal
cell death in this mouse model of AD.18

TNF-� belongs to the TNF superfamily of ligands and
promotes inflammatory signaling by coordinating innate
responses. Both biologically active transmembrane
TNF-� and soluble TNF-� are produced by microglia,
astrocytes, and specific subpopulations of neurons.19–21

TNF-� signals through two distinct membrane glycopro-
tein receptors: TNF-� receptor 1 (TNF-RI) and 2 (TNF-
RII). Most cell types express TNF-RI, and either soluble
TNF-� or transmembrane TNF-� is able to initiate signal-
ing through this cognate receptor, whereas TNF-RII is
primarily engaged by transmembrane TNF-� and is ex-
pressed by microglia and endothelial cells.22 Signaling
via the cognate TNF-� receptors elicits a complex variety
of downstream responses, including cell proliferation,
cell migration, and apoptosis mediated through the NF-
�B, p38, c-jun N-terminal kinase, and ceramide-sphingo-
myelinase pathways.23–25

Because of the presence of excessive TNF-� in pa-
tients with AD and the profound effects that are engen-
dered by modulating this cytokine’s expression level/ac-
tivity in the setting of experimental models of AD, it is not
surprising that clinical testing of TNF-� inhibition strate-
gies has intensified in recent years. Protein-related TNF-�
inhibitors that modulate circulating TNF-� levels, such as
etanercept and infliximab, have shown limited promise in
altering the course of AD, because of their inability to
efficiently traverse the blood-brain barrier.26 A prospec-
tive open-label pilot study27 was conducted on 15 pa-
tients with AD who were administered perispinal etaner-
cept, a potent TNF-� antagonist, semiweekly; these
patients claimed cognitive improvements in three inde-
pendent tests, whereas untreated patients exhibited pro-
gressive cognitive decline. Such findings are promising,
yet they undoubtedly spur debate regarding the safety
and efficacy of TNF-� inhibition over the lifetime of an
AD-afflicted individual.

To better understand the effect of TNF-� signaling
ablation during a protracted period in the context of pro-
gressive AD-related pathogenesis, we generated
3xTg-AD mice devoid of cognate TNF-RI and TNF-RII
(3xTg-ADxTNF-RI/RII knock out [KO]). Herein, we dem-
onstrate that 3xTg-ADxTNF-RI/RII KO mice exhibit higher

amyloid and tau-related pathological burden at the age of
15 months than age-matched 3xTg-AD mice. Moreover,
microglia in 3xTg-ADxTNF-RI/RII KO mice appear nonre-
sponsive to ongoing development of AD pathological
features in vivo and exhibit reduced amyloid-� (A�)42

phagocytosis activity in vitro. In aggregate, these data
imply that long-term inhibition of TNF-� in the central
nervous system without consideration of cell type–spe-
cific requirements for intact TNF-� signaling may result in
dire consequences by accelerating AD-related patholog-
ical features and may ultimately lead to enhanced neu-
rodegeneration.

Materials and Methods

Transgenic Mice

Triple-transgenic AD (3xTg-AD) B1 line and non-trans-
genic (Non-Tg) mice were previously generated.15,28 The
TNF-RI/RII KO mice were previously described.29 At the
time of mouse crossing for this study, the C57BL/6 ge-
netic background was the predominant background for
our 3xTg-AD colony (six backcrosses), with the TNF-RI/
RII line being completely on the C57BL/6 genetic back-
ground. A monogamous mating strategy was used to
generate 3xTg-ADxTNF-RI/RII KO mice by crossing the
3xTg-AD and TNF-RI/RII KO mice until all genes were
homozygous. Briefly, in the parental (P) generation,
3xTg-AD mice and C57BL/6 TNF-RI/RII knockout mice
generated (F1) offspring composed of heterozygous
3xTg-AD and TNF-�- receptor genes [3xTg-AD�/� (TNF-
RI�/�) TNF-RII�/�]. The F1 generation mice were back-
crossed with 3xTg-AD mice to yield homozygous PS1,
APPswe, and taup301L genes, resulting in an F2 generation
designated as 3xTg-AD�/� (TNF-RI�/�) TNF-RII�/�. Mice
harboring homozygous 3xTg-AD and TNF-RI genes were
generated by crossing F2 generation mice with each
other to yield F3 mice [3xTg-AD�/� (TNF-RI�/�) TNF-RII�/�].
Subsequently, F3 generation mice were crossed to gen-
erate mice homozygous for the 3xTg-AD, TNF-RI, and
TNF-RII genes (Figure 1A). 3xTg-AD and 3xTg-ADxTNF-
RI/RII KO mice were monogamously mated to produce
offspring, which were housed until sacrificed at the indi-
cated points. Age-matched 2-, 3-, 6-, 9-, 12-, and 15-
month-old male mice were used in the immunohisto-
chemical (IHC)/semiquantitative studies (n � 3 to 7 per
experimental group). P1 pups were used to establish
primary microglial cultures for phagocytosis analyses
(N � 8 per genotype). For IHC analyses, mice were
euthanized with an overdose of pentobarbital, followed
by transcardiac perfusion with heparinized saline, then
by 4% paraformaldehyde in 0.1 mol/L phosphate buffer
(PB). Brains were extracted and postfixed overnight in
4% paraformaldehyde in 0.1 mol/L PB, then equilibrated
with 20% sucrose in 0.1 mol/L PBS and transferred into
30% sucrose in 0.1 mol/L PBS. Brains were coronally
divided into sections (30-�m thick) on a freezing stage-
sliding microtome (Microtome, Walldorf, Germany) and
stored at �20°C in cryoprotectant until use for IHC anal-
ysis. All mice were housed and bred in accordance with
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for animal welfare and care. Mice were on a 12-hour
light-dark cycle and were allowed food and water ad
libitum.

Genotyping

Genotyping of transgenic mice was conducted via con-
ventional PCR using mouse genomic DNA extracted from
tail biopsy specimens. PCR was performed in 25-�L re-
action mixtures, each containing 100 ng/�L genomic
DNA, 20 �mol/L of each primer, 10 mmol/L deoxyribonu-
cleotide triphosphate mixture, 2.5 �L of 10� Taq buffer,
and 0.3 �L of Taq polymerase (Promega, Madison, WI).
The primers specific for the APP transgene amplification
used were as follows: 5=-GCTTGCACCAGTTCTG-
GATGG-3= (forward) and 5=-GAGGTATTCAGTCATGT-
GCT-3= (reverse). The following conditions were used: 5
minutes at 94°C; 30 seconds at 94°C, 30 seconds at
53°C, and 1 minute at 72°C for 20 cycles; and then 1

Figure 1. Generation and verification of 3xTg-ADxTNF-RI/RII KO transgenic
C57BL/6 double TNF-RI/RII knockout mice that yielded 3xTg-ADxTNF-RI/RII
and 3xTg-ADxTNF-RI/RII KO (black bars) mice was assessed by Nissl IHC (B
and the lacunosum molecular layer (G) of the hippocampal formation. Two-
significance (N � 3 to 7). H: Iba1-positive microglia of 12-month-old 3x
overexpression of AAV2–TNF-� and AAV2-eGFP. Statistical analyses were p
AAV2–TNF-� and AAV2-eGFP infused mice for each genotype. *P � 0.001.
minute at 72°C using a MyCyclerThermal Cycler (BioRad,
Hercules, CA). The tau-specific primers used were as
follows: 5=-GAGGTATTCAGTCATGTGCT-3= (forward)
and 5=-TTCAAAGTTCACCTGATAGT-3= (reverse). The
following conditions were used: 94°C for 5 minutes; 94°C
for 30 seconds, 52°C for 30 seconds, and 72°C for 1
minute for 25 cycles; and then 72°C for 3 minutes using
the MyCyclerThermal Cycler. For PS1, the PCR was dou-
bled with forward primer, 5=-CACACGCAACTCTGACAT-
GCACAGGC-3=, and reverse primer, 5=-AGGCAGGAA-
GATCACGTGTTCAAGTAC-3=, at 94°C for 2.5 minutes;
94°C for 40 seconds, 62°C for 40 seconds, and 72°C for
1 minute for 35 cycles; and then 72°C for 3 minutes using
an Eppendorf Mastercycler Gradient system (Eppendorf,
Hauppauge, NY). Subsequently, half of the PCR product
was digested with BstEII at 60°C for 1 hour because the
primers also amplify the endogenous PS1 gene. Two
bands, 300 and 250 bp, indicated homozygous mice.
TNF-RI amplification was performed using three primers
with the following oligonucleotide sequences: 5=-TGT-

