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In multiple sclerosis (MS), myelin-specific T cells are
normally associated with destruction of myelin and
axonal damage. However, in acute MS plaque, remy-
elination occurs concurrent with T-cell infiltration,
which raises the question of whether T cells might
stimulate myelin repair. We investigated the effect of
myelin-specific T cells on oligodendrocyte formation
at sites of axonal damage in the mouse hippocampal
dentate gyrus. Infiltrating T cells specific for myelin
proteolipid protein stimulated proliferation of chon-
droitin sulfate NG2–expressing oligodendrocyte pre-
cursor cells early after induction via axonal transec-
tion, resulting in a 25% increase in the numbers of
oligodendrocytes. In contrast, T cells specific for
ovalbumin did not stimulate the formation of new
oligodendrocytes. In addition, infiltration of myelin-
specific T cells enhanced the sprouting response of
calretinergic associational/commissural fibers within
the dentate gyrus. These results have implications
for the perception of MS pathogenesis because they
show that infiltrating myelin-specific T cells can
stimulate oligodendrogenesis in the adult central
nervous system. (Am J Pathol 2011, 179:2028–2041; DOI:

10.1016/j.ajpath.2011.06.006)

T cell infiltration, demyelination, and axonal damage are
central pathologic features of multiple sclerosis (MS).
Whereas the primary immune attack on oligodendro-
cytes and myelin is effected by T cells,1,2 remyelination
occurs in acute plaques, also in the presence of T
cells.3,4 Remyelination depends on chondroitin sulfate
NG2–expressing adult oligodendrocyte precursor cells
(OPCs).5,6 OPCs retain the capacity to proliferate and
differentiate into myelinating oligodendrocytes in re-
sponse to toxic or inflammatory demyelination7–9 and

other forms of central nervous system (CNS) injury such

2028
as ischemia,10 spinal cord injury,11,12 axonal lesions,13,14

and inflammation.15 During differentiation, OPCs down-
regulate NG2 as cells acquire markers of mature oligo-
dendrocytes such as 2=,3=-cyclic nucleotide 3=-phos-
phodiesterase (CNP).16

The axonal damage that occurs within and distal to
the acute MS lesion can be modeled in the hippocam-
pal dentate gyrus by transection of the perforant path-
way (PP), resulting in degeneration of the PP axons and
their myelin sheaths in the outer part of the molecular
layer.17–19 PP lesions also induce proliferation of OPCs,
which results in formation of new oligodendrocytes.14

These newly formed oligodendrocytes are presumed to
myelinate the axonal sprouts that extend from other af-
ferent fiber systems in the dentate gyrus20,21 such as the
associational/commissural afferents from the calretiner-
gic hilar mossy cells.20,22,23 Indeed, in stratum radiatum
of the hippocampal CA3 region, lesion-induced axonal
sprouting is associated with formation of more oligoden-
drocytes and more myelin.24

Because remyelination ultimately fails in MS,25 it is
assumed that autoimmune demyelination reduces the ca-
pacity for myelin repair.26,27 We investigated the effect of
myelin-specific T cells on the formation of oligodendro-
cytes in the dentate gyrus of mice subjected to PP tran-
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section. Via adoptive transfer of T cells specific for myelin
proteolipid protein (PLP) before axonal lesioning, infiltra-
tion of T cells into the dentate gyrus was significantly
enhanced, compared with limited T-cell infiltration in PP-
lesioned mice with adoptive transfer of ovalbumin (OVA)–
specific T cells or lesioned naïve mice. A significantly
higher increase in the number of postproliferative oligo-
dendrocytes was observed in the PP-lesioned TPLP-recip-
ient mice than in PP-lesioned TOVA-recipient and naïve
mice. Furthermore, the increased oligodendrogenesis
was preceded by increased proliferation of NG2� OPCs
in the dentate gyrus. These changes correlated with an
increased clearance of myelin debris and increased
sprouting of calretinergic associational/commissural fi-
bers. Our results demonstrate that myelin-specific T cells
can stimulate oligodendrogenesis in vivo.

Materials and Methods

Animals

Female SJL mice aged 8 to 10 weeks were obtained from
Taconic Europe A/S (Ejby, Denmark) and maintained in a
pathogen-free temperature- and humidity-controlled en-
vironment with a 12-hour light-dark cycle, and were pro-
vided with food and water ad libitum. Experiments were
approved by the National Danish Animal Care Committee
(J.nr. 192000/561-272 and J.nr. 192000/51-272).

Transfer of T Cells

TPLP and TOVA were generated as previously de-
scribed.28 Donor mice were immunized via two s.c. in-
jections, at the base of the tail and in the flank, with 50 �L
emulsion of Mycobacterium tuberculosis H37 RA (2 mg/
mL) (Difco Laboratories, Inc., Detroit, MI) in incomplete
Freund’s adjuvant solution (Difco Laboratories, Inc.) and
PLP139–151 (1 mg/mL) (KJ Ross-Petersen ApS, Klampen-
borg, Denmark) or ovalbumin (30 mg/mL) (Sigma-Aldrich
Corp., St. Louis, MO). Lymph nodes were collected on
day 11, and cells were cultured for 4 days in RPMI-1640
medium (Invitrogen Corp., Carlsbad, CA) containing 10%
fetal bovine serum (Invitrogen Corp.), 2 mmol/L L-glu-
tamine (Sigma-Aldrich Corp.), 50 �mol/L 2-mercaptoeth-
anol (Bie & Berntsen A/D, Herlev, Denmark), and 5 �g/mL
PLP. Proliferation was measured using the Vybrant MTT
Cell Proliferation Assay Kit (Invitrogen Corp.). TPLP and
TOVA cultures showed equal proliferation rates before
cells were collected on a Ficoll-Hypaque gradient (Am-
ersham Pharmacia Biotech, Inc., Piscataway, NJ),
counted, and injected i.v. into recipient mice (6 � 106

blasts per mouse or 28% to 30% of the cells injected).
TPLP- and TOVA-recipient mice (TPLP and TOVA mice, re-
spectively) were weighed and clinically evaluated daily.
TOVA mice demonstrated no symptoms. TPLP mice
reached experimental allergic encephalomyelitis (EAE)
grade 0 to 2 before termination at 7 days post lesion (11
days post transfer). For studies of cytokine expression of
T cells in vitro, TPLP and TOVA cells were generated, cul-

tivated, and harvested as described above, transferred
into TRIzol (Invitrogen Corp.), and stored at �80°C.
Lymph node cells from naïve mice served as controls.

