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Jürgen Götz • Anne Eckert • Miriam Matamales •

Lars M. Ittner • Xin Liu

Received: 21 March 2011 / Revised: 1 June 2011 / Accepted: 6 June 2011 / Published online: 25 June 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Alzheimer’s disease (AD) is reaching epidemic

proportions, yet a cure is not yet available. While the

genetic causes of the rare familial inherited forms of AD

are understood, the causes of the sporadic forms of the

disease are not. Histopathologically, these two forms of AD

are indistinguishable: they are characterized by amyloid-b
(Ab) peptide-containing amyloid plaques and tau-contain-

ing neurofibrillary tangles. In this review we compare AD

to frontotemporal dementia (FTD), a subset of which is

characterized by tau deposition in the absence of overt

plaques. A host of transgenic animal AD models have been

established through the expression of human proteins with

pathogenic mutations previously identified in familial AD

and FTD. Determining how these mutant proteins cause

disease in vivo should contribute to an understanding of the

causes of the more frequent sporadic forms. We discuss the

insight transgenic animal models have provided into Ab
and tau toxicity, also with regards to mitochondrial func-

tion and the crucial role tau plays in mediating Ab toxicity.

We also discuss the role of miRNAs in mediating the toxic

effects of the Ab peptide.
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Introduction

One of the major burdens associated with advanced age is

dementia, a pathological condition defined as the signifi-

cant loss of intellectual abilities—such as memory

functions—that is severe enough to interfere with social or

occupational functioning. The relentless neuronal degen-

eration that is associated with Alzheimer’s disease (AD)

and the more than two dozen related disorders affects a

steadily increasing percentage of the population world-

wide. More than 26 million people worldwide are currently

living with AD, a number that will quadruple to more than

106 million by 2050 unless effective treatments or a cure

are found. Of all dementing disorders, AD is the most

common form, comprising 50–70% of all reported cases.

Frontotemporal dementia (FTD), in comparison, is less

frequent, but may account for up to 50% of all dementia

cases presenting before the age of 60 years [1]. At the

present time, neither AD nor FTD can be cured although

lifestyle choices, such as of diet and exercise, confer some

form of protection [2].

Neuropathological features of AD and FTD

When in the years of 1992 and 1997, the 100-year-old

histological slides of Alois Alzheimer’s original cases were

rediscovered in the basement of the Institute of Neuropa-

thology of the University of Munich [3], they revealed

what Alzheimer had described in his first case, Auguste D,
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as the key features of the disease named after him: the

presence of overt neurofibrillary tangles (NFTs) and amy-

loid plaques. While Alzheimer was the first to describe

NFTs [4], the credit of reporting amyloid plaques for the

first time goes to Fischer and Redich [5]. Plaques and NFTs

are the key histopathological hallmarks of AD (Fig. 1). The

AD brain is further characterized by massive neuronal cell

and synapse loss at specific predilection sites [6]. The

major proteinaceous component of the plaques is a 40–42

amino acid polypeptide amyloid-b (Ab; (Ab40 and Ab42)

that is derived by proteolytic cleavage from the larger

amyloid precursor protein APP [7, 8]. The enzyme

b-secretase generates the amino terminus of Ab, while

c-secretase cleavage at the carboxy-terminus dictates its

length. Ab40 is the most common species and Ab42 the

more fibrillogenic. b-Secretase activity has been attributed

to a single protein, BACE 1 [9], whereas c-secretase

activity depends on four essential components, namely,

presenilin, nicastrin, APH-1, and PEN-2, which together

form a proteolytic complex [10]. a-Secretase is the enzyme

that is involved in the non-amyloidogenic pathway, by

cleaving APP within the Ab domain and thus precluding

Ab formation [11].

The second histopathological hallmark of AD are the

neurofibrillary lesions that are found in cell bodies and

apical dendrites as NFTs, in distal dendrites as neuropil

threads, and in the abnormal neurites that are associated

with some plaques (neuritic plaques). NFTs are also

abundant, in the absence of overt plaques, in over two

dozen tauopathies that represent a significant subset of

FTD [12]. The neurofibrillary lesions are mainly composed

of highly phosphorylated, aggregated assemblies of the

protein tau [13, 14]. Tau belongs to the family of micro-

tubule-associated proteins (MAPs) that includes MAP2. As

neurons develop, tau segregates into axons, and MAP2 into

dendrites [15]. In the axon, tau stabilizes the microtubules.