: A schematic representation of the breeding strategy between 3xTg-AD and
e. The gross neuroanatomical structure of 2-month-old 3xTg-AD (white bars)
easuring the width of the CA1 (C), CA2 (D), and CA3 (E) layers, the DG (F),
lysis of variance with the Bonferroni’s posttest was used to assess statistical
and 6- and 12-month-old 3xTg-ADxTNF-RI/RII KO mice after long-term
d using a one-way analysis of variance and Bonferroni’s posttest between
o 4. Error bars represent SEM.
mice. A
KO mic
) and m
way ana
Tg-AD
GAAAAGGGCACCTTTACGGC-3=, 5=-GGCTGCAGTCCA-
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CGCACTGG-3=, and 5=-ATTCGCCAATGACAAGACGC-
TGG-3=. The amplification conditions used were as
follows: 94°C for 3 minutes; 94°C for 20 seconds, 64°C for
30 seconds with �0.5°C per cycle, and 72°C for 35
seconds for 12 cycles; 94°C for 20 seconds, 58°C for 30
seconds, and 72°C for 35 seconds for 25 cycles; and
then 72°C for 2 minutes using a MyCyclerThermal Cycler
to amplify a 300-bp band for homozygous mice. Similarly,
TNF-RII cDNA was amplified using the following primer
sequences: 5=-CCTCTCATGCTGTCCCGGAAT-3=, 5=-AG-
CTCCAGGCACAAGGGCGGG-3=, 5=-GCCCTGAATGA-
ACTGCAGGACG-3=, and 5=-CACGGGTAGCCAACGC-
TATGTC-3=. The conditions were as follows: 94°C for 3
minutes; 94°C for 1 minute, 62°C for 1 minute, and 72°C
for 1 minute for 32 cycles; and then 72°C for 10 minutes
using MyCyclerThermal Cycler. Homozygous mice were
indicated by a 400-bp amplification product. PCR prod-
ucts were separated electophoretically on 0.5% agarose
gels and visualized via ethidium bromide.

Nissl Staining

Brain sections were washed with 0.15 mol/L PB for 2
hours to remove cryoprotectant, subsequently mounted
on SuperFrost Plus slides (VWR International, West Ches-
ter, PA), and allowed to dry. The slides were hydrated in
dH-2O for 5 minutes before staining with 0.02% Cresyl
violet acetate in 0.25% acetic acid for 30 minutes. To
destain, sections were rinsed in three changes of dH-2O,
then placed in 50% ethanol for 1 minute, followed by 70%
ethanol for 1 minute. Sections were then completely
dried, dipped in xylene, and coverslipped. Sections were
analyzed via the MCID 6.0 ELITE Imaging Software Pro-
gram (Interfocus Imaging, Cambridge, UK) using the
length tool to measure (in pixels) five regions of the hip-
pocampus, including the Cornu Ammonis (CA)1, CA2,
CA3, dentate gyrus (DG), and lacunosum molecular layer
under �40 magnification. Measurements were taken at
specific bregma positions, and 4–51 values were used
per bregma position per anatomical region. Identical
measurements were performed for a particular bregma
position and brain region between 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO mice. Measurements were analyzed
with a two-way analysis of variance and a Bonferroni’s
multiple comparisons posttest (N � 3 to 7 per genotype
per time point).

Stereotactic Infusion of rAAV2–TNF-� and
rAAV2-eGFP

3xTg-AD and 3xTg-ADxTNF-RI/RII KO mice at the age of
2 months were stereotactically infused with 2 �L (3 � 109

transducing units) of recombinant adeno-associated vi-
rus serotype-2 (rAAV2)–TNF-� and rAAV2–enhanced
green fluorescence protein (eGFP), as previously de-

scribed.18
Antibodies

The following antibodies were used to IHC stain 3xTg-AD
and 3xTg-AD � TNF-RI/RII KO brain sections at the indi-
cated dilutions: microglia/macrophage-specific cell
marker [anti-ionized calcium-binding adaptor molecule 1
(Iba1), rabbit polyclonal, 1:750; Wako, Richmond, VA];
astrocyte-specific cell marker [polyclonal rabbit anti-glial
fibrillary acidic protein (GFAP), 1:1000; Dako, Richmond,
VA]; anti-A� 1–42 clone 12F4 reactive to the C-terminus
of �-amyloid and specific for the isoform ending at amino
acid 42 (1:1000; Signet Labs, Berkeley, CA); anti-human
phosphorylated-tau monoclonal AT-180 specific human
tau recognizing doubly phosphorylated Thr231 and
Ser235 residues (1:500; Pierce, Rockford, IL); anti-human
tau HT7, specific to residues 159 to 163 (1:200; Pierce);
anti-amyloid precursor protein A4, corresponding to the
NPXY motif of hAPP (Clone Y188, 1:750; AbCam, Cam-
bridge, MA); paired helical filament (PHF)-1 recognizing
singly or doubly phosphorylated tau at Ser396 or Ser404
residues (1:30; provided by Dr. Peter Davies, Albert Ein-
stein College of Medicine, Bronx, NY); and anti-human
tau HT7, reactive to residues 159 to 163 (1:200; Pierce).

LTP Studies

To characterize basal synaptic transmission and func-
tion, electrophysiological procedures were performed on
6- to 7-month-old 3xTg-AD, 3xTg-AD � TNF-RI/RII KO,
and Non-Tg mice under deep urethane anesthesia (1.5
g/kg i.p., administered in one dose and supplemented
with 0.1 to 0.2 g/kg as required before the onset of data
collection). All mice were placed in a stereotaxic appa-
ratus, and body temperature was maintained between
36°C and 37°C by using an electrical heating blanket. An
incision was made to expose the skull surface, and small
skull holes were drilled above the CA3 region (anterior-
posterior [AP], -2.20; medial-lateral [ML], -2.5; ventral-
dorsal [VD], -2.3 to �2.5 mm) and the contralateral CA1
area (AP, -2.20; ML, 1.50; VD, -1.6 mm). Skull holes for
ground and reference electrodes (jewelry screws at-
tached to miniature connectors) were made in the bone
overlying the prefrontal cortex and cerebellum, respec-
tively. All stereotaxic measurements were based on the
anatomical work of Paxinos and Franklin.30 Final ventral
placements of the CA3 stimulation and the CA1 recording
electrodes were adjusted to elicit the maximal amplitude
of field excitatory post-synaptic potentials (fEPSPs) and
paired-pulse facilitation (100-millisecond interstimulus in-
terval) in area CA1 in response to contralateral CA3 stim-
ulation.

Stimulation of CA3 (0.2-millisecond pulses every 30
seconds, intensity adjusted to yield 50% to 60% of max-
imal fEPSP amplitude) was provided by a concentric
bipolar electrode (Rhodes Medical Instruments Series
100; David Kopf, Tujunga, CA) connected to a stimulus
isolation unit providing a constant current output
(PowerLab/16-second system with ML 180 Stimulus Iso-
lator; AD Instruments, Toronto, ON, Canada). All fEPSPs
in stratum radiatum of CA1 were differentially recorded

(Teflon-insulated stainless steel wire, 125-�m tip diame-
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ter) against a reference electrode placed in the bone
overlaying the cerebellum. The CA1 signals were ampli-
fied, filtered (0.3 to 1 kHz), digitized (10 kHz), and stored
for subsequent off-line analysis using PowerLab system
running Scope software, version 4.0.2 (AD Instruments,
Toronto, Canada). Before formal data collection, input-
output curves were established for each animal by re-
cording fEPSPs in CA1 in response to CA3 stimulation
between 0 and 400 �A (50-�A increments). Based on
these input-output curves, a stimulation intensity eliciting
between 50% and 60% of the maximal fEPSP amplitude
was chosen for the subsequent experiment.

For each mouse, 60 initial baseline fEPSPs (every 30
seconds) were recorded. After stable baseline record-
ings, all animals received a burst of high-frequency stim-
ulation (HFS) to the CA3 area (100 pulses at 100 Hz).
Recordings of fEPSPs in CA1 (every 30 seconds, as in
baseline) in response to single-pulse CA3 stimulation
continued for 1 hour after the HFS episode.

At the end of each experiment, mice were intracardially
perfused with 10% paraformaldehyde, their brains were
extracted, and standard histological techniques were
used to verify all electrode placements. Data obtained
with inaccurate placements were excluded from the data
analysis. All electrophysiological data are expressed as
mean � SEM. The maximal fEPSP amplitude was ana-
lyzed offline by the Scope software. Subsequently, am-
plitude data were averaged over 10-minute intervals, and
these averages were normalized by dividing all data for
each mouse by the average baseline (pre-HFS) ampli-
tude of that animal. All LTP data were analyzed using
analyses of variance and, where statistically appropri-
ate, simple effects and Tukey’s post hoc tests, all of
which were computed using GraphPad Prism software
(GraphPad, La Jolla, CA).