PP Transection

Anterograde axonal degeneration was induced via ste-
reotactic transection of the PP using a wire knife.14 Mice
were PP lesioned at 4 days post transfer, when myelin-
specific T cells usually enter the CNS after i.v. injection.29

Mice were euthanized at 2 days post lesion (11 TPLP, 8
TOVA, and 10 naïve) and 7 days post lesion (7 TPLP, 8
TOVA, and 6 naïve). Unlesioned TOVA and TPLP mice (n �
6 and 8, respectively) were euthanized at 11 days post
transfer, when TPLP mice demonstrated symptoms of EAE
grade 0 to 2. Unmanipulated mice (n � 6) and unlesioned
the contralateral dentate gyrus served as controls. To
study the cytokine profile using quantitative PCR (qPCR),
a similar set of animals was generated (n � 8 to 12 per
group). For investigations of cellular proliferation and dif-
ferentiation, animals received a i.p. bolus injection of
BrdU (5=-bromo-2=-deoxyuridine) dissolved in isotonic
saline solution (50 mg/kg) at 2 days post lesion. Animals
euthanized at day 2 received the injection 1 hour before
sacrifice.

Fixation and Tissue Processing

Mice were deeply anesthetized using 0.05 mL pentobar-
bital (200 mg/mL) and perfused through the left ventricle
using 5 mL 0.15 mmol/L Sørensen phosphate buffer (pH
7.4) followed by 20 mL 4% paraformaldehyde in 0.15
mmol/L Sørensen phosphate buffer (pH 7.4). The brains
were postfixed in 4% paraformaldehyde for 1½ hours,
immersed in 20% sucrose overnight, frozen, and serially
cut into 16-�m parallel cryostat sections. For qPCR, an-
imals were perfused using 20 mL 0.15 mmol/L Sørensen
phosphate buffer, and the ipsilateral hippocampus was
dissected and stored in TRIzol at �80°C. For in situ hy-
bridization, PP-lesioned TPLP, TOVA, and naïve mice (n �
3 or 4 per group) were decapitated, and the brains were
frozen, cut as above, and stored at �80°C.

Validation of PP Lesion

The quality of the lesion was controlled using Fluoro-Jade
staining.30 Only mice that demonstrated a dense band of
green fluorescence in the outer molecular layer, reflect-
ing complete transection of both the medial and lateral
PP, were included in the study.30,31

Diaminobenzidine Immunohistochemistry

Neurofilament (NF) was detected by using primary mono-
clonal rat anti-mouse phosphorylated NF antibody
(MAB5448; dilution 1:100; Chemicon International, Inc.,
Temecula, CA), secondary biotinylated species-specific
monoclonal goat anti-rat antibody (RPN 1005; dilution
1:200; Amersham Pharmacia Biotech, Inc.), and strept-
avidin-horseradish peroxidase (P397; dilution 1:200;

Dako A/S, Glostrup, Denmark), as described by Nielsen
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et al.14 T cells were visualized as described for NF using
monoclonal rat anti-human CD3 antibody (MCA1477; di-
lution 1:200; AbD Serotec, Ltd., Kidlington, Oxfordshire,
England). Cross-reactivity for murine CD3 was con-
firmed via location of CD3� cells to the periarteriolar
sheath in murine spleen sections. OPCs were visual-
ized using polyclonal rabbit raised against chondroitin
sulfate proteoglycan NG2 (AB5320; dilution 1:500;
Chemicon International, Inc.). Oligodendrocytes and my-
elin were visualized using monoclonal mouse anti-rat Rip
antibody (Developmental Studies Hybridoma Bank, Uni-
versity of Iowa, Iowa City, IA) recognizing 2=, 3=-cyclic
nucleotide 3=-phosphodiesterase.32,33 The antibody was
biotinylated by Karsten Skjødt, University of Southern
Denmark (Odense) and used at a concentration of 0.05
mg/mL. NG2 and CNP stainings were counterstained
using toluidine blue to facilitate cell counting. Calretiner-
gic fibers were visualized using polyclonal rabbit anti-
calretinin antibody (7699/3H; dilution 1:10.000; Swant,
Inc., Marly, Switzerland) diluted in 10% fetal bovine
serum containing 1% triton. Rinses were extended to
3 � 2 hours. Primary and secondary antibodies were
incubated overnight at 4°C.

Diaminobenzidine/Alkaline Phosphatase Double
Immunohistochemistry

After staining for NG2 or CNP, sections were rinsed in 2�
standard saline citrate solution [300 mmol/L NaCl and 30
mmol/L and sodium citrate (pH 8.0)] for 2 � 15 minutes at
room temperature, incubated in a 49% solution of form-
amide in 2� standard saline citrate solution for 2 hours at
60°C, rinsed in 2� standard saline citrate solution for 2 �
5 minutes at 60°C, and incubated in 2N HCl in 0.05
mmol/L Tris-buffered saline solution for 30 minutes at
37°C. Sections were rinsed and incubated using mono-
clonal rat anti-BrdU antibody (AB6326; dilution 1:100;
Abcam Ltd., Cambridge, England), which was detected
using biotinylated goat anti-rat Ig antibody (RPN 1005;
dilution 1:200; Amersham Pharmacia Biotech, Inc.), and
alkaline phosphatase–conjugated streptavidin (P396;
Dako A/S), and incubated in an alkaline phosphatase
developer as previously described.34

Double Immunofluorescence Histochemistry

Calretinergic fibers were detected using Alexa 488–con-
jugated sodium arsenite (S-32354; dilution 1:500; Invitro-
gen Corp.) along with fluorescence detection of myelin
basic protein (MBP) using Alexa 594–conjugated goat
anti-rabbit Ig (A-11012; dilution 1:500; Invitrogen Corp.)
as described by Nielsen et al.35 The cellular nuclei were
visualized using the nucleic acid stain DAPI (D3571; In-
vitrogen Corp.), which was added in a concentration of
300 nmol/L to the Tris-buffered saline solution during the
last rinse.

Non-specific staining was controlled for by incubation
without the primary antibody, with an isotype-specific

control (rat IgG1 or rat IgG2b; Nordic Biosite AB, Täby,
Sweden) or with rabbit (X902) or goat (X907) serum (both
from Dako A/S), and exhibited no staining.

In Situ Hybridization

A mixture of two alkaline phosphatase–labeled DNA
probes (DNA Technology A/S, Risskov, Denmark) com-
plementary to bases 169 to 196 (5=-GGCTTTCAATGACT-
GTGCCGTGGCAGTA-3=) and 530 to 557 (5=-CGCTTC-
CTGAGGCTGGATTCCGGCAACA-3=) was used for
detection of interferon-� (IFN-�) cDNA. Probe specificity
was confirmed by hybridizing with each probe alone or
with a probe mixture, showing identical regional and cel-
lular localization of the in situ signal but with a stronger
signal in sections hybridized with the probe mixture. In
addition, sections pretreated with RNase A (27-0323-01;
Amersham Pharmacia Biotech, Inc.) before hybridization
or hybridized using a 100-fold excess of unlabeled IFN-�
probe mixture or buffer alone were devoid of signal (see
Supplemental Figure S1B at http://ajp.amjpathol.org).

