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Microglia, macrophage-like resident immune cells in the
brain, possess both neurotoxic and neuroprotective prop-
erties and have a critical role in the development of Alz-
heimer’s disease (AD). We examined the function of Inter-
leukin-34 (IL-34), a newly discovered cytokine, on
microglia because it reportedly induces proliferation of
monocytes and macrophages. We observed that the neu-
ronal cells primarily produce IL-34 and that microglia ex-
press its receptor, colony-stimulating factor 1 receptor.
IL-34 promoted microglial proliferation and clearance of
soluble oligomeric amyloid-� (oA�), which mediates syn-
aptic dysfunction and neuronal damage in AD. IL-34 in-
creased the expression of insulin-degrading enzyme, aid-
ing the clearance of oA�, and induced the antioxidant
enzyme heme oxygenase-1 in microglia to reduce oxida-
tive stress, without producing neurotoxic molecules. Con-
sequently, microglia treated with IL-34 attenuated oA�
neurotoxicity in primary neuron-microglia co-cultures. In
vivo, intracerebroventricular administration of IL-34 ame-
liorated impairment of associative learning and reduced
oA� levels through up-regulation of insulin-degrading en-
zyme and heme oxygenase-1 in an APP/PS1 transgenic
mouse model of AD. These findings support the idea that
enhancement of the neuroprotective property of micro-
glia by IL-34 may be an effective approach against oA�
neurotoxicity in AD. (Am J Pathol 2011, 179:2016–2027;

DOI: 10.1016/j.ajpath.2011.06.011)

Amyloid-� peptide (A�) is a key molecule in the patho-

genesis of Alzheimer’s disease (AD), and fibrillar A� is a

2016
major constituent of the senile plaques in AD. Recent
studies have demonstrated that, compared with fibrillar
A�, soluble oligomeric A� (oA�) exhibits greater neuro-
toxicity. Indeed, oA� inhibits hippocampal long-term po-
tentiation, facilitates long-term depression, and disrupts
synaptic plasticity.1,2 In addition, oA� induces neuronal
reactive oxygen species (ROS) by means of a mecha-
nism that requires NMDA (N-methyl-D-aspartate) receptor
activation.3

Microglia, macrophage-like cells in the central nervous
system, have a biphasic neurotoxic-neuroprotective role
in the pathogenesis of AD. Insofar as its neurotoxic prop-
erties, microglia may be involved in the inflammatory
component of AD.4 Both oA� and fibrillar A� stimulate
microglial secretion of proinflammatory cytokines,
chemokines, complement components, and free radi-
cals.5 Insofar as its neuroprotective properties, microglia
produce neurotrophic factors and phagocytose and de-
grade A�.6–8 We have previously demonstrated that mi-
croglia activated with toll-like receptor (TLR) 9 ligand
CpG attenuated oA� neurotoxicity.9 CpG enhanced mi-
croglial phagocytosis of oA� and induced higher levels of
the antioxidant enzyme heme oxygenase-1 (HO-1) in mi-
croglia without inducing neurotoxic molecules.

The novel cytokine Interleukin-34 (IL-34) is broadly ex-
pressed in various organs including heart, brain, lung,
liver, kidney, spleen, and colon.10 IL-34 stimulates prolif-
eration of monocytes and macrophages through the

Supported in part by the Global Center of Excellence program “Integrated
Functional Molecular Medicine for Neuronal and Neoplastic Disorders”
funded by the Ministry of Education, Culture, Sports, Science and Tech-
nology of Japan and by the Program for Promotion of Fundamental Stud-
ies in Health Sciences of the National Institute of Biomedical Innovation
(NIBIO).

Accepted for publication June 17, 2011.

T.S. and Y.D. contributed equally to this work.

Supplemental material for this article can be found on http://ajp.
amjpathol.org or at doi:10.1016/j.ajpath.2011.06.011.

Address reprint requests to Tetsuya Mizuno, M.D., Ph.D., Department
of Neuroimmunology, Research Institute of Environmental Medicine, Na-
goya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan. E-mail:

tmizuno@riem.nagoya-u.ac.jp.

http://ajp.amjpathol.org
http://ajp.amjpathol.org
mailto:tmizuno@riem.nagoya-u.ac.jp
http://dx.doi.org/10.1016/j.ajpath.2011.06.011


Microglial Neuroprotection by IL-34 2017
AJP October 2011, Vol. 179, No. 4
colony-stimulating factor 1 receptor (CSF1R), which is
also shared by colony-stimulating factor 1. However, the
function of IL-34 in the central nervous system and its
producing cells remains uncertain. Herein, we demon-
strate that IL-34, primarily produced by neurons, pro-
motes microglial proliferation and that microglia treated
with IL-34 attenuate the neurotoxic effects of oA�1-42 in
vitro. Moreover, intracerebroventricular (ICV) administra-
tion of IL-34 ameliorates the impairment of associative
learning in an APP/PS1 transgenic mouse model of AD.