IHC Analyses of Fixed Tissue

Brain sections were washed with 0.15 mol/L PB to remove
cryoprotectant, followed by a 20-minute incubation with
3% H2O2 in 0.15 mol/L PB to quench endogenous per-
oxidase activity. Epitope retrieval was used for A� pep-
tide-specific stains using 70% formic acid for 15 minutes.
IHC processing was performed as previously de-
scribed.31 Slides were visualized, and staining intensities
were quantified. Statistics for the IHC experiments were
performed using a two-way analysis of variance and a
Bonferroni’s multiple comparison test via GraphPad
Prism software.

Microscopic and Stereological Assessments

By using an Olympus AX-70 microscope equipped with a
motorized stage (Olympus, Center Valley, PA) and MCID
6.0 ELITE Imaging Software Program (Interfocus Imaging
subsidiary of GE Healthcare, Cambridge, England), the
hippocampal CA1 region of immunohistologically stained
sections was quantified under �20 magnification in a
blinded fashion. Each image represented one-twelfth of

the total hippocampus. Ten to fifty images per mouse
were analyzed and averaged for statistical analysis. N �
3 to 7 was used per time point per genotype.

Imaging and Image Processing

Photomicrographic images were processed consistently
where brightness and contrast alterations were applied
identically over all images within an experimental data set
using Photoshop CS3 (Adobe Systems, Inc., San Jose,
CA). No other image processing changes were applied.

Primary Microglial Cultures

Microglia were derived from 3xTg-AD or 3xTg-ADxTNF-
RI/RII KO postnatal day 1 (P1) pups. Cerebral cortexes
were isolated, and meninges were removed and minced
in Hanks’ balanced salt solution (HBSS; Invitrogen, Fred-
erick, MD). Cells were dissociated by trituration in mini-
mum essential media (Invitrogen, Frederick) containing
Earle’s salts, L-glutamine, 0.01% pyruvate, 0.6% glucose,
4% fetal bovine serum, and 6% horse serum (complete
medium); centrifuged; and plated into 75-cm2 tissue cul-
ture flasks containing 10 mL of complete media. Cultures
were grown at 37°C under 6% CO2. The next day, 8 mL
of complete media was added to the cultures. At approx-
imately 14 days, cultures were harvested by collecting all
media and washing with warm PBS, followed by incuba-
tion with 1 mmol/L EDTA at 37°C. Microglia were pelleted
by centrifugation (170 � g at 5 minutes); resuspended in
minimum essential media with Earle’s salts, L-glutamine,
0.01% pyruvate, 0.6% glucose, and 5% fetal bovine se-
rum; and enumerated.

Immunocytochemical Analyses of Microglial
Culture Cell Composition

Primary microglial culture composition was characterized
via immunocytochemistry. After enumeration, primary mi-
croglia were plated in 24-well plates on glass coverslips
(VWR International) at a density of 4 � 104 cells per well.
Cells were incubated for 24 hours and then fixed with 4%
paraformaldehyde for 20 minutes at room temperature.
Cells were permeabilized with Tris-buffered saline (TBS)
and 0.1% Triton X-100, followed by blocking in TBS with
10% normal goat serum for 1 hour at room temperature.
Immunostaining was performed with an Iba1 microglial/
macrophage-specific primary antibody (anti-Iba1, rabbit
polyclonal, 1:1000; Wako) and a pre-conjugated anti-
GFAP-Cy3 to detect astrocytes (1:1000; Sigma-Aldrich,
St Louis, MO). Primary antibodies were diluted with TBS
and 5% normal goat serum and incubated overnight at
4°C. Cells were washed and incubated for 2 hours at
room temperature with a goat anti-rabbit 488 secondary
antibody (1:2000; Invitrogen, Carlsbad, CA) to detect
Iba1-stained cells. TBS, followed by distilled H2O, was
used for the final washes, and glass coverslips of stained
microglia were mounted onto slides. Positively stained
Iba1 and GFAP-expressing cells were visualized using
an Olympus IX51 microscope and DP Controller software

3.21.276 (Olympus).
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Phagocytosis Assay

Microglia were plated onto black 96-well tissue culture
plates at a cell density of 2 � 104 cells/well with 125 �L
of minimum essential media (Invitrogen, Frederick) con-
taining Earle’s salts, L-glutamine, 0.01% pyruvate, 0.6%
glucose, and 5% fetal bovine serum. Twenty-four hours
later, primary microglia were incubated for 8 hours with
fluorescein isothiocyanate (FITC)–labeled Escherichia coli
bioparticles at 0.25 mg/mL or FITC-A�42 at 5 �m. Me-
dium was removed and cells were washed in 0.25 mg/mL
trypan blue in PBS to quench signal from extracellular
peptide. A SpectraMax Gemini microplate spectrofluo-
rometer (Molecular Devices, Downingtown, PA) was used
to quantify the intracellular fluorescence at 480-nm exci-
tation and 520-nm emission. Relative fluorescent intensi-
ties were ascertained by normalizing to background
FITC–E. coli bioparticles, where wells received primary
microglia at the same cell density. alamarBlue® viability
(Invitrogen, Carlsbad) staining at a 1:10 dilution was also
performed on the same cohort of cells under identical
culture conditions in separate tissue culture plates at the
start of the phagocytosis assay (when FITC–E. coli bio-
particles were added) and used for normalization.

SIRP-�1 and Iba1 Immunocytochemistry

Primary microglia were plated on glass coverslips at 4 �
104 cells/well in a 24-well tissue culture dish and incu-
bated at 37°C for 24 hours. Microglial cells were fixed
with 4% paraformaldehyde and permeabilized with TBS
plus 0.1% Triton-X 100. Cells were blocked with 10% goat
serum for 1 hour at room temperature and co-immunos-
tained with rat monoclonal anti- signal regulator pro-
tein-�1 (SIRP-�1) (1:750; provided by Dr. Takashi Mato-
zaki, Gunma University, Maebashi City, Gunma, Japan)
and Iba1 (1:1000; Wako), followed by AlexaFluor (Invit-
rogen, Carlsbad) secondary antibodies for detection.
Images were captured with immunofluorescent micros-
copy with an Olympus IX51 microscope and DP Con-
troller software 3.21.276 (Olympus).

Western Blot Analyses

To assess CD14 expression in primary microglia, cells
were plated at 1 � 105 in a 24-well culture plate. Twenty-
four hours later, cells were lysed in radioimmunoprecipi-
tation assay buffer containing 150 mmol/L Tris-HCl (pH
7.4), 150 mmol/L NaCl, 1% Triton-X 100, 1% sodium
deoxycholate, 0.1% SDS, 1 mmol/L EDTA, protease in-
hibitor cocktail (Sigma-Aldrich, St Louis, MO), and acti-
vated sodium orthovanadate, where three wells were
pooled together for a single sample group. Cell lysates
were analyzed for CD14 expression using a mouse
monoclonal anti-CD14 primary antibody (Abnova, Little-
ton, CO) at 1:1000 and incubated for 2 hours at room
temperature, followed by a horseradish peroxidase–conju-
gated goat anti-mouse IgG (H�L) secondary antibody
(Jackson ImmunoResearch Laboratories, West Grove, PA)
at 1:2000 for 1 hour at room temperature. Membranes were

subsequently stripped and reprobed with the �-actin (Sig-
ma-Aldrich) loading control antibody at 1:5000 in combi-
nation with a horseradish peroxidase–conjugated goat
anti-mouse secondary antibody (1:2000; Jackson Immu-
noResearch Laboratories). Blots were visualized with
chemiluminescence and analyzed with densitometry for
total raw density (LabWorks by UVP, Upland, CA).

ELISA

Age-matched (2-, 6-, 9-, 12-, and 15-month-old)
3xTg-AD and 3xTg-ADxTNF-RI/RII KO mouse hip-
pocampal tissue was microdissected and snap frozen
on dry ice, followed by storage at 80°C. Frozen tissue
was weighed, homogenized, and fractionated by ultra-
centrifugation. Hippocampal tissue homogenates were
assessed for levels of insoluble A�40 and A�42, as
previously described.32

Nu-4 Dot Blots

Nu-4 dot blots were performed as previously de-
scribed.32 Briefly, nitrocellulose membranes were incu-
bated in transfer buffer and 25 �g of soluble hippocam-
pal homogenates was spotted onto the membrane while
vacuum pressure was applied. Membranes were blot-
ted using the Nu-4 primary antibody33 at 1:1500 dilu-
tion for 1.5 hours at room temperature. A horseradish
peroxidase– conjugated secondary antibody was used
at a 1:2000 dilution for 1.5 hours at room temperature.
The membranes were stripped and reprobed with anti-
�-actin at 1:5000 for normalization of protein loading.
Dot blots were visualized with chemiluminescence and
analyzed with densitometry for total raw density (Lab-
works by UVP).