qPCR

RNA extraction, cDNA synthesis, and qPCR were per-
formed on dissected hippocampi36 using a sequence
detection system (PRISM 7300; Applied Biosystems, Inc.,
Foster City, CA) and using either a Taqman probe (TAG
Copenhagen A/S, Copenhagen, Denmark) or SYBR Green
(Cambrex Bio Science Walkersville, Inc., Walkersville, MD)
as fluorescent reporter molecules. A standard curve was
prepared from a fivefold dilution series of cDNA from spinal
cord obtained from animals with symptoms of EAE. Primers
and probes for tumor necrosis factor (TNF)–� and IFN-�
and the �-chain of the CD3 complex were used as previ-
ously described.34,37 For IL-4, we used forward primer 5=-
AAACATGGGAAAACTCCA-3= and reverse primer 5=-
CAGCTTATCGATGAATCCA-3=); for IL-10, forward primer
5=-AGGACTTTAAGGGTTACT-3= and reverse primer 5=-AAT-
GCTCCTTGATTTCTG-3=; for IL-17, forward primer 5=-
GCTTCATCTGTGTCTCTG-3= and reverse primer 5=-
GAACGGTTGAGGTAGTCT-3=). For NG2, we used
forward primer 5=-TCCCGGAGAGAGGTGGAAGAG-3=
and reverse primer 5=-GGTCCATCTCTGAGGCATTAGC,
and probe 5=-AAGGCGTCTGTCTGTGTCTCACTTC-
CATCA-3=. For insulin-like growth factor-1 (IGF-1), we
used forward primer 5=-CCGAGGGGC TTTTACTTCAA-
CAA-3= and reverse primer 5=-CGGAAGCAACACT-
CATCCACAA-3=. For brain-derived neurotrophic factor
(BDNF), we used forward primer 5=-GGCCCAACGAA-
GAAAACCAT-3= and reverse primer 5=-AGCATCAC-
CCGGGAAGTGT-3=. Specificity of the PCR primer/probe
set was validated as described in Meldgaard et al.36 Test
gene data were normalized to the reference gene hypo-
xanthine phosphoribosyltransferase 1 and calibrated to a
pool of control samples from animals not operated on.
mRNA expression was normalized to the expression of
unmanipulated controls, which was set to 1.0. IFN-�, IL-4,
IL-17, and BDNF mRNA expressions were normalized to
the expression in unlesioned TOVA mice because we
were unable to detect IFN-�, IL-4, IL-17, or BDNF mRNA

from these cytokines in the hippocampus of unlesioned

http://ajp.amjpathol.org
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naïve mice. In cases in which mRNA was undetectable
(more than 40 cycles or undetermined), the fold increase
was set at zero. Changes in mRNA level less than twofold
were not subjected to statistical analysis.36

Cell Counting

Cell counting in the molecular layer of the temporal
dentate gyrus of PP-lesioned mice was performed us-
ing the computer-assisted cast-grid microscope sys-
tem (CAST2; Visiopharm A/S, Hoersholm, Denmark). The
CD3� cells were defined by their brown plasmalemma.
NG2� cells were defined by a toluidine blue–stained
nucleus surrounded by a brown plasmalemma from
which more than one process extended. CNP� cells were
defined by a toluidine blue–stained nucleus surrounded
by a brown plasmalemma. BrdU�NG2� cells and
BrdU�CNP� cells were defined as NG2� and CNP� cells
with a bluish black nucleus. To count the cells using the
method of Nielsen et al.,14 cells were counted in the
molecular layer of the dentate gyrus in 10 parallel sec-
tions 160 �m apart using a counting frame of 4900 �m2

(fraction of total area, 61%) along the rostrocaudal axis of
the hippocampus, starting in the section in which the
dentate gyrus first demonstrated a typical U shape
(�1900 �m from the bregma), as previously reported.14

At least 150 to 200 single-labeled NG2� or CNP� cells
were counted per animal. To account for potential differ-
ences in the quality of the stainings, cell numbers are
reported as the ratio between cell numbers obtained from
the deafferented ipsilateral molecular layer compared
with cell numbers obtained from the contralateral molec-
ular layer (NG2i/c and CNPi/c). Because of the virtual
absence of T cells in the contralateral molecular layer, the
total number of counted CD3� T cells is given.

Area Estimations

To estimate the area of the inner and outer molecular
layers, calretinin-stained sections were analyzed using
the CAST2 system. The number of points hitting the inner
and outer molecular layers (P) was counted on sections
with a mean distance (t) of 160 �m. The sum of the areas
of various brain sections was calculated by multiplying
the total number of counted points (P) with the computer-
given factor of area per point (Apoint � 6.8582 mm2). The
total area (Atotal) was calculated using the formula Atotal �
�P � Apoint � t. Results are given as the ratio between the
area of the inner molecular layer and the entire molecular
layer.

Statistical Analysis

Results are given as mean � SD. Comparison of me-
dians in two groups was performed using the Mann-
Whitney rank sum test. For multiple comparisons,
Kruskal-Wallis one-way analysis of variance was per-
formed, followed by Dunn’s multiple comparisons test.
Statistical analyses were performed using Prism 4.0b

software for Macintosh (GraphPad Software, Inc., San
Diego, CA). P values are indicated as follows: *P � 0.05,
**P � 0.01, and ***P � 0.001.

Results

Afferent Fibers with Potential for Sprouting
Persist after PP Lesioning

Staining for NF directly visualized the PP fibers terminat-
ing as a broad band of NF� fibers in the outer molecular
layer (Figure 1, A and C). As expected, this band of NF�

fibers was completely obliterated by transection of the
PP, which focused attention on the NF� fiber systems that
persisted in the inner and outer molecular layers of the

Figure 1. Afferent fibers with potential for sprouting persist after PP lesion-
ing. A–D: Staining for NF at 7 days post lesion demonstrates the NF� fibers
in intact contralateral dentate gyrus (A and C) and the reduced amount of
NF� fibers in the outer molecular layer (oml) of the deafferented ipsilateral
(IP) dentate gyrus (B and D). The NF� fibers that persist in the outer
molecular layer may represent calretinergic and cholinergic afferent fibers
and other afferent fibers not part of the PP. E and F: Fluoro-Jade staining of
the dentate gyrus at 7 days post lesion. The anterograde axonal and terminal
degeneration is visualized as an intense band of green fluorescence in the
deafferented outer molecular layer in the ipsilateral dentate gyrus (E). No
degeneration is observed in the contralateral dentate gyrus (F). CL, contralat-

eral layer; g, granule cell layer; iml, inner molecular layer; ml, molecular
layer. Scale bars: 20 �m (C and D); 150 �m (A, B, E, and F).
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dentate gyrus after PP lesioning (Figure 1, B and D).
Furthermore, sections from all PP-lesioned TPLP, TOVA,
and naïve mice were stained with Fluoro-Jade for visual-
ization of the area of degenerating axons and terminals.
As expected, Fluoro-Jade staining demonstrated a
sharply demarcated band of green fluorescence in the
outer part of the molecular layer of the ipsilateral dentate
gyrus, at both 2 and 7 days post lesion, in contrast to the
non-deafferented contralateral molecular layer, which
demonstrated no staining (Figure 1, E and F).