Under pathological conditions tau dissociates from the

microtubules, causing them to collapse, and tau starts

accumulating in the somatodendritic compartment. The

precise steps of this process are not fully understood. The

established axonal localization of tau does not exclude the

fact that under physiological conditions, this protein exerts

Fig. 1 Histopathological and genetic features of Alzheimer’s disease

(AD) and frontotemporal dementia (FTD). Memory impairment

characterizes AD at a clinical level, and the presence of amyloid

(Ab) plaques and phospho-tau-containing neurofibrillary tangles

(NFTs) in brain at a histopathological level. A unifying feature of

the plaques and tangles is that their major proteinaceous components,

Ab and tau, respectively, are fibrillar. Plaques are scarce in FTD. The

prominent feature in FTD is a behavioral impairment, with memory

functions often being preserved until late in disease. Compared to

AD, FTD is a highly heterogeneous group of related dementias, as

reflected both by the function of the mutated genes, by the proteins

that are deposited as insoluble aggregates, and by the clinical

syndromes, with language and behavioral variants known. A subset of

FTD, known as frontotemporal lobar degeneration with tau deposits

(FTLD-T) or FTD with Parkinsonism linked to chromosome 17

(FTDP-17), is characterized by tau inclusions. The first FTD

mutations were identified in the tau-encoding MAPT gene causing

FTLD-T. Mutations have been subsequently identified in the PGRN
gene encoding progranulin, and in the VCP gene encoding valosin-

containing protein. TDP-43 is the deposited protein, and these

deposits are shared with motor neuron disease (MND), also known as

amyotrophic lateral sclerosis (ALS). Fused in sarcoma (FUS) is

another pathological protein that has been identified in a small subset

of patients with either ALS or a form of FTD. In familial AD (FAD),

mutations have been identified in the APP gene encoding the amyloid

precursor protein from which Ab is derived by proteolytic cleavage,

and in the genes encoding presenilin 1 and 2 (PSEN1 and PSEN2),

which form part of the Ab cleavage machinery. In AD, no mutations

have been identified in the tau-encoding MAPT gene
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important functions outside of the axon, such as in the

dendrite, as we have recently shown [16].

Tau contains an unusually high number of putative

phosphorylation sites (45 serines, 35 threonines, and 4

tyrosines), and for many of these, specific antibodies are

available [17]. Under physiological conditions, there are on

average 2–3 mol of phosphate per mol of tau, whereas

under pathological conditions this ratio is increased to

7–8 mol [18]. This posttranslational modification has been

termed ‘hyperphosphorylation’: some sites are phosphor-

ylated to a higher degree in the diseased than in the healthy

brain; others are de novo phosphorylated. Phosphorylation

tends to dissociate tau from microtubules. Tau also

undergoes a conformational change that is likely to assist in

differential phosphorylation [19]. Both tau and Ab undergo

nucleation-dependent fibril formation [20]. In the course of

this process, initially dispersed polypeptide chains slowly

come together to form a diverse array of fibrillation nuclei

that enable the rapid outgrowth into higher order assem-

blies, including fibrils [21–23]. Tau is generally perceived

as a neuronal protein; however, in tauopathies such as

progressive supranuclear palsy (PSP) or corticobasal

degeneration (CBD), the protein forms aggregates in non-

neuronal cells [24], emphasizing the important role of glia

in neurodegenerative disease [25].

In AD, the most severe neuropathological changes occur

in the hippocampal formation, followed by the association

cortices and subcortical structures, including the amygdala

and the nucleus basalis of Meynert [26]. NFTs develop and

spread in a predictable manner across the brain, providing

the basis for distinguishing six stages of disease progres-

sion: the transentorhinal Braak stages I–II represent

clinically silent cases; the limbic stages III–IV, incipient

AD; the neocortical stages V–VI, fully developed AD. By

using phosphorylation-dependent anti-tau antibodies, such

as AT8, neuronal changes can be visualized well before the

actual formation of NFTs [27, 28]. In FTD, there is atrophy

of the frontal and temporal cortex that is often

asymmetrical.