Materials and Methods

Animals

All protocols for the animal experiments were approved
by the Animal Experiment Committee of Nagoya Univer-
sity. APP/PS1 transgenic mice expressing mutant vari-
ants of human APP and PS1 [B6C3-Tg(APP695)3Dbo
Tg(PSEN1)5Dbo/J] were purchased from Jackson Labo-
ratory (Bar Harbor, ME). APP/PS1 transgenic mice used
had been backcrossed with C57BL/6J mice for more than
10 generations.

Cell Culture

Primary neuronal cultures were prepared from the corti-
ces of embryonic day 17 C57BL/6 mouse embryos as
described previously.9 In brief, cortical fragments were
dissociated into single cells in dissociation solution and
resuspended in nerve culture medium (both from Sumi-
tomo Bakelite Co., Ltd., Akita, Japan). Neurons were
plated onto 12-mm polyethyleneimine-coated glass cov-
erslips (Asahi Techno Glass Corp., Chiba, Japan) at a
density of 5 � 104 cells per well in 24-well multidishes
and incubated at 37°C in a humidified atmosphere con-
taining 5% CO2. The purity of the cultures was more than
95% as determined by NeuN-specific immunostaining.
Using the “shaking off” method described previously,11

microglia were isolated on day 14 in vitro from primary
mixed glial cell cultures prepared from newborn C57BL/6
mice. Cultures were 97% to 100% pure, as determined at
Fc receptor–specific immunostaining, and were main-
tained in Dulbecco’s modified Eagle’s medium supple-
mented with 10% fetal calf serum, 5 �g/mL bovine insulin,
and 0.2% glucose. Microglia were plated at a density of
7 � 104 cells per well in 8-well glass slides or at a density
of 7 � 104 cells per well in 96-well multidishes. Neuron-
microglia co-cultures were prepared as follows: 7 � 104

microglia in 50 �L neuronal medium were added to neu-
ronal cultures (5 � 104 neuronal cells) on day 13 in vitro
in 24-well multidishes.

Preparation of A� Solutions

oA�1-42 was prepared as described previously.12 In
brief, A�1-42 (Peptide Institute, Inc., Osaka, Japan) was
dissolved in 100% HFIP (1,1,1,3,3,3-hexafluoro-2-propa-
nol) to make a 1-mmol/L solution. HFIP was dried in a

vacuum desiccator and resuspended to a concentration
of 5 mmol/L in dimethyl sulfoxide. To form oligomers,
amyloid peptide was diluted to a final concentration of
100 �mol/L in Ham’s F-12 medium and incubated at 4°C
for 24 hours, then immediately added to cultures at a final
concentration of 5 �mol/L.

Real-Time RT-PCR

Total RNA was extracted from microglia, neurons, and as-
trocytes using an RNeasy Mini Kit (Qiagen KK, Tokyo, Ja-
pan). cDNA synthesis was performed using SuperScript II
(Invitrogen Corp., Carlsbad, CA). Real-time PCR of the
gene transcripts of mouse IL-34, CSF1R, and GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) was per-
formed using a Rotor-Gene Q (Quiagen, Inc., Valencia,
CA) with a Power SYBR Green PCR Master Mix (Applied
Biosystems, Inc., Foster City, CA). The following primers
were used: for IL-34, forward 5=-CTTTGGGAAACG-
AGAATTTGGAGA-3= and reverse 5=-GCAATCCTGTAGT-
TGATGGGGAAG-3=; for CSF1R, forward 5=-GCAGTAC-
CACCATCCACTTGTA-3= and reverse 5=-GTGAGACAC-
TGTCCTTCAGTGC-3=; and for GAPDH, forward 5=-TGT-
GTCCGTCGTGGATCTGA-3= and reverse 5=-CCTGC-
TTCACCACCTTCTTGA-3=.