Congo Red Staining

Congo red stock solution was prepared with a saturated
1 mol/L NaCl solution and 0.2% Congo red (Sigma-Al-
drich). This solution was filtered, and an equal volume of
80% ethanol was added. Free-floating sections were
washed in 0.15 mol/L PB and then transferred to a Congo
red working solution (50 mL of Congo red stock with 0.5
mL of 1% NaOH) for 30 minutes. Sections were washed in
PBS and mounted on SuperFrost Plus slides (VWR Inter-
national). After tissue was completely dried, slides were
dipped in 30% ethanol for 30 seconds, followed by xy-
lene for 15 seconds, and coverslipped.

Results

Derivation and Gross Characterization of
3xTg-ADxTNF-RI/RII KO Mice

3xTg-AD mice lacking functional TNF-RI (p55) and TNF-
RII (p75) genes were generated by breeding 3xTg-AD
mice15,28 and C57BL/6 TNF-RI/RII–deficient mice29 using a
monogamous breeding strategy (Figure 1A). Verification of
the homozygous status for APPswe and tauP301L genes was

performed by crossing 3xTg-ADxTNF-RI/RII KO and
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C57BL/6 mice to screen for the genetic transfer from the
three generations via mendelian inheritance patterns (data
not shown). The 3xTg-ADxTNF-RI/RII KO mice did not dis-
play any gross phenotypic, behavioral, or reproductive
anomalies. The founder 3xTg-ADxTNF-RI/RII KO colony
was expanded by monogamous breeding and studied in
subsequent IHC, biochemical, and functional analyses.

The overall neuroanatomical structure of 3xTg-AD and
3xTg-ADxTNF-RI/RII KO mice was analyzed using Nissl
IHC (Figure 1, B–H). Coronally sliced and Nissl-stained
tissue sections from 2-month-old 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO mice were quantitatively assessed in
five regions of the hippocampal formation, including the
CA1, CA2, and CA3 subfields, the DG, and the lacuno-
sum molecular layer that is distally ventral to the pyrami-
dal cell layer of the CA1 subfield. The schematic drawing
in Figure 1B outlines the measurements that were taken
at specific bregma positions using the length tool in the
MCID 6.0 ELITE Imaging Software Program. These anal-
yses demonstrate that the gross hippocampal cytoarchi-
tecture of 3xTg-ADxTNF-RI/RII KO mice develops simi-
larly to that of 3xTg-AD mice.

To further characterize the newly generated 3xTg-
ADxTNF-RI/RII KO mice, 2-month-old 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO mice were stereotactically infused
with AAV2 vectors expressing human TNF-� (ipsilateral)
or eGFP (contralateral). Subsequently, 6- and 12-month-
old 3xTg-ADxTNF-RI/RII KO and 12-month-old 3xTg-AD
mice were sacrificed and coronal brain sections were
processed and stained for Iba1 immunoreactivity. Figure
1H demonstrates that 3xTg-ADxTNF-RI/RII KO microglia

Figure 2. Characterization of hippocampal synaptic function in 3xTg-ADxT
fEPSP amplitude in the stratum radiatum of CA1 in response to single-pulse
acquisition of baseline recordings in 3xTg-ADxTNF-RI/RII KO (n � 8), 3xTg
similarly in all three groups with increasing stimulation intensities. An analysis
in all three groups: significant effect of group, F2,20 � 6.6, P � 0.006; signific
interaction, F8,160 � 1.3, P � 0.185. The simple effects of stimulation were si
49.4, P � 0.01), 3xTg-ADxTNF-RI/RII KO (F8,56 � 32.3, P � 0.01), and 3xTg-
mice showed similar levels of fEPSP amplitude with increasing stimulus str
P � 0.597), a significant effect of stimulation (F8,120 � 54.3, P � 0.01), and
post hoc analysis showed that 3xTg-ADxTNF-RI/RII KO and 3xTg-AD mice s
indicating similar levels of impaired basal synaptic transmission in these ani
hippocampal area elicited robust LTP in CA1 in Non-Tg animals (n � 6) th
response to HFS were significantly diminished to comparable levels in both
comparing fEPSP amplitude in all three groups showed a significant effect of
and a significant group by time interaction (F16,160 � 3.9, P � 0.01); for 3xTg
(F1,15 � 1.1, P � 0.300), a significant effect of time (F8,96 � 74.2, P � 0.
3xTg-ADxTNF-RI/RII KO versus Non-Tg mice, there was a significant effect o
and a significant group by time interaction (F8,96 � 6.9, P � 0.0); for 3xTg
P � 0.074), a significant effect of time (F8,104 � 64.4, P � 0.01), and a sig
baseline (gray) and at the end of the experiment (black) for a Non-Tg (lef

HFS (fEPSPs are averages of 10 individual sweeps, calibration is 10 milliseconds an
difference).
are nonresponsive after long-term TNF-� or eGFP ex-
pression because of a lack of TNF-RI and TNF-RII recep-
tor expression, whereas transduced 12-month-old
3xTg-AD microglia significantly respond to ectopically
expressed TNF-�, as previously described.18 The infu-
sion of rAAV2–TNF-� into 3xTg-ADxTNF-RI/RII KO and
3xTg-AD mice did not increase reactive astrocyte stain-
ing in either genotype (data not shown). These data are in
agreement with our prior report18 that astrocytes in
3xTg-AD mice are unaffected by long-term, rAAV-medi-
ated TNF-� expression.

Adult 3xTg-ADxTNF-RI/RII KO and 3xTg-AD
Mice Express Similar Levels of LTP at the
CA3-CA1 Synapses in Vivo

In addition to A�-mediated pathological features, deficits
in synaptic function may also underlie cognitive impair-
ments in AD. Synaptic function can be measured by LTP,
a stable long-lasting increase in synaptic strength in-
duced by HFS to afferent fiber inputs.34 Interestingly,
3xTg-AD mice display deficits in LTP induction in the CA1
area of the hippocampus by the age of 6 months, before
overt neuronal degeneration.15 Thus, it was of interest to
conduct LTP experiments in 3xTg-ADxTNF-RI/RII KO
mice at a similar time point (aged 6 to 7 months) to
examine the effects of long-term TNF receptor ablation on
hippocampal basal synaptic transmission and function in
vivo. To investigate basal synaptic transmission, we gen-
erated input-output curves by measuring fEPSP ampli-

II KO, 3xTg-AD, and Non-Tg mice. A: Input-output curves showing average
tion to the contralateral CA3 area at increasing stimulation intensities before
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tude elicited in CA1 by stimulation of the contralateral
CA3 area at increasing stimulus intensities (Figure 2A). At
the age of 6 to 7 months, both 3xTg-ADxTNF-RI/RII KO
and 3xTg-AD mice exhibited smaller fEPSP amplitudes at
all stimulus intensities tested (50 to 400 �A) relative to
age-matched Non-Tg controls. However, the 3xTg-
ADxTNF-RI/RII KO mice were not significantly different
from the 3xTg-AD mice, demonstrating comparable lev-
els of impairment in basal synaptic transmission in these
animals by the age of 6 to 7 months. Subsequently, we
conducted LTP experiments at the CA3-CA1 synapse in
all mice lines under urethane anesthesia (Figure 2B). A
delivery of an HFS episode to CA3, consisting of 100
pulses at 100 Hz, produced a robust increase in CA1
fEPSP amplitude in Non-Tg mice that lasted for at least 1
hour after stimulation. In Non-Tg mice, the amplitude of
fEPSPs averaged over the last 30 minutes of the experi-
ment was 183% of baseline (Figure 2B). The 3xTg-
ADxTNF-RI/RII KO and 3xTg-AD mice showed similar
increases in fEPSP amplitude in response to HFS; how-
ever, the levels of potentiation in these mice were signif-
icantly less than those elicited in Non-Tg age-matched
controls. The amplitudes of fEPSPs averaged over the
final 30 minutes of the experiment in 3xTg-ADxTNF-RI/RII
KO and 3xTg-AD mice were 153% and 141% of baseline,
respectively.