Genetic causes of AD and FTD

What is causing AD is not understood, with the exception

of the rare, familial (FAD) forms; the latter, however,

account for less than 1% of all cases [29]. In FAD, auto-

somal dominant mutations have been identified in three

genes: in APP itself, and in the presenilin 1- (PSEN1) and

presenilin 2-encoding (PSEN2) genes (Fig. 1). In addition

to the FAD genes, a series of susceptibility genes have been

identified in sporadic AD (SAD); these include apolipo-

protein E (APOE) as the most established risk gene

[30] CLU encoding clusterin, PICALM encoding the

phosphatidylinositol-binding clathrin assembly protein,

and CR1 encoding the complement component (3b/4b)

receptor 1 [31–33]. Clinically and histopathologically,

early-onset FAD cannot be discriminated from late-onset

SAD [24].

Compared to AD, FTD is a highly heterogeneous group

of related dementias, as reflected both by the function of the

mutated genes, by the proteins that are deposited as insol-

uble aggregates, and by the clinical syndromes, with

language and behavioral variants known [34]. The first FTD

mutations were identified in FTDP-17 (FTD with Parkin-

sonism linked to chromosome 17) in the tau-encoding

MAPT gene [35–37]. This subset of FTD, also known as

FTLD-T (frontotemporal lobar degeneration with tau

deposits) is characterized by tau inclusions (Fig. 1). There

is also a subset of FTD that lacks tau aggregates but presents

with an abundance of ubiquitin-positive lesions. The nature

of the aggregating protein was not known until recently.

This ‘dementia lacking distinctive histology’ (now termed

FTLD-U or FTDU-17) is caused by loss-of-function

mutations in the PGRN gene that encodes the pleiotropic

protein progranulin, and in the VCP gene that encodes

valosin-containing protein [38, 39]; the aggregating protein

is TDP-43 (TAR DNA-binding protein 43), a highly

conserved heteronuclear ribonucleoprotein (hnRNP) [40].

Fused in sarcoma (FUS) is another pathological protein that

has been identified in a small subset of patients with either

amyotrophic lateral sclerosis (ALS) or a form of FTD [41].

Finally, mutations in CHMP2B that encodes chromatin-

modifying protein 2B cause FTD in the absence of either tau

or TDP-43 inclusions [42]. For detailed information and an

update on the genes and mutations in familial AD and FTD,

we refer the reader to two websites—http://www.molgen.

ua.ac.be/ADMutations and http://www.molgen.ua.ac.be/

FTDMutations—both of which are continually updated

resources.

Clinical features of AD and FTD

The accurate differential diagnosis of AD and FTD remains

a difficult yet important clinical issue, particularly with the

advent of treatments that are designed to target the causes

and/or consequences of specific types of dementia [43].

With the recent advent of positron emission tomography

(PET) imaging, it has become possible to assess Ab
deposition longitudinally and explore its relationship with

cognition and disease progression. For example, in one

study that involved over 200 subjects and a 20-month

clinical follow-up after [11C]Pittsburgh compound B (PiB)-

PET and two additional follow-ups for up to 3 years with

lower numbers of subjects, at baseline, 97% of AD, 69% of

mild cognitive impairment (MCI), and 31% of healthy
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control (HC) subjects showed high PiB retention [44]. At

the 20-month follow-up, small but significant increases in

PiB standardized uptake value ratios were observed in the

AD and MCI groups, as well as in the HCs with high PiB

retention at baseline (5.7, 2.1, and 1.5%, respectively).

There was a weak correlation between PiB increases and

the decline in cognition when all groups were combined.

Progression to AD occurred in 67% of MCI with high PiB

versus 5% of those with low PiB, but 20% of the low PiB

MCI subjects progressed to other dementias. Of the high

PiB HCs, 16% developed MCI or AD within 20 months

and 25% by 3 years. One low PiB HC developed MCI.