BrdU Proliferation Assay

To assess the proliferation of microglia by IL-34, we used
a BrdU (5=-bromo-2=-deoxyuridine) proliferation assay kit
(Calbiochem, San Diego, CA). Microglia were plated at a
density of 7 � 104 cells per well (200 �L) in 96-well
multidishes and treated with 1, 10, 25, 50, or 100 ng/mL
IL-34 (R&D Systems, Inc., Minneapolis, MN) or 100
ng/mL IL-34 plus 1 �mol/L c-Fms/CSF1R tyrosine kinase
inhibitor GW2580 (Calbiochem). After 24 hours of incu-
bation, BrdU was added, and cells were incubated for an
additional 24 hours. The incorporated BrdU microglia
were fixed, and DNA was denatured, after which BrdU
was detected using anti-BrdU monoclonal antibody. Ab-
sorbance was measured using a spectrophotometric
plate reader at dual wavelengths of 450 to 540 nm.

Measurement of HO-1, Matrix
Metalloproteinase-9, Tumor Necrosis Factor-�,
NO, and Glutamate

To measure factors produced by microglia treated with
IL-34, microglia were plated at a density of 7 � 104 cells
per well (200 �L) in 96-well multidishes and treated with
1, 10, 25, 50, or 100 ng/mL IL-34 with or without 5 �mol/L
oA� for 24 hours. Supernatants from microglia were as-
sessed using enzyme-linked immunosorbent assay
(ELISA) kits for tumor necrosis factor-� (BD Pharmingen,
BD Biosciences, Franklin Lakes, NJ) and matrix metallo-
proteinase-9 (R&D Systems, Inc.). Cell extracts from mi-
croglia in extraction buffer (1% NP40 in PBS) were mea-
sured for HO-1 using an ELISA kit (Takara Bio, Inc., Mie,
Japan). Measurement of NO was determined using the

Griess reaction.13 To measure glutamate, the glutamate
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assay kit colorimetric assay (Yamasa Corp., Chiba, Ja-
pan) was used, as described previously.14

Measurement of Insulin-Degrading Enzyme

To measure the enzyme activity of insulin degrading en-
zyme (IDE), microglia were plated at a density of 7 � 104

cells per well (200 �L) in 96-well multidishes and treated
with 1, 10, 25, 50, or 100 ng/mL IL-34 for 24 hours. Cell
extracts from microglia were analyzed using an IDE im-
munocapture activity assay kit (InnoZyme; Calbiochem).

Measurement of ROS

To measure ROS in neuron-microglia co-cultures, we
used the acetate ester form of H2DCFDA-AM (2=,7=-di-
chlorofluorescein diacetate) probe (Invitrogen Corp.). Af-
ter neuron-microglia co-cultures were treated with or
without 100 ng/mL IL-34 for 3 hours, cells were loaded
with dye by replacing the medium with fresh nerve culture
medium containing 5 �mol/L H2DCFDA-AM for 30 min-
utes. After washing, culture medium containing 5 �mol/L
oA�1-42 was added, and the fluorescence of the wells
was measured using a Wallac 1420 ARVOMX (PerkinElmer
Japan Co., Ltd., Yokohama, Japan).

Immunocytochemistry

Neuronal, microglial, and neuron-microglia co-cultures
were fixed using 4% paraformaldehyde for 30 minutes at
room temperature, blocked using 5% normal goat serum
in PBS, and permeabilized using 0.3% Triton X-100. Neu-
rons were stained using rabbit polyclonal anti–microtu-
bule-associated protein 2 (MAP-2) antibody (1:500; Mil-
lipore Corp., Billerica, MA) and secondary antibodies
conjugated to Alexa 488 (1:1000; Invitrogen Corp.). Syn-
thetic A� was stained using a mouse monoclonal anti-A�
antibody (4G8) (1:1000; Chemicon International, Inc., Te-
mecula, CA) and secondary antibodies conjugated to
Alexa 568 or Alexa 647 (1:1000; Invitrogen Corp.). Mouse
IgG was used as a negative control. Microglia were
stained using Alexa 488– or Alexa 647–conjugated rat
anti-mouse CD11b monoclonal antibody (1:300; Invitro-
gen Corp.) before fixation. CSF1R was stained using
rabbit polyclonal anti-Fms/CSF1R antibody (1:200; Milli-
pore Corp.) and secondary antibodies conjugated to Al-
exa 488 (1:1000). Images were analyzed using a decon-
volution fluorescent microscope system (BZ-8000;
Keyence Corp., Osaka, Japan). To assess neuronal
death induced by A�, purified neurons (5 � 104 cells per
well) were plated in 24-well multidishes. oA�1-42, 5
�mol/L, was added to the cultures on day 13 in vitro for 24
hours. To assess neuronal death in neuron-microglia co-
cultures, 3 hours after treatment with or without IL-34, 5
�mol/L oA�1-42 was added to cultures for 24 hours.
Surviving neurons were identified by observing the cyto-
skeletal structure of neurons, as previously described.8

Viable neurons stained strongly with an anti–MAP-2 anti-
body, whereas damaged neurons stained more weakly.
The number of MAP-2–positive neurons was counted in

10 random fields per well. More than 200 neurons were
examined by a scorer blinded to the experimental con-
dition (T.M.). The number of untreated viable neurons
was normalized to 100%.