3xTg-ADxTNF-RI/RII KO Mice Express Human
Tau and APPswe Transgenes Comparably to
3xTg-AD Mice

Transgenes encoding human APPswe and human tauP301L,
both under the regulatory control of the mouse Thy1.2
promoter, are overexpressed in the 3xTg-AD mouse
model to generate the two hallmark pathological features
of AD: amyloid plaques and neurofibrillary tangles
(NFTs). By using coronally sliced tissue sections of 2-, 3-,
6-, 9-, 12-, and 15-month-old 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO mice, diaminobenzidine (DAB) IHC
and quantitative image analysis for transgene expression
was performed. Human tau was detected using the HT7
antibody, whereas human APPswe was detected using
the anti-hAPP Y188 antibody. Representative HT7 im-
ages for 3xTg-AD and 3xTg-ADxTNF-RI/RII KO are de-
picted in Figure 3A and include six times digitally en-
hanced images of the designated CA1 pyramidal cell
layer at the age of 9 months. Image analysis demon-
strated that there were no significant differences in HT7
immunoreactivity at any points between 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO mice (Figure 3B). Figure 3C shows rep-
resentative images of Y188 DAB-stained immune-positive
cells from 3xTg-AD and 3xTg-ADxTNF-RI/RII KO mice, re-
spectively. Again, image analysis (Figure 3D) demonstrated
that average pixel intensities of Y188-stained cells between
the two genotypes were similar. These results indicate that
ablated TNF-� receptor signaling does not overtly alter
transgene expression of 3xTg-AD mice.

Age-Related Increase, then Decrease, in Iba1
Marker Expression Exhibited by 3xTg-AD
Hippocampal Microglia Does Not Occur in
3xTg-ADxTNF-RI/RII KO Mice in Vivo

Activated microglia and astrocytes appear during all
stages of AD and are recognized as participants in the
neuroinflammatory process, whereby TNF-� may serve
as a potent mediator. Our laboratory has previously
shown that 6-month-old 3xTg-AD mice exhibit a regional
and age-dependent enhancement of F4/80-positive mi-
croglia, correlating with up-regulated endogenous TNF-�
expression.16 That prior finding suggested that TNF-�
affects microglial activation and/or recruitment during
early AD pathogenesis. To determine the effects of abro-
gated TNF-� signaling on glial cell marker expression in
the 3xTg-AD model, we performed IHC for astrocytes and
microglia by using GFAP and Iba1 antibodies, respec-
tively. Figure 4A depicts representative images of Iba1-
positive cells of 3xTg-AD and 3xTg-ADxTNF-RI/RII KO at
2, 3, 6, 9, 12, and 15 months. Representative images of
GFAP-stained cells of 3xTg-AD and 3xTg-ADxTNF-RI/RII
KO mice are also shown. Interestingly, the level of Iba1
staining remained relatively unchanged over 2 to 15

Figure 3. Human tauP301L and APPswe trans-
genes are expressed comparably in 3xTg-AD
and 3xTg-ADxTNF-RI/RII KO mice. Coronal
brain sections from 2-, 3-, 6-, 9-, 12-, and 15-
month-old 3xTg-AD and 3xTg-ADxTNF-RI/RII
KO mice were subjected to DAB IHC for human
tauP301L transgene product using the HT7 anti-
body (A) and human APPswe transgene product
using the Y188 antibody (C). Representative
�10 images are depicted. Underlined panels are
digitally enhanced images six times the desig-
nated immunostained CA1 layer to better depict
cellular morphological features. The staining in-
tensities for HT7� (B) and Y188� (D) cells were
determined for stained 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO brain sections. Statistical
analyses were performed using a two-way anal-
ysis of variance with a Bonferroni’s posttest. Er-
ror bars represent SEM (N � 3 to 7). Scale bars:
500 �m (A and C).
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months in 3xTg-ADxTNF-RI/RII KO mice, whereas there
appeared to be an increase, then a decrease, in the Iba1
staining population as a function of age in 3xTg-AD mice
with intact TNF receptor expression (Figure 4B). We
found that staining intensities of GFAP-expressing astro-
cytes remained unaltered between 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO mice (Figure 4, C and D).

Ablated TNF-� Receptor Expression Reduces
General and A�42-Specific Phagocytosis
Activity and CD14 Surface Expression

A� is a strong microglial stimulator, resulting in the release
of pro-inflammatory mediators. Koenigsknecht-Talboo and
Landreth35 have demonstrated that elevated levels of pro-
inflammatory cytokines, including TNF-�, may attenuate ef-
ficient phagocytosis of accumulated A�, leading to en-
hanced plaque load. To that end, we subsequently
assessed the phagocytosis capability of primary mi-
croglial cultures derived from these mice. Microglia
were isolated from P1 pups of 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO mice. Before performing the phago-
cytosis analyses, we confirmed that pure populations
of microglia were being obtained. Under identical cell
culture conditions, 3xTg-AD and 3xTg-ADxTNF-RI/RII
KO primary microglial cultures harbor dramatically few
GFAP-positive cells, indicating that our primary micro-
glial cultures are highly pure and relatively free from
astrocyte contamination (Figure 5A). No obvious mor-
phological differences were discerned between the
3xTg-AD and 3xTg-ADxTNF-RI/RII KO primary micro-
glial cells.

Microglia from these two genotypes were subse-
quently examined for their general and selective A�42

phagocytosis activity. 3xTg-AD and 3xTg-ADxTNF-RI/RII
KO primary microglia were quantitatively assessed by
uptake of FITC-labeled E. coli bioparticles. 3xTg-AD
microglia exhibited a significantly higher E. coli biopar-
ticle fluorescent intensity compared with that of 3xTg-

ADxTNF-RI/RII KO primary microglia (Figure 5B). Sim-
ilarly, when 3xTg-AD and 3xTg-ADxTNF-RI/RII KO
primary microglia were incubated with FITC-conju-
gated A�42 peptide, 3xTg-ADxTNF-RI/RII KO microglia
were less efficient in A� uptake than 3xTg-AD microglia
(Figure 5C), indicating that TNF receptor expression
status is important for effective microglial phagocytosis
function.

Several proteins have been implicated in A� phagocy-
tosis and are up-regulated on microglia during this pro-
cess. One of these, CD14, is the lipopolysaccharide re-
ceptor and has participated in phagocytosis of both
bacterial components and A�.36 3xTg-AD and 3xTg-
ADxTNF-RI/RII KO primary microglia were examined for
CD14 expression. Figure 5D depicts Western blot analy-
ses of microglial cell lysates probed with anti-CD14 and
�-actin antibodies. 3xTg-AD primary microglia exhibit
higher steady-state CD14 levels compared with 3xTg-
ADxTNF-RI/RII KO primary microglia (Figure 5E).

Ablated TNF-� Receptor Expression Does Not
Affect SIRP-�1 Levels Expressed by
3xTg-ADxTNF-RI/RII KO Primary Microglia

Another receptor that has been reported to positively
correlate with A� phagocytosis performed by mono-
cyte lineage cells, including microglia in the central
nervous system, is SIRP-�1, a transmembrane-associ-
ated receptor.37 Figure 5F depicts representative im-
munofluorescent images at �100 magnification of
3xTg-AD and 3xTg-ADxTNF-RI/RII KO microglia
costained with Iba1 (green) and SIRP-�1 (red). Cul-
tured 3xTg-AD and 3xTg-ADxTNF-RI/RII KO cells pos-
sess ramified or nonactivated cell morphological fea-
tures, with differences in SIRP-�1 staining intensities
that were indistinguishable between the two geno-
types. These data suggest that TNF receptor expres-
sion status may differentially affect proteins that com-

Figure 4. Loss of TNF-RI/RII expression does
not alter astrocyte staining intensities but does
lead to a blunting of Iba1� microglia/macro-
phage levels compared with age-matched
3xTg-AD mice. Coronal brain sections from 2-,
3-, 6-, 9-, 12-, and 15-month-old 3xTg-AD and
3xTg-ADxTNF-RI/RII KO mice were subjected to
DAB IHC for microglia using an Iba1-specific
antibody (A) and astrocytes using a GFAP-spe-
cific antibody (C). Representative �10 images
are depicted. Underlined panels are digitally en-
hanced images six times the designated immu-
nostained CA1 layer to better depict cellular
morphological features. The staining intensities
for Iba1� (B) and GFAP� (D) cells were deter-
mined for stained 3xTg-AD and 3xTg-ADxTNF-
RI/RII KO brain sections. Statistical analyses
were performed using a two-way analysis of
variance with a Bonferroni’s posttest. *P � 0.01.
Error bars represent SEM (N � 3 to 7). Scale bars:
500 �m (A and C).
pose microglia-resident phagocytic machinery.
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Amyloid-Related Pathological Features Are
More Severe in Older 3xTg-ADxTNF-RI/RII KO
Mice