Myelin-Specific T Cells Infiltrate Zones of Axonal
Degeneration

To verify that myelin-specific T cells infiltrated the outer
molecular layer at the time of maximal OPC proliferation
and remained during the period of OPC differentiation,14

we studied T-cell infiltration in TPLP, TOVA, and naïve mice
at 2 and 7 days post lesion (Figure 2A). Compared with
few infiltrating CD3� T cells in PP-lesioned TOVA and

Figure 2. T cells infiltrate zones of axonal degeneration in lesioned TPLP mi
PP-lesioned TPLP animals compared with scarce T cells in TOVA and naïve
pronounced in lesioned TPLP animals (arrowheads). g, granule cell layer. S
number of CD3� T cells in the molecular layer, and qPCR demonstrated enh
and naïve mice at 2 and 7 days post lesion. Lines represent the mean. *P �
IFN-�, IL-17, and IL-10 but not IL-4 in hippocampi of TPLP mice compared
compared with TOVA mice in vitro (bottom row). TOVA mice exhibited on

*P � 0.05; **P � 0.01; ***P � 0.001. D: In situ hybridization demonstrates scarce IFN-� m
Scale bar � 20 �m.
naïve mice, there was a significantly higher infiltration of
CD3� T cells in the dentate gyrus and surrounding me-
ninges in TPLP mice at both 2 and 7 days post lesion
(Figure 2, A and B; see also Supplemental Table S1 at
http://ajp.amjpathol.org). In line with these observations,
hippocampi from TPLP mice also demonstrated a signifi-
cantly higher increase in CD3� mRNA expression than
did hippocampi from TOVA and naïve mice at both 2 and
7 days post lesion (Figure 2B; see also Supplemental
Table S1 at http://ajp.amjpathol.org). The number of T
cells and CD3� mRNA expression in PP-lesioned naïve
mice and unlesioned TPLP and TOVA mice were close to
the baseline in unlesioned naïve mice (see Supplemental
Table S1 at http://ajp.amjpathol.org).

Cytokine Expression of Infiltrating T Cells

To determine the activation state of the infiltrating T cells,
we investigated the cytokine expression in hippocampi of
PP-lesioned TPLP, TOVA, and naïve mice at both 2 and 7

creased infiltration of CD3� T cells (arrows) in the molecular layer (ml) of
t 2 and 7 days post lesion. Note the meningeal infiltration, which is most
rs: 10 �m; 250 �m (inset). B: Cell counting data demonstrate an enhanced
xpression of CD3� mRNA in hippocampi of TPLP mice compared with TOVA

P � 0.001. C: qPCR detection demonstrates enhanced mRNA expression of
VA and naïve mice at 2 and 7 days post lesion (top row) and in TPLP mice
dest increase in IFN-� in vivo and in vitro. Results are given as mean � SD.
ce. A: In
mice a
cale ba
anced e
0.05; ***
with TO

ly a mo

RNA–expressing cells in the hippocampus proper at 2 and 7 days post lesion.
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days post lesion. The TPLP mice demonstrated a several
hundred-fold to several thousand-fold increase in IFN-�,
IL-17, and IL-10 mRNA expression at both observation
times, compared with a few-fold increase in PP-lesioned
TOVA and naïve mice (Figure 2C; see also Supplemental
Table S1 at http://ajp.amjpathol.org). In contrast, IL-4
mRNA demonstrated no significant changes in mRNA
expression in any of the groups (Figure 2C; see also
Supplemental Table S1 at http://ajp.amjpathol.org).

Although the fold increase in IFN-� mRNA in the hip-
pocampi of TPLP mice was huge, in situ detection clearly
demonstrated that IFN-� mRNA was confined to single
cells located in the hippocampus (Figure 2D; see also
Supplemental Figure S1A at http://ajp.amjpathol.org),
while being more abundant in the meninges and in the
scattered perivascular infiltrates present in the brain stem
and cerebellum (see Figure S1B at http://ajp.amjpathol.
org). IFN-� mRNA expressing cells were not detected in
PP-lesioned TOVA and naïve mice (see Supplemental Fig-
ure S1A at http://ajp.amjpathol.org), which was in line with
the variable detection of IFN-� mRNA in these mice (see
Supplemental Table S1 at http://ajp.amjpathol.org).

To investigate whether the increase in IFN-�, IL-17,
and IL-10 mRNA expression was the result of CNS–T cell
interaction, cytokine mRNA expression was also quanti-
fied in TPLP and TOVA mice and in lymph node cells from
naïve mice, the latter being included for control (see
Supplemental Table S1 at http://ajp.amjpathol.org). TPLP

mice were characterized by a particularly high expres-
sion of IFN�, but also expressed high concentrations of
IL-17 mRNA and some IL-4 mRNA (Figure 2C). TOVA mice
also expressed high concentrations of IL-17 mRNA and
some IFN-� and IL-10 mRNA, consistent with the findings
of others.28

Considered together, the cytokine profile and pattern
of infiltration with CD3� T cells in PP-lesioned TPLP mice
suggested the presence of subpopulations of T cells
consistent with a Th1 response, but also Th17 and, pos-
sibly regulatory T cells response, similar to that of EAE
lesions,38 although here associated with enhanced oligo-
dendrogenesis rather than inflammatory demyelination.

Myelin-Reactive T Cells Affect the OPC
Response to Axonal Lesions

To study the effect of activated myelin-specific T cells on
the axonal lesion–induced response of the NG2� OPC
population, we compared the morphologic and numeric
OPC response in PP-lesioned TPLP, TOVA, and naïve
mice, initially focusing on mice surviving 2 days post
lesion. Characteristic of the OPC response in the PP-
lesioned TPLP mice, the NG2� cells located at the transi-
tion between the inner and outer molecular layers had
redirected their processes so that they radiated deep into
the T cell–infiltrated outer molecular layer at 2 days post
lesion (Figure 3A). This response was distinctly different
from the OPC response in the PP-lesioned TOVA and
naïve mice, in which the OPCs had transformed into
hypertrophic and hyper-ramified cells, with their pro-

cesses radiating in all directions (Figure 3A).
Because we had shown previously that NG2� cells in
the contralateral hippocampus are unaffected by the le-
sion,14 we calculated the lesion-induced increase in the
number of OPCs as a ratio, NG2i/c, of the cell numbers in
the ipsilateral and contralateral molecular layers. Quanti-
fication demonstrated a comparable increase in the
NG2i/c ratio of 1.25 and 1.30 in TOVA and naïve mice,
respectively, at 2 days post lesion (Figure 3C; see also
Supplemental Table S1 at http://ajp.amjpathol.org). This
represented 25% and 30% increases in OPC numbers in
the PP-lesioned TOVA and naïve mice, identical to previ-
ous findings in PP-lesioned naïve mice.14 In contrast, the
TPLP mice, demonstrating an NG2i/c ratio of 1.04 at 2 days
post lesion, completely failed to demonstrate a lesion-
induced increase in OPC numbers (Figure 3C; see also
Supplemental Table S1 at http://ajp.amjpathol.org). This
was additionally supported by comparison of the lesion-
induced increase in NG2 mRNA levels in the various
groups of mice, which showed a trend toward un-
changed NG2 mRNA expression at 2 days post lesion in
TPLP mice compared with the 1.2-fold increase in PP-
lesioned naïve mice (Figure 3D; see also Supplemental
Table S1 at http://ajp.amjpathol.org).