Western Blot Analysis

For detection of IL-34 protein, cell lysates of mouse mi-
croglia, neurons, and astrocytes were obtained from pri-
mary cultures. Recombinant mouse IL-34 was used as a
positive control, and neuronal lysates in which IL-34 was
knocked down by IL-34 small-interfering RNA (siRNA)
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA) were
obtained. For detection of oA�, neuronal cultures were
treated with 5 �mol/L oA�1-42 for 24 hours. Neuron-
microglia co-cultures were pretreated with IL-34 for 3
hours before addition of 5 �mol/L oA�1-42 for 24 hours.
The supernatants of these cultures were collected. oA� in
10-month-old APP/PS1 mouse brain was extracted from
the soluble extracellular-enriched fraction as described
previously.15 Hemi-forebrains were harvested in 500 �L
solution containing 50 mmol/L Tris-HCl (pH 7.6), 0.01%
NP-40, 150 mmol/L NaCl, 2 mmol/L EDTA, 0.1% SDS,
and protease inhibitor cocktail (Sigma-Aldrich Corp., St.
Louis, MO). Soluble extracellular-enriched proteins were
collected from mechanically homogenized lysates after
centrifugation for 5 minutes at 1000 � g. Collected sam-
ples were mixed with sample buffer (200 mmol/L Tris-
HCl, 8% SDS, and 1% glycerol). Proteins were separated
on a 5% to 20% Tris-glycine SDS-polyacrylamide gel and
transferred to a Hybond-P polyvinylidene difluoride mem-
brane (GE Healthcare UK Ltd., Little Chalfont, Bucking-
hamshire, England). Membranes were blocked using 1%
skim milk in Tris-buffered saline solution containing
0.05% Tween 20. Blots were incubated in sheep anti-
mouse IL-34 antibody (1:500; R&D Systems, Inc.) or
mouse anti-A� monoclonal antibody (6E10) (1:1000;
Chemicon International, Inc.) diluted in 1% skim milk
overnight at 4°C. Subsequently, membranes were
washed in TBS–Tween 20 for 3 � 5 minutes and incu-
bated with a horseradish peroxidase–conjugated anti-
sheep IgG (1:50,000; Invitrogen Corp.) or anti-mouse IgG
(1:5000; GE Healthcare UK Ltd.) diluted in 1% skim milk
for 1 hour. After washing in TBS–Tween 20 for 1 � 15
minutes and 2 � 5 minutes, and Tris-buffered saline
solution for 1 � 5 minutes, signals were visualized using
SuperSignal West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific, Inc., Rockford, IL). The inten-
sity of the bands was calculated using a CS Analyzer 1.0
(Atto Corp., Tokyo, Japan).

IL-34 and oA� in mouse brains were also measured
using ELISA kits (USCN Life Science, Inc, Wuhan, China,
and Immuno-Biological Laboratories Co., Ltd, Takasaki,
Japan, respectively).

Cued and Contextual Fear Conditioning Tests in
an APP/PS1 Mouse Model of AD

Female mice aged 10 months were used in behavioral
experiments. Wild-type (WT) age-matched controls were

littermates of the APP/PS1 mice. Mice were anesthetized
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using 50 mg/kg sodium pentobarbital i.p. before stereo-
taxic implantation of a microinjection cannula into the
right lateral ventricle (anteroposterior �0.3 mm, medio-
lateral 1.0 mm from the bregma, and dorsoventral 2.5 mm
from the skull) according to the method of Franklin and
Paxinos.16 IL-34 was dissolved in PBS at a concentration
of 3 �g/mL and injected in a volume of 3 �L for 3 minutes.
The same volume of PBS was injected into the vehicle
mice. One week after injection, behavioral testing was
begun.