There are compelling data supporting the role of mi-
croglia in A� clearance.38 – 41 Microglia are attracted to
and activated by amyloid deposits and exhibit the abil-
ity to eliminate A�, as previously reviewed.42 Given that
3xTg-ADxTNF-RI/RII KO primary microglia exhibit re-
duced A�42 phagocytosis activity in vitro that is further
supported by a down-regulation of steady-state CD14
levels, it is possible that these mice develop more
severe amyloid and tau pathological features. To that
end, coronal brain sections of age-matched 3xTg-AD
and 3xTg-ADxTNF-RI/RII KO mice were immuno-
stained with the 12F4 antibody to assess the extent of
extracellular A�42 deposition (Figure 6A). Image anal-
ysis revealed that 15-month-old 3xTg-ADxTNF-RI/RII
KO mice exhibited a trending increase, although not
statistically significant, in 12F4-positive plaque load, as
measured by average pixel intensity (Figure 6B) and
significantly more plaques in the CA1 region (Figure
6C) compared with age-matched 3xTg-AD counter-
parts. To corroborate these findings, we performed
sandwich enzyme-linked immunosorbent assays to
measure soluble and insoluble A�40 and A�42 levels in
hippocampal tissue homogenates from age-matched
3xTg-AD and 3xTg-ADxTNF-RI/RII KO mice. We found
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that 15-month-old 3xTg-ADxTNF-RI/RII KO mice harbor
significantly higher levels of soluble A�42 (Figure 6E),
insoluble A�40 (Figure 6F), and insoluble A�42 (Figure
6G). These data support the 12F4 IHC analyses and
demonstrate that aged 3xTg-ADxTNF-RI/RII KO mice
have significantly higher A� peptide/plaque burden
compared with age-matched 3xTg-AD counterparts.
To determine the composition of the soluble fraction,
hippocampal tissue homogenates were subjected to
dot blot analysis (Figure 6H) to detect oligomeric spe-
cies of amyloid-derived diffusible ligands using the
Nu-4 antibody. We found that 6-month-old 3xTg-
ADxTNF-RI/RII KO mice harbored significantly higher
levels of oligomeric conformers compared with
3xTg-AD tissue homogenates, which decreased as a
function of time, and by the age of 15 months, the
3xTg-AD mice exhibited a statistically significant in-
crease of oligomers. Further characterization using
Congo red histochemistry revealed that 15-month-old
3xTg-ADxTNF-RI/RII KO mice displayed significantly
more compacted amyloid fibrils than did 15-month-old
3xTg-AD mice (Figure 6, I–K).

3xTg-ADxTNF-RI/RII KO Mice Demonstrate
Intensified Intraneuronal PHF Pathological
Features at the Age of 15 Months

Intracellular NFTs are the second major neuropathologi-
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tau, a microtubule-stabilizing protein that eventually
loses the ability to bind microtubules on aberrant hy-
perphosphorylation, thereby disrupting the axonal
transport system.43– 45 Our finding that 3xTg-ADxTNF-
RI/RII KO mice harbor enhanced amyloid pathological
features at the age of 15 months led us to ask whether
tau pathological features are similarly affected in
3xTg-AD mice lacking TNF receptor signaling. By us-
ing the phospho-specific tau AT-180 antibody that rec-
ognizes doubly phosphorylated Thr231 and Ser235
residues, 2-, 3-, 6-, 9-, 12-, and 15-month-old 3xTg-AD
and 3xTg-ADxTNF-RI/RII KO mice were IHC stained
(Figure 7A). No overt differences in staining patterns or

Figure 6. Fifteen-month-old 3xTg-ADxTNF-RI/RII KO mice exhibit elevated
and congophilic plaques compared with 3xTg-AD counterparts. A: Coronal b
RI/RII KO mice were subjected to DAB IHC for extracellular A�42 using a h
panels are digitally enhanced images six times the designated immunostaine
The staining intensities (B) and counts (C) for A�42 were determined for sta
performed using a two-way analysis of variance with a Bonferroni’s posttest.
F, respectively) and A�42 (E and G, respectively) levels were measured in
3xTg-AD and 3xTg-ADxTNF-RI/RII mice. H: A dot blot analysis was implem
9-, 12-, and 15-month-old 3xTg-AD and 3xTg-ADxTNF-RI/RII KO mice using
immunosorbent assays and an Nu-4 dot blot was determined by two-way a
Congophilic plaques were visualized and quantified in 15-month-old 3xTg-A
enhanced plaque morphological features and birefringence of �-sheet secon
statistical analysis. **P � 0.05. Scale bars: 50 �m (I and J). Error bars in I a
intensities in AT-180 staining were observed at any
point between the two genotypes (Figure 7B). An ex-
amination of PHF pathological features using the PHF-1
antibody revealed that 15-month-old 3xTg-ADxTNF-RI/RII
KO mice harbor greatly enhanced levels of PHF-1 stain-
ing compared with aged-matched 3xTg-AD mice (Figure
7, C and D). This was a somewhat startling observation
because we previously showed that 3xTg-AD mice do not
exhibit robust PHF-1 staining until approximately the age
of 26 months.31 These data illustrate that, although an
early tau phosphorylated epitope is not affected by
TNF-� receptor expression status, staining for an ad-
vanced hyperphosphorylation epitope associated with
later-stage disease is significantly enhanced in mice de-

llular A� plaque load, soluble A�42, insoluble A�40, and A�42 protein levels
tions from 2-, 3-, 6-, 9-, 12-, and 15-month-old 3xTg-AD and 3xTg-ADxTNF-
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Discussion

Chronic neuroinflammation is a prominent feature of AD
pathogenesis, and evidence supports TNF-� as a key
pro-inflammatory mediator contributing to the inflamma-
tory milieu.2,22 3xTg-AD mice globally devoid of cognate
TNF-RI and TNF-RII were generated to study the effects
of prolonged absence of TNF-� signaling in relation to the
progression of AD-associated pathological features. Our
results indicate that, by Nissl IHC, 3xTg-ADxTNF-RI/RII
KO mice exhibit no major cytoarchitectural or gross struc-
tural changes relative to 3xTg-AD animals (Figure 1,
B–G). In conjunction with these findings, it appears that
these transgenic mice exhibit a similar degree of propen-
sity for LTP induction in CA1 apical dendrites and com-
parable levels of basal synaptic transmission (Figure 2, A
and B). The deficits in hippocampal LTP induction in the
3xTg-AD mouse characterized herein coincide with pre-
vious findings that have shown similar levels of LTP im-
pairment in the hippocampal slice preparation of
3xTg-AD mice.15 Interestingly, the absence of pro-
nounced LTP induction observed in the 3xTg-ADxTNF-
RI/RII KO mice differs from previous evidence demon-
strating a critical role of TNF-� in the A�-induced
inhibition of LTP at hippocampal synapses. Previous
work46 has shown that A�-induced suppression of hip-
pocampal LTP is absent in mutant mice null for TNF-RI
and is prevented by inhibitors of TNF-�, TNF-� peptide
antagonists, and TNF-� production. These interesting
findings were observed in hippocampal slice prepara-
tions in the presence of short-term administration of oli-
gomeric A� before the onset of LTP induction in mice
aged 1 month. The impairments in LTP induction ex-
pressed by 6-month-old 3xTg-ADxTNF-RI/RII KO in our
studies may be mediated by long-term levels of A� ex-
erting deficits at the synapse that are not preventable
even in the absence of TNF-�–mediated influence in vivo.
Our understanding of TNF-� in A�-induced inhibition of
hippocampal LTP heavily stems from work performed
using in vitro models, whereas its role in the intact AD

brain in the presence of prolonged exposure to A� is not
well established. A relatively longer period of elevated A�
oligomers is known to impair synaptic facilitation by par-
tial N-methyl-D-aspartate receptor (NMDAR) blockade,
by either minimizing NMDAR activity, subsequently lead-
ing to reduced NMDAR-dependent Ca2� influx, or en-
hancing NMDAR-dependent activation of calcineurin, in-
tracellular mechanisms known to mediate the induction of
long-term depression.47–49 Whether the impairments in
LTP induction in the current AD transgenic mouse lines
are due to overlapping synaptic mechanisms, such as
A�-induced down-regulation of NMDARs critical for LTP
induction, or whether there is a shift toward the activation
of NMDAR-dependent intracellular cascades promoting
long-term depression (LTD) is unknown.50 However, we
illustrate that global ablation of TNF receptors in 3xTg-
ADxTNF-RI/RII KO mice does not improve deficits in hip-
pocampal LTP induction, as assessed at the age of 6 to
7 months (Figure 2, A and B). Future in-depth experi-
ments are required to examine the mechanisms by which
A� may be exerting its effects at the synapse in the
3xTg-ADxTNF-RI/RII KO mouse model.