At 7 days post lesion, both the NG2i/c ratio and NG2
mRNA expression in PP-lesioned TPLP mice were com-
parable to the values obtained in PP-lesioned TOVA and
naïve mice (Figure 3, C and D; see also Supplemental
Table S1 at http://ajp.amjpathol.org). Furthermore, as pre-
viously reported in PP-lesioned naïve mice,14 the OPCs
were less distinctly stained in all groups of mice (Figure
3A), possibly because of protease-mediated cleavage of
the ectodomain of NG2 chondroitin sulfate.39

Lesion-Induced OPC Proliferation Is Stimulated
by Myelin-Reactive T Cells

The abrogation of the axonal lesion–induced increase in
the NG2� OPC population in the TPLP mice at 2 days post
lesion might be explained by either reduced proliferation
or increased proliferation and accelerated differentiation
of OPCs. Therefore, we investigated OPC proliferation by
giving mice a bolus injection of the thymidine analog
BrdU at 1 hour before termination at 2 days post lesion.
The TPLP mice demonstrated a significantly higher (10-
fold) increase in BrdU�NG2� OPCs, compared with an
approximately fourfold increase in TOVA and naïve mice
(Figure 3B; see also Supplemental Table S1 at http://
ajp.amjpathol.org). Furthermore, many of the activated
NG2� OPCs extending their processes into the T cell–
infiltrated outer molecular layer had incorporated BrdU
(Figure 3B), which demonstrated that they had recently
proliferated. The OPC responses in PP-lesioned TOVA

and naïve mice were comparable, with scattered hyper-
trophic and highly branched cells co-labeled for BrdU
and NG2 (data not shown). Numerous single-labeled
BrdU� cells were also observed, mainly corresponding
to the nuclei of mitotic microglia.30 A few BrdU�NG2�

OPCs were also observed in the contralateral hippocam-
pus of PP-lesioned TPLP, TOVA, and naïve mice, reflecting

baseline proliferation.5,14,40 These observations showed
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that myelin-specific T cells significantly stimulated the
proliferation of NG2� OPCs. This suggested that the ab-
rogation of the lesion-induced increase in the NG2� cell
population in TPLP mice at 2 days post lesion was due to
accelerated differentiation of recently proliferated OPCs.

Increased OPC Proliferation Translates into
Increased Numbers of Oligodendrocytes

To clarify whether the increased proliferation of OPCs at
2 days post lesion translated into an increased number of
newly generated oligodendrocytes at 7 days post lesion,
we quantified the number of CNP� cells and the number
of BrdU�CNP� cells in TPLP, TOVA, and naïve mice at 7
days post lesion. Results are given as a ratio of CNP� or
BrdU�CNP� cells in the ipsilateral and contralateral mo-
lecular layers. Although examination of CNP-stained sec-
tions obtained from TPLP, TOVA, and naïve mice revealed
no differences in cellular structure (Figure 4A), PP lesions
in TPLP mice resulted in a CNPi/c ratio of 1.25, which was
significantly increased compared with an unchanged

Figure 3. Myelin-reactive T cells stimulate OPC proliferation and differentia
2 days post lesion. Hypertrophic cells (inset in TOVA) and cellular double pr
NG2� cells additionally extended their processes into the area of T cell infilt
structure in all groups, but were difficult to distinguish. Sections were count
ml, molecular layer. Scale bars: 25 �m; 10 �m (inset). B: BrdU incorporati
arrowheads) at 2 days post lesion. BrdU incorporation was also observed in
Scale bar � 10 �m. Ipsilateral and contralateral ratios of BrdU�NG2� cells
compared with TOVA and naïve mice. Lines mark the mean. **P � 0.01. C: N
mice at 2 days post lesion failed to show lesion-induced proliferation. At 7
analysis of the hippocampus demonstrated a trend toward decreased mRNA
observed at 7 days post lesion. Results are given as mean � SD.
CNPi/c ratio in PP-lesioned TOVA and naïve mice (Figure
4B; see also Supplemental Table S1 at http://ajp.
amjpathol.org). This corresponded to a 25% increase in
CNP� oligodendrocytes in the TPLP mice, compared with
unchanged numbers in TOVA and naïve mice. Further-
more, compared with TOVA and naïve mice, the TPLP mice
demonstrated a significantly higher BrdU�CNP�

i/c ratio
(Figure 4, C and D). Thus, 28% of the CNP� cells had
incorporated BrdU in TPLP mice, compared with 12% in
TOVA mice and 14% in naïve mice. Observations of
BrdU�CNP� cells extending their processes toward my-
elinated fibers in TPLP mice (Figure 4C) but not in TOVA

and naïve mice (data not shown) suggested that the
recently proliferated oligodendrocytes were engaged in
myelination and that this phenomenon was most frequent
in PP-lesioned mice that had received myelin-specific T
cells.

Myelin-Reactive T Cells Enhance Clearance of
Myelin Debris

Because we had previously demonstrated that PP lesions

esponse to lesioning. A: NG2 staining demonstrates activated NG2� OPC at
nset in Naïve) are observed in all groups of PP-lesioned mice. In TPLP mice,
rrows and inset). At 7 days post lesion, the NG2� cells exhibited a similar
with toluidine blue for visualization of cellular nuclei. g, granule cell layer;

mitotic NG2� cell (left arrow) together with nonmitotic NG2� cells (left
cells extending their processes into the outer molecular layer (right arrow).
s post lesion demonstrate a significantly elevated proliferation in TPLP mice
lls given as ipsilateral and contralateral ratios in the molecular layer in TPLP

st lesion, there was no longer any difference between the groups. D: qPCR
sion of NG2 in TPLP mice at 2 days post lesion, whereas no difference was
tion in r
ofiles (i
ration (a
erstained
on into
NG2�

at 2 day
G2� ce

days po
result in accumulation of myelin debris in the outer mo-

http://ajp.amjpathol.org
http://ajp.amjpathol.org


T Cells Promote Oligodendrogenesis 2035
AJP October 2011, Vol. 179, No. 4
lecular layer at 7 days post lesion41 and that microglial
clearance of myelin debris is stimulated by infiltrating
TMBP,35 we also investigated the clearance of CNP� my-
elin debris in PP-lesioned TPLP, TOVA, and naïve mice (see
Supplemental Figure S2A at http://ajp.amjpathol.
org). Using the scoring system of Nielsen et al,19 we
observed that the amount of myelin debris was signifi-
cantly lower in TPLP mice than in TOVA and naïve mice at
7 days post lesion (see Supplemental Figure S2B at
http://ajp.amjpathol.org). Inasmuch as myelin debris is
eventually cleared from the outer molecular layer after PP
lesioning in naïve mice,42 we concluded that myelin-spe-
cific TPLP-cells accelerated the clearance of myelin de-
bris, as previously reported for TMBP-cells.19