Cued and contextual fear conditioning tests were
performed using a previously reported method,17 with
minor modifications. For measuring basal levels of
freezing response (preconditioning phase), mice were
individually placed in a neutral cage (Plexiglas box
with abundant wood chips, 30 cm wide � 30 cm long �
40 cm high) for 1 minute, then in the conditioning cage
(transparent Plexiglas box, 30 � 30 � 40 cm) for 2
minutes. For training (conditioning phase), mice were
placed in the conditioning cage, and a 15-second tone
(80 dB) was delivered as a conditioned stimulus. Dur-
ing the last 5 seconds of the tone stimulus, a 0.6-mA
shock to the foot was delivered as an unconditioned
stimulus via a shock generator (Neuroscience Idea
Co., Ltd., Osaka, Japan). This procedure was repeated
four times, at 15-second intervals. Cued and contex-
tual tests were performed at 1 day after fear condition-
ing. For the contextual test, mice were placed in the
conditioning cage, and their freezing response was
measured for 2 minutes in the absence of the condi-
tioned stimulus. For the cued test, the freezing re-
sponse was measured in the neutral cage for 1 minute
in the presence of a continuous-tone stimulus identical
to the conditioned stimulus.

Immunohistochemistry

Immunohistochemistry was performed on mouse brain
tissue after the cued and contextual fear conditioning
tests. Under deep anesthesia, mice were transcardially
perfused using ice-cold borate-buffered 4% parafor-
maldehyde. After decapitation, their brains were rap-
idly removed. Brains were then postfixed overnight in
periodate lysine paraformaldehyde, equilibrated in
phosphate-buffered 20% sucrose for 48 hours, embed-
ded in Tissue Tek O.C.T. compound (Sakura Finetech-
nical Co., Ltd., Tokyo, Japan), and frozen at �80°C
overnight. Coronal brain sections (20 �m) were cut
using a cryostat. The sections were permeabilized us-
ing 1% Triton X-100 after blocking with 10% normal
goat serum for 30 minutes. The cell nucleus was
stained using 1 �g/mL Hoechst 33342 (Invitrogen
Corp.). A� was stained using a mouse monoclonal
anti-A� antibody (4G8) (1:1000, Chemicon Interna-
tional, Inc.) and secondary antibodies conjugated to
Alexa 488. Microglia were stained using a rat anti-
mouse CD11b monoclonal antibody (1:1000; AbD Se-
rotec Ltd., Oxford, UK) and secondary antibodies con-
jugated to Alexa 568. Similarly, IL-34 was stained using
rabbit polyclonal anti–IL-34 antibody (1:500; ProSci,

Inc., Poway, CA) and secondary antibodies conju-
gated to Alexa 488. Specificity of anti–IL-34 antibody
has been validated previously.18 Neurons were stained
using rabbit polyclonal anti–MAP-2 antibody (1:500)
and secondary antibodies conjugated to Alexa 568.
Images were collected and analyzed using a decon-
volution fluorescent microscope system. A� load in
immunostained tissue sections was quantified using a
BZ-Analyzer (Keyence Corp.) as reported previously.19

Seven sections per animal were analyzed. The total A�
burden was quantified for the hippocampus in coronal
plane sections stained using the monoclonal antibody
4G8. Test areas (600 � 400 �m) were randomly se-
lected, and the total A� burden was calculated as a
percentage of the test area occupied by A�. The mi-
croglia load was also quantified for near plaques and
in non–plaque-containing areas in the hippocampus of
vehicle- and IL-34-treated APP/PS1 transgenic mice.
Microglia were stained using a rat anti-mouse CD11b
monoclonal antibody and secondary antibodies conju-
gated to Alexa 568. Test areas (450 � 300 �m) were
randomly selected, and the total microglia burden was
calculated as a percentage of the test area occupied
by microglia.

Statistical Analysis

The statistical significance of the biochemical experi-
ments and the behavioral data were assessed using the
Student’s t-test or one-way analysis of variance followed
by Tukey’s post hoc test using commercially available
software (PRISM version 5.0; GraphPad Software, Inc.,
San Diego, CA).