Despite the fact that they demonstrate greater levels of
hippocampal A� oligomers, 3xTg-ADxTNF-RI/RII KO
mice do not exhibit a significantly greater deficit in A�-
induced LTP at CA3-CA1 synapses relative to 3xTg-AD
animals. Our current work shows reduced A� phagocytic
marker expression and phagocytosis activity in primary
microglia, indicating that intact TNF-� receptor signaling
is critical for microglial-mediated uptake of extracellular
A� peptides. These observations suggest that 3xTg-
ADxTNF-RI/RII KO mice may also exhibit decreased lev-
els of pro-inflammatory cytokine production, such as
IL-6 and IL-1�, that are partially reliant on microglial ac-
tivation and are known to inhibit hippocampal synaptic
facilitation and attenuate hippocampal-dependent learn-
ing and memory.51–53 Consequently, the lack of addi-
tional deficits in LTP induction observed in 3xTg-
ADxTNF-RI/RII KO mice in the presence of elevated A�
oligomers may be the result of a dampened effect of

Figure 7. 3xTg-ADxTNF-RI/RII KO mice dis-
play exacerbated PHF immunostaining at the
age of 15 months. Coronal brain sections from
2-, 3-, 6-, 9-, 12-, and 15-month-old 3xTg-AD and
3xTg-ADxTNF-RI/RII KO mice were subjected to
DAB IHC for phospho-tau using the AT-180 an-
tibody (A) and PHF tau (Ser396 or Ser404) using
the PHF-1 antibody (C). Representative �10 im-
ages are depicted. Underlined panels and insets
are digitally enhanced images six times the des-
ignated immunostained CA1 layer to better de-
pict cellular morphological features. The stain-
ing intensities for AT-180� (B) and PHF-1� (D)
cells were determined for stained 3xTg-AD and
3xTg-ADxTNF-RI/RII KO brain sections. Statisti-
cal analyses were performed using a two-way
analysis of variance with a Bonferroni’s posttest.
*P � 0.05. Error bars represent SEM. N � 3 to 7.
Scale bars: 500 �m (A and C).
glial-mediated activation of cytokines known to exert det-
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rimental influences at the synapse.51 Evidently, the
mechanisms by which A� oligomers are shown to impair
synaptic potentiation are multifaceted and appear to dif-
fer based on A� exposure, electrophysiological prepara-
tions, and stage of AD pathogenesis. To further under-
stand the complex effects of A� on synaptic function,
future studies require an integrative approach using in-
tact in vivo preparations, allowing the inclusion of behav-
ioral assessments to establish more direct links between
AD-affiliated pathological features, synaptic plasticity,
and learning and memory function. In this regard, freely
moving rodent models will serve as a critical bridge be-
tween in vitro work and the literature on A�-induced syn-
aptic deficits observed in the intact AD brain.

Although this approach to ablate TNF-� receptor ex-
pression has provided useful insights, there are possible
caveats related to the strategy that should be addressed.
Although IHC and electrophysiological analyses suggest
that 3xTg-ADxTNF-RI/RII KO mice exhibit no major cyto-
architectural changes or differences in LTP elicitation
relative to 3xTg-AD animals, respectively, TNF-� signal-
ing has played a vital role in apoptosis and synaptogen-
esis during central nervous system development. Barker
et al54 have demonstrated that TNF-� contributes to
apoptosis of developing neurons that depend on a neu-
rotrophin, nerve growth factor. Furthermore, TNF-�
knockout mice have altered hippocampal morphogene-
sis, as evidenced by accelerated DG maturation, smaller
dendritic tree arborization in the CA1 and CA2 regions,
improved spatial memory, and an increase in nerve
growth factor.55 Reports also support distinct roles for the
respective TNF-� receptors. TNF-RI is associated with
neuronal damage and contains an intracellular death do-
main, allowing for the recruitment of the TRADD and
Fas-Associated protein with Death Domain (FADD) adap-
tor proteins that eventually activate pro-caspase 8.56

TNF-RII, which does not have a death domain, promotes
neuroprotective processes.57,58 Iosif et al59 reported that
TNF-RI, but not TNF-RII, is a negative regulator of neural
progenitor proliferation. They further substantiated the
role of TNF-� in neurogenesis by demonstrating that mice
lacking both TNF-RI and TNF-RII or only TNF-RI lead to
an increase of mature hippocampal neurons and en-
hanced cell proliferation in the dentate subgranular zone,
thereby indicating unique roles for each of the individual
receptors.59

However, in contrast to double TNF receptor or TNF-RI
KO mice, our 3xTg-ADxTNF-RI/RII KO mouse model has
extensive AD-associated pathological features and it is
likely that neurogenesis is greatly decreased given that in
mouse models expressing human APP or PS1 mutations
adult hippocampal neurogenesis is reduced.60–65 Fur-
thermore, 3xTg-AD mice demonstrate impaired neuro-
genesis in the DG of the hippocampus that is directly
associated with A� plaques, the number of hippocampal
neurons containing A� peptide, age, and cognitive de-
cline.66 Newly born neurons are integrated into existing
circuitry and may have functional implications in the adult
brain. Our previously mentioned findings describe elec-
trophysiological data depicting LTP deficits of 3xTg-

ADxTNF-RI/RII KO mice; if neurogenesis was unaltered, it
is unlikely that the differentiation and maturation of those
neurons would develop into functional cells because mul-
tiple extrinsic and intrinsic factors affect this process.
Some of these essential factors are perturbed in the set-
ting of AD. For example, Wnt signaling is highly involved
in adult neurogenesis, whereby �-catenin is required for
neuroprogenitor proliferation and glycogen synthase ki-
nase-3� inhibition drives neuronal differentiation.67 How-
ever, in AD, this pathway is compromised because of the
significantly elevated levels of glycogen synthase ki-
nase-3� activity, resulting in �-catenin depletion.68 In
addition, GABAergic transmission, which is also dysfunc-
tional in AD, can negatively affect neuronal morphologi-
cal features and function.69

Glial-derived factors are fundamental for the develop-
mental refinement of synapses. Synaptogenesis is highly
dependent on glial cell participation70,71; more specifi-
cally, astrocytes promote the formation and stability of
synapses by releasing extracellular soluble factors, in-
cluding thrombospondins72 and cholesterol.73 Microglial-
secreted TNF-� may modulate hippocampal synaptic
efficacy and strength through the up-regulation of gluta-
mate-driven 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)
propanoic acid (AMPA) receptors that are important in
rapid synaptic transmission, and blocking TNF-� signal-
ing consequently decreases AMPA receptor surface ex-
pression and synaptic strength.74 TNF-�–mediated reg-
ulation of AMPA receptor surface expression is finely
tuned in an integrin-dependent manner. Cingolani et al75

have demonstrated that �3 integrin controls the strength
of excitatory synapses by interacting with AMPA recep-
tors and that TNF-� increases �3 integrin surface expres-
sion in hippocampal pyramidal neurons. TNF-� may also
contribute to a phenomenon called synaptic scaling dur-
ing development, a regulatory form of plasticity. Homeo-
static synaptic scaling occurs to stabilize neural networks
by adjusting the strength of all synapses in a uniform
manner. Glial cells are able to detect changes in neuronal
network activity levels. Moreover, in response to activity
deprivation, glial-derived TNF-� modulates the excitation
of neurons and results in scaling up, and mice lacking
TNF-� exhibit deficient synaptic scaling in response to
blocking neural activity over an extended period.76 In
addition, neuronal TNF receptor signaling may afford
neuroprotective benefits at the synapse. Albensi and
Mattson77 reported that TNF receptor knockout mice
have impaired hippocampal CA1 LTD after low-fre-
quency stimulation of the Schaffer collateral axons, and
this process may depend on NF-�� signaling activity
because �� decoy DNA attenuated induction of LTP and
LTD. One possible mechanism by which TNF-� may pro-
mote synaptic plasticity is by regulating calcium and
glutamate responses; in the setting of AD, TNF-� pre-
treatment prevented A�-induced neuronal toxicity in vitro
by suppressing intracellular calcium responses to gluta-
mate.78,79 Furthermore, TNF receptor–deficient mice ex-
hibit increased neuronal vulnerability and oxidative stress
and reduced antioxidant enzyme levels during brain in-
jury induced by cerebral ischemia and epileptic seizures,
suggesting that TNF-� protects neurons from injury-in-

duced excitotoxicity and ischemia by up-regulating anti-
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oxidant signaling.80 Similarly, TNF-� stimulates manga-
nese superoxide dismutase activity, resulting in reduced
superoxide levels and increased stabilization of the mi-
tochondrial transmembrane potential, ultimately allowing
for more injury-resistant neurons.81 In aggregate, these
findings indicate that global ablation of TNF-� receptor
expression may have developmental and functional con-
sequences that alter neural network function/activity,
which would go undetected by gross quantitative analy-
ses of Nissl-stained brain tissue, as performed in our
current study.