Sprouting of Calretinergic Fibers Is Enhanced in
TPLP-Infiltrated Dentate Gyrus

It has been well documented that the associational/com-
missural afferents from the calretinergic hilar mossy cells
sprout from the inner molecular layer into the deaffer-
ented outer molecular layer after PP lesioning, which is
detectable a few weeks after lesioning.20,23 Therefore, we
wondered whether the sprouting of these fibers might be
accelerated by myelin-specific T cells, because this
could contribute to explaining the increased oligodendro-
genesis in the PP-lesioned TPLP recipient mice at 7 days
post lesion. Comparison of the extent of the lesion-in-
duced sprouting in TPLP mice, and TOVA and naïve mice
demonstrated that the calretinergic band in TPLP mice
occupied 32% of the molecular layer at 7 days post
lesion, which was significantly more than 28% in TOVA

and 27% in naïve mice at 7 days post lesion (P � 0.05 for
both groups) (Figure 5, A and B). Furthermore, in TPLP

mice, the calretinergic band was no longer sharply de-
marcated, as observed in TOVA and naïve mice, but was
fuzzy (Figure 5A), which reflects translaminar sprouting of
calretinergic fibers into the deep part of the outer molec-
ular layer.23

Demonstrations by others that sprouting of calretiner-
gic fibers is normally a late phenomenon20,23 would pre-
dict similarly sized calretinergic bands at the early 7 days
post lesion time. Indeed, we observed that calretinergic

band sizes in PP-lesioned and unlesioned naïve mice at
7 days post lesion were comparable (94,700 �m2 versus
89,300 �m2; difference not significant). The possibility of
lesion-induced shrinkage of the molecular layer obscur-
ing changes in band size in TPLP mice was eliminated in
that lesion-induced shrinkage of the molecular layer in
TPLP, TOVA, and naïve mice was comparable (382,100
�m2 versus 326,200 �m2 versus 328,100 �m2; difference
not significant for all comparisons). Considered together,
the results suggested that the myelin-specific T cells
significantly accelerated lesion-induced sprouting of cal-
retinergic fibers into the outer molecular layer.

Because the commissural calretinergic fibers are
myelinated, we investigated the myelination of the as-
sociational projections in our mice. It was observed
that calretinergic fibers traversing the granule cell layer
co-localized with MBP (Figure 5C), although single-la-
beled MBP� and calretinin� fibers were also observed.
This demonstrated that at least parts of the associational
fibers were myelinated.

Enhanced and Prolonged TNF but Not IGF-1 or
BDNF mRNA Expression in TPLP Mice

Because TNF stimulates myelination,43 we investigated
the production of TNF mRNA in PP-lesioned TPLP, TOVA,
and naïve mice. At 2 days post lesion, TPLP mice dem-
onstrated an 80-fold increase in TNF mRNA expression,
which was significantly higher than the approximately
30-fold increase observed in TOVA and naïve mice (Figure
6A; see also Supplemental Table S1 at http://ajp.
amjpathol.org). It was remarkable that at 7 days post
lesion, TPLP mice demonstrated a close to 100-fold in-
crease, which was significantly higher than that in both
TOVA and naïve mice, which at that time had returned to
close to baseline levels (Figure 6A; see also Supplemen-
tal Table S1 at http://ajp.amjpathol.org). Because both T
cells and microglia and macrophages can produce
TNF,44 we also investigated TNF mRNA expression in T
cells in vitro, and observed that, compared with TOVA

mice, TPLP mice demonstrated higher TNF mRNA expres-
sion (Figure 6A).

We next investigated the expression of IGF-1 mRNA,
which exerts trophic effects on neurons and glial cells, in

Figure 4. Enhanced oligodendrogenesis in TPLP
mice at 7 days post lesion. A: CNP-stained sections
demonstrated no differences in oligodendrocyte
structure (inset) in TPLP, TOVA, and naïve mice at 7
days post lesion, but increased clearance of myelin
debris in TPLP mice. Sections were counterstained
using toluidine blue. Scale bar � 10 �m. B: Ipsilateral
and contralateral ratios of CNP� cells in the outer
molecular layer at 7 days post lesion demonstrate an
increased ratio in TPLP mice. Lines mark the mean.
*P � 0.05. C: Postproliferative BrdU�CNP� oligo-
dendrocyte (left arrow) in TPLP mouse at 7 days post
lesion, together with a non-dividing CNP� oligoden-
drocyte (left arrowhead). BrdU�CNP� cells with
processes extending toward myelinated fibers (right
arrow) together with single-labeled cells (right
arrowhead). Scale bar � 10 �m. D: Ipsilateral and
contralateral ratios of BrdU�CNP� cells at 7 days post
lesion demonstrate increased ratios in TPLP mice
compared with TOVA and naïve mice. Lines mark the
mean. **P � 0.01; ***P � 0.001.
particular in the OPC population.45,46 At 2 days post
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lesion, IGF-1 mRNA expression remained at baseline lev-
els in TPLP, TOVA, and naïve mice (Figure 6B; see also
Supplemental Table S1 at http://ajp.amjpathol.org). In
contrast, at 7 days post lesion, when TOVA and naïve mice
demonstrated a close to twofold increase in IGF-1 mRNA
expression (P � 0.01 and P � 0.01, respectively; see
also Supplemental Table S1 at http://ajp.amjpathol.org),

Figure 5. Enhanced lesion-induced sprouting of calretinergic fibers in TPLP-
infiltrated dentate gyrus. A: Calretinin staining of hilar mossy cells and their
terminals at 7 days post lesion. Note in the TOVA and naïve mice the well-
defined border between the inner (iml) and outer (oml) molecular layers. In
TPLP mice, this border is fuzzy, reflecting calretinergic fibers sprouting from
the inner molecular layer and translaminarly into the outer molecular layer.
g, granule cell layer; ml, molecular layer. Scale bars: 200 �m; 20 �m (inset).
B: Area estimation demonstrates an increased inner molecular layer–molecu-
lar layer ratio in TPLP mice compared with TOVA and naïve mice at 7 days post
lesion. Lines mark the mean. *P � 0.05. C: Double immunofluorescence
labeling for calretinin (green) and MBP (red) demonstrates co-localization of
MBP to a calretinin� fiber (yellow) transversing the granule cell layer (g;
blue). Unmyelinated calretinin� fibers are also observed (inset). h, Hilus.
Scale bars � 10 �m.
TPLP mice failed to demonstrate a lesion-induced in-
crease in IGF-1 mRNA expression (Figure 6B; see also
Supplemental Table S1 at http://ajp.amjpathol.org). IGF-1
mRNA was detected in TPLP and TOVA cells in vitro; how-
ever, this expression was lower than in lymph node cells
from naïve mice (Figure 6B).