Results

IL-34 Is Produced by Neuronal Cells and
Promotes Microglial Proliferation

IL-34-producing cells and their target effector cells in the
central nervous system were investigated. In primary
neuron, microglia, and astrocyte cultures, IL-34 mRNA
was expressed primarily in neurons and astrocytes but
not in microglia, as determined using real-time RT-PCR
(Figure 1A). However, using Western blog analysis, IL-34
protein was detected primarily in neurons (Figure 1B).
Expression of IL-34 in neurons was decreased by siRNA
knock-down (see Supplemental Figure S1, A and B, at
http://ajp.amjpathol.org). mRNA for CSF1R, an IL-34 re-
ceptor,10 was expressed in microglia but not in neurons
and astrocytes (Figure 1C). Microglial CSF1R expres-
sion was confirmed using immunocytochemistry (Figure
1D). Next examined was the effect of IL-34 on the prolif-
eration of microglia. Results from immunocytochemistry
and a BrdU proliferation assay revealed that treatment of
IL-34 for 48 hours significantly enhanced microglial pro-
liferation in a dose-dependent manner and that addition
of 1 �mol/L c-Fms/CSF1R tyrosine kinase inhibitor
GW2580 inhibited microglial proliferation by IL-34 (Figure

1, E and F).

http://ajp.amjpathol.org
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Microglia Treated with IL-34 Attenuate oA�

Neurotoxicity in Primary Neuron-Microglia
Co-Cultures

To define the functional roles of IL-34, we evaluated the
effects of IL-34 on neuronal survival against the neu-
rotoxicity of oA�1-42 in neuron-microglia co-cultures
and neuron cultures. In unstimulated neuron-microglia
co-cultures, neurons stained using anti–MAP-2 anti-
body exhibited no detectable morphologic abnormali-
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IL-34–Treated Microglia Increase Clearance of
oA�1-42 via Up-Regulation of A�-Degrading
Enzyme IDE

To elucidate the mechanisms of neuroprotection by IL-
34–treated microglia, we examined whether IL-34 in-
creased microglial clearance of oA�1-42, which is medi-
ated by degradation and phagocytosis of oA�.

Western blot analysis revealed that treatment with 100
ng/mL IL-34 decreased the amount of 4-, 8-, and 12-mer
oA�1-42 in neuron-microglia co-cultures, with the most
significant decrease in 12-mer oA� (Figure 3A). Semi-
quantification of oA�1-42 was performed via densitomet-
ric analysis, and revealed that 12-mer of oA� decreased
significantly (Figure 3B). Next, the enzyme activity of zinc
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metalloprotease insulin IDE, known as A�-degrading en-
zyme, was analyzed using an InnoZyme IDE immunocap-
ture activity assay kit. Treatment with 100 ng/mL IL-34
significantly enhanced enzyme activity of IDE in micro-
glia. The effect was inhibited by 1 �mol/L GW2580. The
addition of 100 �g/mL insulin, the competitive IDE sub-
strate, in neuron-microglia co-cultures treated with oA�
and IL-34 canceled the reduction of oA�1-42 by IL-34
(Figure 3C). Matrix metalloproteinase-9, another major
A�-degrading enzyme, was not enhanced in IL-34–
treated microglia (Figure 3D).

Next examined was the effect of IL-34 on the microglial
phagocytosis of oA� by means of immunostaining for the
phagocytic marker Rab7 protein, which correlates with
phagosome maturation. Engulfed A� was co-localized
with Rab-7 in phagocytic microglia. Twenty percent of
microglia were phagocytic in the unstimulated condition.
IL-34 did not enhance microglial phagocytosis of
oA�1-42 (Figure 3, E and F). Phagocytosed intracellular
oA� was examined using an enzyme immunoassay.
There was no significant change (data not shown).

IL-34–Treated Microglia Produce the
Antioxidant Enzyme HO-1 and Release Fewer
Neurotoxic Molecules

Because oxidative stress is involved in the neurotoxicity
of oA�1-42, we examined whether IL-34–treated micro-
glia exhibited an antioxidant effect. IL-34 induced the
antioxidant enzyme HO-1 in microglia in a dose-depen-
dent manner, with a significant increase at 10, 25, 50, and
100 ng/mL (Figure 4A). The effect was inhibited by 1
�mol/L GW2580. ROS production was enhanced by
treatment with 5 �mol/L oA� in the neuron-microglia co-
cultures. The addition of 100 ng/mL IL-34 significantly
suppressed oA�-induced ROS production (Figure 4B).

To determine whether HO-1 contributes to the neuro-
protective effects of IL-34–activated microglia, we ap-
plied the specific HO-1 inhibitor SnMP-9 (tin-mesopor-
phyrin IX). The neuroprotective effect of IL-34 was
abolished by treatment with 10 �mol/L SnMP-9 (Figure 4,
C and D). Also investigated was whether IL-34–treated
microglia produce neurotoxic molecules such as tumor
necrosis factor-�, nitrite, and glutamate. IL-34 did not
induce these toxic molecules in microglia with or without
oA� stimulation (Figure 4, E–G).