Taken together, these results indicate that Ab deposition

increases slowly from cognitive normality to moderate

severity AD. Extensive Ab deposition precedes cognitive

impairment and is associated with a higher risk of cognitive

decline in HCs and progression from MCI to AD over

1–2 years. Importantly, the cognitive decline is only weakly

related to the change in Ab plaque burden, suggesting that

downstream factors have a more direct effect on symptom

progression [44]. One of these down-stream factors may

well be differences in protein levels of tau, with low levels

conferring protection [45].

AD is characterized by deficits in memory, visuospatial

ability, language, and executive function. While cognitive

deficits have traditionally been emphasized in defining AD,

there are a variety of neurobehavioral symptoms that are also

commonly associated with the disease, including increased

apathy, agitation, anxiety, and psychiatric symptoms, such

as delusions or hallucination [46]. In contrast to AD, which

is predominantly characterized by memory loss, FTD is

mainly initiated by behavioral impairment (Fig. 1). The

neurobehavioral symptoms include overeating, apathy or

euphoria, disinhibition, depression, stereotyped behaviors,

reduced empathy, and antisocial and aggressive behaviors.

Patients with FTD also show a variety of cognitive prob-

lems, such as language and memory impairments, which are

often coupled with a lack of insight into these changes [47].

In a significant subset of FTD, late Parkinsonism is

found [12]. The diagnosis is based on the person’s clinical

presentation, the medical history and examination, neuro-

psychological assessments and, increasingly, brain imaging.

However, due to its insidious and gradual onset, the diag-

nosis of FTD can be difficult. Furthermore, the behavioral

symptoms, such as apathy or impulsive responding, that are

associated with FTD can have a negative impact on cogni-

tive performance, and patients may be quite often wrongly

diagnosed with AD [48]. At present, AD and FTD can only

be definitively diagnosed at autopsy. The average age of

diagnosis of FTD is about 60 years, which is in the order of

10 years before the average SAD patient is diagnosed

[49, 50].

Animal models of AD and FTD

To better understand the role of Ab and tau in AD and

related disorders, experimental animal models have been

developed, in particular in mice, that reproduce the major

aspects of the neuropathological characteristics of these

diseases [11, 51]. Massive neuronal cell loss, however, has

only been achieved for a small subset of mouse strains.

In 1995, Games and coworkers established the first Ab
plaque-forming mouse strain through expression of the

disease-linked V717F mutant form of APP in the brain,

under control of the platelet-derived growth factor mini-

promoter. These PDAPP mice showed many of the path-

ological features of AD, including extensive deposition of

extracellular amyloid-b plaques, astrocytosis, and neuritic

dystrophy [52]. Similar features were observed in the

Tg2576 strain established by Hsiao and coworkers, by

expressing the APPsw mutation inserted into a hamster

prion protein cosmid vector [53]. The plaque-forming

APP23 strain was established by expressing APPsw under

the control of the neuronal mThy1.2 promoter [54, 55]. The

common features of these strains is the development of

amyloid plaques that are associated with memory impair-

ment [11]. Subsequently, many other models have been

developed with a pronounced plaque pathology, such as the

TgCRND8 or the J20 mice [56, 57].

In the same year in which the first plaque-forming

mice were established, the first tau transgenic mouse

model was also generated, by expressing the longest

human wild-type brain tau isoform, htau40, under control

of the neuronal hThy1 promoter [58]. Despite the lack of

an NFT pathology, the mice reproduced the somatoden-

dritic localization of hyperphosphorylated tau in AD.

They presented a pathology that is best described as an

early ‘pre-tangle’ phenotype. A more pronounced tau

phenotype was eventually achieved through the use of

stronger promoters [59–62]. NFT formation, however,

was only reproduced in mice in 1998, following the

identification of pathogenic FTDP-17 mutations in the

MAPT gene, by targeting FTD mutant tau expression to

both neuronal and glial cells [11]. Our group, for exam-

ple, expressed two mutant forms of tau, G272V and

P301L, in separate strains that both developed NFTs

[63–67], while mice with pseudophosphorylated tau fail to

develop NFTS [68]. The P301L tau-expressing pR5 mice

showed a behavioral impairment in amygdala- and hip-

pocampus-dependent tasks; aspects of the behavioral

impairment could be correlated with the aggregation

pattern of the transgene [67, 69–71]. K369I transgenic

mice, on the other hand, model Parkinsonism in FTD, in

parts owing to expression of the transgene in the

substantia nigra, among other brain areas [72, 73].
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To achieve a more complete model of AD, the plaque

and NFT pathology has been combined in 3xtg-AD mice

that express APPsw and P301L-tau expression on a mutant

PS1M146V knock-in background [74, 75]. These mice have

been used extensively to dissect pathogenic mechanisms

and more recently for gene therapeutic approaches [76].