Inasmuch as T cells produce BDNF in MS lesions47

and BDNF is involved in oligodendrogenesis48 and in
neuronal plasticity,49 we investigated the mRNA expres-
sion of BDNF. Although BDNF mRNA was not detected in
lymph node cells from TPLP, TOVA, and naïve mice in vitro
(Figure 6C), BDNF mRNA expression was readily de-
tected in the hippocampus of TPLP, TOVA, and naïve mice
at 2 and 7 days post lesion. However, the expression
remained at the same high baseline level as in unmanipu-
lated controls (Figure 6C; see also Supplemental Table
S1 at http://ajp.amjpathol.org).

Considered together, the results indicate that TNF
might have a role in the increased OPC proliferation in
PP-lesioned TPLP-infiltrated hippocampus.

Discussion

The major finding of this study is that CNS-infiltrating
myelin-specific T cells, via increased OPC proliferation,

Figure 6. Enhanced expression of TNF but not IGF-1 or BDNF in TPLP mice.
A: TNF mRNA expression was continuously elevated in TPLP mice from 2
days post lesion through 7 days post lesion, compared with TOVA and naïve
mice, and in vitro TPLP cultures compared with TOVA cultures. B: IGF-1
mRNA expression demonstrated no changes at 2 days post lesion in TPLP,
TOVA, and naïve mice. In contrast, IGF-1 mRNA expression was elevated in
TOVA and naïve animals at 7 days post lesion but not in PP-lesioned TPLP

mice. IGF-1 mRNA expression was low in TPLP and TOVA mice in vitro. C:
BDNF mRNA expression showed no changes at 2 and 7 days post lesion in

TPLP, TOVA, and naïve mice. BDNF mRNA expression was not detected in
vitro. *P � 0.05; **P � 0.01; ***P � 0.001. ND, not detected.
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stimulate adult oligodendrogenesis. The results also in-
dicate that several different mechanisms contribute to the
oligodendrotrophic effect of myelin-specific T cells.

The high mRNA expression of IFN-�, IL-17, and IL-10
in the hippocampus of the PP-lesioned TPLP mice sug-
gested the presence of activated Th1 and Th-17 cells,
and possibly T-regs, in the mice that demonstrated the
oligodendrotrophic effect. Traditionally, induction of in-
flammatory lesions in EAE is associated with CD4� T
cells producing IFN-� and IL-17, whereas IL-10 may have
a role in the recovery of EAE.38 Unlike IFN-� and IL-17,
both of which were abundantly expressed in TPLP in vitro,
the in vitro expression of IL-10 mRNA in TPLP mice was
low. The observed in vivo expression of IL-10 mRNA in the
PP-lesioned TPLP mice may reflect that IL-10 can be pro-
duced by both T cells and microglia and macrophages
and that production is enhanced by both cell types via
T-cell interaction.50 IL-10 has been associated with pro-
tection of oligodendrocytes in vitro51 and promotion of
remyelination in vivo, via either enhanced oligodendro-
genesis52 or enhanced clearance of myelin debris by
microglia phagocytosis,53 which was observed in the
present study and in previous studies.35 That we de-
tected only low levels of IL-17 and IL-10 mRNA in the
hippocampus of PP-lesioned TOVA mice despite the high
levels detected in vitro likely reflects the low number of T
cells detected in these animals or the lack of secondary
activation by specific antigen recognition. In combina-
tion, the demonstration of increased levels of mRNA lev-
els of IFN�, IL-17, and of IL-10 in the PP-lesioned TPLP

mice and the low expression of these cytokines in the
PP-lesioned TOVA mice indicates that IFN-�, IL-17, and
IL-10 might contribute to the oligodendrotrophic effect of
the myelin-reactive T cells.

Inflammation in MS and EAE is associated with expres-
sion of IFN-� by CD4� and CD8� T cells,54–56 both of
which were abundant in the PP-lesioned mice receiving
myelin-specific T cells.19 Whereas IFN-� is undetectable
in the normal perfused CNS, it increases many fold dur-
ing T cell–driven CNS inflammation.57,58 This is in line
with our observation of absence of IFN-� mRNA in hip-
pocampi from perfused unlesioned naïve mice and of
strongly elevated mRNA levels of IFN-� in TPLP mice.
Unlike in a previous study using reverse transcription-
PCR,59 we detected a transient increase in IFN-� mRNA
expression in TOVA and naïve mice at 2 days post lesion,
which declined at 7 days post lesion, corresponding to
CD3 mRNA expression. However, IFN-� mRNA was not
detectable in all mice, and the fold increase was small.
Other studies have demonstrated that IFN-� can both
inhibit differentiation and induce apoptosis of OPCs,60,61

as well as protect mature oligodendrocytes against cu-
prizone-induced destruction62 and inflammatory destruc-
tion,63 which suggests that the effect of IFN-� on the
oligodendrocyte population is context-dependent. How-
ever, although our finding of a several hundred–fold in-
crease in IFN-� mRNA expression in the PP-lesioned TPLP

mice raises the possibility of a role for IFN-� in the oligo-
dendrotrophic effect of the myelin-reactive T cells, it is
noteworthy that IFN-� mRNA detectable via in situ hybrid-

ization was expressed by rare cells, presumed to be T
cells, located outside of the molecular layer of the dentate
gyrus. This observation allows that T cell–derived factors
other than IFN-� might stimulate oligodendrogenesis in
this model.

At present, knowledge of the function of IL-17 is lim-
ited. It may have a role in, yet not be required for, devel-
opment of EAE64,65 and MS, inasmuch as it has been
shown to be produced in T cells and astrocytes in active
MS lesions.66 In the present study, we did not investigate
the origin of IL-17 mRNA in the hippocampus; however, it
is striking that both TPLP and TOVA mice produced high
amounts of IL-17 mRNA in vitro. Furthermore, IL-17 in-
duces TNF production in macrophages67 and enhances
oligodendrocyte apoptosis in vitro, which contradicts the
enhanced oligodendrogenesis observed here in vivo.
However, inasmuch as a recent in vitro study demon-
strated that IL-17 enhances phagocytosis by macro-
phages,68 it is possible that the enhanced oligodendro-
genesis observed in the present study might be
attributed to IL-17 stimulating microglial phagocytosis of
myelin debris. It has been suggested that IL-17 is a
marker for the Th17 subset of T cells, which may exert
effector function via several other mediators.69

The present study also demonstrated that myelin-spe-
cific T cells stimulate sprouting of intact calretinergic
fibers. In the mouse, sprouting is particularly well docu-
mented for the calretinergic axons of hilar mossy cells.20