ICV Injection of IL-34 Ameliorates Impairment of
Associative Learning and Reduces oA� Levels
in an APP/PS1 Transgenic Mouse Model of AD

We examined the effect of IL-34 in vivo, specifically,
whether ICV administration of IL-34 improves the cogni-
tive function in the APP/PS1 transgenic mouse, a model
of AD. The associative learning of mice was examined at
age 10 months using the cued and contextual fear con-
ditioning tests. In the contextual learning test, WT mice
demonstrated a marked contextual freezing response at
24 hours after fear conditioning. Vehicle (PBS)–injected
APP/PS1 transgenic mice exhibited less freezing re-

sponse in the contextual tests, indicating impairment of
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associative learning. However, the single IL-34–injected
APP/PS1 transgenic mice demonstrated a freezing re-
sponse that was indistinguishable from that in WT mice
(Figure 5A). Thus, IL-34 treatment significantly reversed
the contextual freezing response as compared with that
in vehicle-injected APP/PS1 transgenic mice (Figure 5A).
In the cued (tone) learning test, there was a significant
decrease in the freezing response in vehicle-injected
APP/PS1 transgenic mice at 24 hours after fear condition-
ing as compared with that in WT mice. Again, injection of
IL-34 reversed the cued freezing response (Figure 5B).
No alterations in nociceptive response were observed in
any of the mutant mice; there was no difference in the
minimal current required to elicit flinching, running, jump-
ing, or vocalization in the mice. Moreover, the effect of
continuous intraventricular infusion of IL-34 using a mi-
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cro-osmotic pump was examined.20 The results demon-
strated similar effects of a single ICV injection of IL-34
(see Supplemental Figure S2 at http://ajp.amjpathol.org).

We then examined whether IL-34 decreased A� de-
posits in the hippocampus of APP/PS1 mice. A� deposits
and clustered microglia were detected in the hippocam-
pus of vehicle-injected APP/PS1 transgenic mice. ICV
injection of IL-34 did not affect the number and size of A�

deposits (Figure 5, C and D). However, measurement of
oA� using an ELISA revealed that IL-34 treatment de-
creased oA� in the hemi-forebrains of APP/PS1 trans-
genic mice and that 1 �mol/L GW2580 inhibited the effect
(Figure 5E). Next, 12-mer oA�, which correlates with
memory dysfunction in the mouse model of AD,15 and
8-mer in the soluble extracellular-enriched fractions of the
hemi-forebrains of mice were analyzed using Western
blot analysis. Compared with vehicle-injected APP/PSI
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significant decrease in 8-mer and 12-mer oA� (Figure 5,
F and G).

ICV Injection of IL-34 Enhances Microglial
Accumulation and Production of HO-1 and IDE

Microglia cell numbers near plaques and in non–plaque-
containing areas of vehicle- and IL-34–treated APP/PS1
transgenic mice were evaluated as microglia load. Micro-
glia accumulated around the plaques in both vehicle-
and IL-34–treated mice. However, microglia load was
significantly increased near plaques and in non–plaque-
containing areas in IL-34–treated mice compared with
vehicle-treated mice (Figure 6,A and B). While IDE and
HO-1 were decreased in vehicle-injected APP/PS1 trans-
genic mice as compared with WT mice, ICV injection of
IL-34 significantly increased IDE and HO-1 production
(Figure 6, C and D). Intrinsic IL-34 was detected in neu-
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(Figure 6F).

Discussion

The dimeric glycoprotein IL-34, discovered by means
of functional screening of an extracellular proteome, is
broadly expressed in various organs including the
brain.10 We show herein for the first time that neurons
produce IL-34. The major function of IL-34 is to stimu-
late the differentiation and proliferation of monocytes
and macrophages via CSF1R. The study was focused
on the monocytic lineage of microglia as target cells of
IL-34 in the central nervous system. As expected, IL-34
enhanced proliferation of microglia that expressed
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duced IL-34. Recent reports have suggested that neu-
rons are not merely passive targets of microglia; rather,
they control microglial activity by means of various
signals including cytokines and chemokines.21 IL-34
may also be a neuronal cytokine that regulates micro-
glial function.

AD begins with subtle alterations of hippocampal syn-
aptic efficacy before obvious neuronal degeneration. The
synaptic dysfunction is caused by diffusible oA�.22 Al-
though the precise molecular mechanisms of how oA�
disturbs neuronal function are unknown, calcium dys-
regulation, membrane disruption,23 and oxidative stress
mediated by an NMDA receptor24 are involved in the
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pathogenesis of oA�. Thus, decreasing or preventing
formation of oA� may be a potential therapeutic strategy
against AD.