Cytokines perform regulatory functions in hematopoi-
etic differentiation and proliferation by evoking stimula-
tory and inhibitory effects.82,83 TNF-� exhibits bifunc-
tional roles in hematopoietic development by harboring
both negative and positive regulatory capacities.84,85 Di-
rect inhibition is exerted by TNF-� to effect hematopoietic
bone marrow progenitors, whereby TNF-� down-regu-
lates high-affinity receptor expression to a potent growth
factor involved in the development of blood cells called
colony-stimulating factors.86 Furthermore, TNF-� has in-
hibited stem cell factor, another important hematopoietic
regulator of cell proliferation and differentiation of myeloid
progenitors.87 In concert with other cytokines, TNF-� is
able to potentiate to a high degree the proliferation of
primitive adult hematopoietic progenitors and block the
inhibitory functions of transforming growth factor-�, sug-
gesting that under stressful conditions during hematopoi-
etic development, TNF-� prevents transforming growth
factor-� inhibition and thereby allows for the maturation of
early progenitor cells in response to the need for addi-
tional adult blood cells.88 Following a similar concept,
TNF-� precipitates stimulatory effects indirectly by in-
ducing the production of hematopoietic growth factors,
including IL-689 and IL-1,90 that, in turn, promote col-
ony-stimulating factor receptor expression86 and hema-
topoietic cell proliferation. We have demonstrated that at
the age of 2 months, there are no statistically discernible
differences in the numbers of microglia between
3xTg-AD and 3xTg-ADxTNF-RI/RII KO mice and that
6-month-old 3xTg-AD mice harbor elevated numbers of
Iba1-positive microglia (Figure 4B). However, microglia
are of myeloid origin, being derived from hematopoietic
stem cell progenitors; because of the involvement of
TNF-� in hematopoietic development, there is a possibil-
ity that microglial cell population compositions are shifted
in 3xTg-ADxTNF-RI/RII KO mice compared with TNF-RI/
RII–expressing 3xTg-AD counterparts. Hence, 3xTg-
ADxTNF-RI/RII KO mice may be born with altered num-
bers or phenotypically distinct microglia compared with
3xTg-AD mice. Because we did not detect any changes
in the total number of microglia at early ages, it may be
that compensatory mechanisms are engaged to recon-
cile for the lack of TNF-� receptors, resulting in compa-
rable microglial numbers at the age of 2 months between
the two genotypes.

In addition to the up-regulation of TNF-� in AD, other
pro-inflammatory cytokines have been associated with
AD pathophysiological features, including IL-1�, IL-6,
and IL-8.1 Although much research has focused on the

detrimental contributions of these inflammatory mole-
cules to AD, pro-inflammatory cytokines may play protec-
tive roles during certain stages of the disease. For exam-
ple, IL-1� is a regulatory cytokine that is up-regulated in
the cerebral cortex of the AD brain.91 In a human APP
and PS1 mouse model of AD, IL-1� was overexpressed in
a regional and time-dependent manner, resulting in an
increase of GFAP- and Iba1-positive cells, with a concur-
rent reduction in plaque deposition and insoluble A�
levels.92 These data imply that early IL-1� overexpres-
sion results in a beneficial and protective effect and that
IL-1� may be required at certain stages of AD to reduce
amyloid deposition. Similarly, early overexpression of
IL-6, another pleiotropic pro-inflammatory cytokine ele-
vated in patients with AD, in APP transgenic TgCRND8
and Tg2576 mice induces enhanced gliosis and de-
creased A� pathological features.93 Furthermore, the
same group demonstrated increased microglial phago-
cytosis and elevated phagocytic marker expression, con-
cluding that IL-6 promotes A� clearance mediated by
microglial phagocytosis. Our results indicate that abro-
gation of TNF-� receptor signaling over a protracted pe-
riod intensifies extracellular A� deposition, whereby
3xTg-ADxTNF-RI/RII KO mice have elevated soluble
A�42, insoluble A�40, and insoluble A�42 protein levels
(Figure 6, E–G). Further examination of the soluble A�42

fraction demonstrated that 6-month-old 3xTg-ADxTNF-RI/
RII KO mice harbor an increase in A� oligomers (Figure
6H), which are the more toxic A� species associated with
neurodegeneration and dementia and correlate with syn-
aptic loss and cognitive decline.94–96 Moreover, 3xTg-
ADxTNF-RI/RII KO mice at the age of 15 months also
developed an increase in congophilic A� fibrils indicative
of more dense cored plaques compared with 3xTg-AD
mice (Figure 6, I–K). These results suggest that, at ear-
lier stages of AD progression, intact TNF-� signaling,
at least in one or more cell types, may be beneficial in
postponing the development of overt A�-related path-
ological features.

NFTs containing PHFs represent the second cardinal
lesion found in the AD brain. PHFs assemble from aber-
rantly hyperphosphorylated tau, a microtubule-associ-
ated protein involved in stabilizing the axonal transport
tracks during normal physiological processes.44,97,98

Upon hyperphosphorylation, tau is less able to bind and
stabilize microtubules, leading to self-aggregation of tau
into PHFs, cellular transport defects, synapse dysfunc-
tion, cognitive decline, and neuronal death.99,100 Mount-
ing evidence indicates that abnormal tau phosphorylation
is a key contributor to AD pathogenesis. In fact, phos-
phorylated tau at Ser231 and Ser235 is elevated in the
cerebrospinal fluid of patients with mild cognitive impair-
ment who eventually developed AD.101 Other studies
have reported that people without cognitive impairment
had reduced parahippocampal NFT and neuropil threads
compared with patients exhibiting mild cognitive impair-
ment or AD and that NFT pathological features and epi-
sodic memory deficits significantly correlated.102 Our
data demonstrate that 3xTg-ADxTNF-RI/RII KO mice
have accelerated PHF pathological features at the age of
15 months compared with 3xTg-AD mice, whereby con-

siderable PHF pathological features are not reported until
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the age of 26 months.31 These data suggest that TNF-�
signaling, via engagement of TNF-RI and/or TNF-RII, is
required to delay PHF aggregation and assembly. This
is relevant because neuronal death and tangle patho-
logical features appear to be better correlates of dis-
ease severity and cognitive dysfunction than amyloid
plaque deposition.103,104

Symptom-ameliorating strategies for AD have shown
limited clinical benefit, and no long-term disease-modify-
ing strategies for the treatment of this progressive and
debilitating disease exist. Symptomatic pharmacological
options for patients with AD include acetyl-cholinesterase
inhibitors or competitive blockers to glutamatergic NMDA
receptors with memantine.105,106 Unfortunately, such
treatments exhibit only clinically marginal cognitive and
functional improvements.107,108 Furthermore, in contrast
to previous epidemiological studies,109 prospective
randomized research has not demonstrated major dis-
ease-ameliorating effects for other agents, including
nonsteroidal anti-inflammatory drugs, estrogen, HMG-
CoA reductase inhibitors, or tocopherol. Recently, tran-
sient suppression of TNF-� signaling has attracted
some attention as a potential therapeutic strategy for
the treatment of AD. Efforts have included short-term
phase clearing of TNF-� using specific TNF-� decoy
receptors, which have shown cognitive improvements
in open-label phase 1 trials.27 Our current work directly
addresses the potential negative ramifications of long-
term use of TNF-� antagonists to intercede in AD
pathogenesis. We demonstrate that long-term sup-
pression of TNF-� receptor signaling without cell type
or stage specificity may suppress the ability of micro-
glia to effectively clear accumulating A� peptides,
thereby leading to an unintended increase in neuro-
toxic A� oligomers, amyloid deposition, and NFT path-
ological features. Taken together, these findings pro-
vide the foundation for developing therapeutic
strategies that modulate TNF-related signaling pro-
cesses in specific brain-resident cell populations
whose selection may differ depending on the stage of
disease targeted.
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