These fibers sprout translaminarly from the inner molec-
ular layer into the deafferented outer molecular layer after
creation of a PP lesion, although normally this is not
manifested until a few weeks after PP lesioning.23 Unlike
the unmyelinated cholinergic septo-hippocampal affer-
ents that also sprout after creation of a PP lesion,70 the
present study demonstrates that at least part of the cal-
retinergic fibers, presumably associational fibers, that
traverse the granule cell layer are myelinated. This adds
to observations by others that demonstrated that the
commissural calretinergic fibers are myelinated.22 Our
observation of an increased sprouting response of cal-
retinergic fibers from the inner molecular layer into the
deafferented outer molecular layer at 7 days post lesion
in the TPLP mice, but not in the TOVA and naïve mice,
correlates well with the translaminar sprouting usually
observed several weeks after PP lesioning.23 Inasmuch
as ultrastructural studies have suggested that the pro-
cess of axonal elongation is usually first initiated at 4 to 6
days post lesion and completed after 12 days post le-
sion,21,71 it seems likely that the myelin-specific T cells
accelerated the sprouting of the calretinergic fibers.
Given our recent demonstration of adult oligodendrogen-
esis in areas of axonal sprouting in non-deafferented
zones of the hippocampus of PP-lesioned mice,24 the
accelerated sprouting of the calretinergic fibers might
itself stimulate oligodendrogenesis. Furthermore, we ob-
served that myelin-specific TPLP cells enhanced the
clearance of myelin debris, probably due to stimulation of
microglial macrophage myelin phagocytosis, as we have
previously reported for myelin-specific TMBP cells.35 Be-
cause myelin debris is a potent inhibitor of axonal out-
growth,72–74 axonal sprouting may be additionally stimu-

lated by the accelerated removal of myelin debris,
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making the neural tissue more permissive to the axonal
sprouts.72–74 Furthermore, myelin debris itself inhibits re-
myelination via inhibition of OPC differentiation.74,75

The results show that the increase in oligodendrogen-
esis is linked to increased proliferation of the NG2� OPC
population and to morphologic changes specific to the
TPLP mice. Although proliferation is a characteristic fea-
ture of OPC activation,14,16,76 these cells also respond by
changing their structure and level of expression of NG2.
Morphologic changes have been reported to be charac-
teristic of the OPC response to inflammation,77 and may
have been exaggerated by the abundance of activated
myelin-specific T cells in the dentate gyrus in TPLP mice.
Recently, it has become clear that NG2� cells form clas-
sic synapses with cortical neurons78 and that neurons,
via axon collaterals, co-activate NG2 cells along with their
postsynaptic neurons.79–81 In principle, integration of
NG2� cells in the axonal circuitry places the NG2� cells
in a unique position to sense the disappearance of pre-
synaptic input, because it occurs in the outer molecular
layer after PP lesion, and to sense stimuli from even
single sprouting axons. Furthermore, there is evidence
that synaptic mechanisms modulate both division and
migration of NG2 cells.82,83 These findings correlate well
with the observation of division of NG2� cells in areas of
axonal sprouting in the non-deafferented hippocampus,
which results in an increased number of oligodendro-
cytes and length of myelinated fibers several weeks after
PP lesioning.24 Although we observed a few BrdU�CNP�

cells extending processes toward CNP� myelinated fi-
bers, suggestive of myelination, a thorough study of my-
elination of sprouting axons would require an extended
survival time.21,71

In line with studies that have demonstrated that auto-
immune infiltration can exert beneficial effects on injured
neurons,47,84 we report here that infiltration with myelin-
specific T cells can stimulate proliferation and differenti-
ation of OPCs. Our observations also raise the possibility
that several different mechanisms contribute to the oligo-
dendrotrophic effect of myelin-specific T cells. In addition
to IFN-�, subpopulations of T cells in inflammatory lesions
produce BDNF,84–86 which in addition to its multiple ben-
eficial effects on neurons87 is a potent stimulus of remy-
elination88 and neuronal plasticity.49 That we did not de-
tect BDNF mRNA expression in vitro suggests that BDNF
in vivo is produced by CNS neurons and glial cells, which
is in line with in situ hybridization studies that demon-
strated high BDNF mRNA expression, in particular in
hippocampal neurons.89 After PP lesioning, transient up-
regulation in mRNA expression has been observed in the
granular neurons.90,91 It is, therefore, possible that the
unchanged mRNA levels observed in TPLP mice may be
the result of a dilution bias because qPCR performed on
the entire hippocampus, as in the present study, might
underestimate the lesion-induced local changes in cellu-
lar mRNA expression. It is noteworthy that hippocampal
sprouting after injury does not seem to depend on
BDNF.92,93

TNF induces injury to both oligodendrocytes and my-
elin43,94,95 and promotes OPC differentiation and remy-

elination.43 In the CNS, TNF is expressed primarily by
microglia or infiltrating macrophages in response to in-
jury,96 and is induced by inflammatory cytokines such as
IFN-�97 or by cell-cell contact with activated myelin-reac-
tive T cells.98,99 Using the PP lesion model, our group has
previously demonstrated a transient increase in TNF
mRNA expression levels at 2 days post lesion,34 which
was increased by the presence of IFN-�.100 This was
confirmed in the present study, in which a marked in-
crease in TNF mRNA expression was observed in TPLP

mice at 2 days post lesion and persisted at 7 days post
lesion. Microglial production of TNF has been previously
associated with increased phagocytosis of myelin debris
in microglia in vitro.101,102 As reported for IL-10 mRNA,
the elevated TNF mRNA expression was concurrent with
enhanced clearance of myelin debris, which has previ-
ously been attributed to microglial phagocytosis in PP-
lesioned TMBP mice.35

Although we were not able to detect any changes in
IGF-1 mRNA expression at the time of maximal OPC
proliferation at 2 days post lesion, as much as twofold
up-regulation in TOVA and naïve mice was observed at 7
days post lesion. This corresponds well to in situ hybrid-
ization results that demonstrated elevated IGF-1 mRNA
expression in the deafferented outer molecular layer up
to 12 days post lesion in rats.46,103 IGF-1 is expressed in
glial cells and neurons in normal CNS.104,105 As men-
tioned for BDNF, the inability to detect a T cell–mediated
effect on IGF-1 mRNA expression at 2 and 7 days post
lesion in TPLP mice could also be due to dilution bias. An
effect of the myelin-specific T cells on IGF-1 signaling in
OPCs could also be accomplished by up-regulation of
bindings sites on target cells, as has been demonstrated
for IGF-1 binding sites after PP lesioning.106 Thus, T cells
might stimulate oligodendrogenesis through lesion-reac-
tive microglia by different mechanisms, and a role for
BDNF and IGF-1 cannot be excluded by our findings.
This was recently exemplified by IFN-�–stimulated micro-
glia that demonstrated a phenotype alternately beneficial
or detrimental to formation of oligodendrocytes, depend-
ing on co-expression of other cytokines.107 Thus, cyto-
kines produced by subpopulations of T cells may have
far more wide-ranging effects within the neural tissue
than has been predicted.

In conclusion, findings of the present study demon-
strate that myelin-specific T cells can stimulate OPC pro-
liferation and oligodendrogenesis in vivo. Inasmuch as
most of the current therapeutic strategies for MS are
immunomodulatory, these findings are of importance not
only for understanding T cell–mediated effects in MS but
also for future refinement of therapeutic strategies.
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