The present study revealed a novel function of IL-34,
namely, microglial neuroprotection against oA� toxicity.
The neuroprotective effect of IL-34 was mediated via
microglial clearance of oA� and antioxidant functions.
Western blot analysis revealed that microglia treated with
IL-34 reduced the amount of oA� present in the super-
natant of neuron-microglia co-cultures. Clearance of oA�
is mediated primarily via degradation and phagocytosis.
It was observed that IL-34 induced A� degrading en-
zyme IDE in microglia. The reduction of oA� was inhibited
by insulin, a competitive IDE substrate. Therefore, IDE
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in determining the level of A�. Hippocampal IDE protein
and activity are reduced in AD.25 The enhanced IDE
activity in IDE and APP double-transgenic mice de-
creased A� levels and prevented formation of AD patho-
logic features.26 Whereas matrix metalloproteinase-9 is
also a major protease that degrades A�, IL-34 did not
increase the production of matrix metalloproteinase-9 in
microglia. Previous studies have demonstrated that the
TLR signaling pathways contribute to phagocytosis of
A�. Specifically, TLR2,27 TLR4,28 and TLR99 enhance the
phagocytic activity of microglia. In the present study,
IL-34 did not enhance microglial phagocytosis of oA�.
However, it is possible that IL-34-treated microglia take
up oA� through fluid-phase macropinocytosis as re-
ported.29

In addition, we observed that IL-34 is a potent inducer
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of the antioxidant enzyme HO-1 and that IL-34 sup-
pressed oA�-induced ROS. HO-1 oxidatively cleaves
heme to produce biliverdin, CO, and iron.30 These end-
products provide cellular and tissue protection through
anti-inflammatory, anti-apoptotic, or antioxidative ef-
fects.31 Because the neuroprotective effect of IL-34 was
abolished by treatment with the HO-1 inhibitor SnMP,
up-regulation of HO-1 in microglia by treatment with IL-34
may lead to neuroprotection against oA� toxicity through
suppression of ROS. Moreover, less induction of neuro-
toxic molecules such as tumor necrosis factor-�, NO, and
glutamate in microglia may also contribute to neuropro-
tection by IL-34.

The effect of IL-34 on oA�1-42 neurotoxicity in vivo was
examined. Impairment of associative learning in an APP/
PS1 transgenic mouse model of AD was effectively sup-
pressed by a single ICV injection of IL-34. At immunohis-
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APP/PS1 transgenic mice. ICV injection of IL-34 in-
creased the microglial load and production of HO-1 and
IDE. Although A� deposits were not affected, ICV injec-
tion of IL-34 significantly decreased 8-mer and 12-mer
oA� in the soluble extracellular-enriched fractions of the
hemi-forebrains of APP/PS1 transgenic mice. It has been
reported that 12-mer oA� impairs memory independent
of plaques or neuronal loss and, furthermore, contributes
to the cognitive deficits associated with AD.15 A�
plaques are reported to form extraordinarily quickly, over
24 hours. Within 1 to 2 days of the appearance of a new
plaque, microglia are activated and recruited to the
site.32 Therefore, a single ICV injection of IL-34 may act
directly on microglia, and microglia can rapidly eliminate
oA� by means of up-regulation of IDE and exert an anti-
oxidant effect via HO-1.

CSF1, another ligand of CSF1R, is a macrophage-
colony stimulating factor (M-CSF). M-CSF enables acid-
ification of their lysosomes and, subsequently, degrada-
tion of internalized A�.33 Intraperitoneal injection of
M-CSF prevented memory disturbance in APP/PS1 mice.
Senile plaques were smaller, and microglia phagocyto-
sed A� in the brain of mice treated with M-CSF.34 These
data indicate that the mechanism of neuroprotection by
IL-34 is different from that of M-CSF. Recent reports have
demonstrated that IL-34 and M-CSF differ in their struc-
ture and the CSF1R domains that they bind, which
causes different bioactivities and signal activation kinet-
ics.35 IL-34 induces stronger but transient tyrosine phos-
phorylation of CSF1R and downstream molecules. The
different spatiotemporal expression of IL-34 and CSF1
enables complementary activation of CSF1R in develop-
ing and adult tissues.36

Considered together, observations from the present
study demonstrate that IL-34 drives microglia to a neuro-
protective state. Enhancement of microglial neuroprotec-
tive properties is a useful therapeutic strategy in oA�1-42
neurotoxicity in AD.
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