Remarkably, cognitive function is improved without

altering Ab or tau pathology. Instead, the mechanism

underlying the improved cognition involves a robust

enhancement of hippocampal synaptic density, mediated

by brain-derived neurotrophic factor (BDNF). Another

model with combined pathologies addresses the role of

tau phosphorylation at the pathogenic epitope S422 [77].

These tripleAD mice have been used by us to assess the

effects of Ab and tau on mitochondrial functions (Fig. 2a)

[78].

Ab and down-stream signaling

The amyloid cascade hypothesis claims, in simplistic

terms, that there is a pathogenic degenerative cascade in

AD, with Ab being upstream of tau [79]. To address the

interaction of Ab and tau [80], Ab plaque-forming Tg2576

mice were crossed with NFT-forming P301L tau-trans-

genic JNPL3 mice [65, 81]; also, P301L tau transgenic pR5

mice were intracerebrally injected with fibrillar prepara-

tions of Ab42. Both strategies caused an increased tau

phosphorylation at pathological epitopes and increased

NFT formation, thereby establishing a link between Ab and

tau in vivo [65, 81]. These findings have been reproduced

in vitro [82, 83]. Similarly, NFT formation was aggravated

by infusing brain extracts of aged plaque-forming APP23

mice intracerebrally in P301L tau transgenic mice or by

Fig. 2 Modes of Ab toxicity as

illustrated for the signaling

through the NMDA (N-methyl

D-aspartate) receptor (NMDAR).

Tau is perceived as an ‘axonal’

protein, although a fraction of it

is present in dendrites. Tau

functions in targeting the kinase

Fyn to this compartment. Fyn

then phosphorylates the

NMDAR subunit NR2B,

thereby mediating complex

formation of NMDARs with the

post-synaptic density protein 95

(PSD95). The over-activation of

the NMDAR complex

(excitotoxicity) results in

excessive nitric oxide (NO)

levels. This causes down-stream

protein misfolding and

aggregation, as well as

mitochondrial fragmentation.

The toxic signaling pathway

also involves the release of

mitochondrial cytochrome c

(Cyt c) and the activation of

down-stream caspases as well as

the formation of reactive

oxygen species (ROS). The

excitotoxicity complex mediates

Ab’s toxic functions and

subsequent neurodegeneration,

a process that depends on the

presence of tau. Inset:
Components of the

mitochondrial respiratory chain

itself are targets of Ab and tau

and, together, these toxic

entities synergistically impair

mitochondrial functions
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crossing Ab plaque-forming APP23 and P301L tau trans-

genic mice [84]. Together, these studies established that

Ab exaggerates a pre-existing tau pathology supporting, at

least in part, the amyloid cascade hypothesis in mice. They

proved an essential role for Ab in disease.

However, there is also an important role for tau. When

hippocampal neurons from tau knockout and transgenic as

well as wild-type control mice were cultured in the pres-

ence of Ab, it was found that the knockout neurons were

resistant to Ab toxicity, while those from tau transgenic

mice were more susceptible [85]. In a next step towards

showing an essential role for tau in mediating Ab toxicity,

Mucke and colleagues crossed plaque-forming APP trans-

genic mice onto hetero- and homozygous tau knockout

backgrounds [86]. They found that this prevented the

memory impairment that characterizes the APP mutant

mice and, importantly (and somewhat surprisingly), that

this improvement was achieved without any changes to Ab
levels or Ab plaque load. Tau reduction also protected

against pentylenetetrazole (PTZ)-mediated excitotoxicity,

as shown by a reduced seizure severity and increased

latency. Excitotoxicity describes a signaling cascade that is

induced by the over-activation of the N-methyl-D-aspartate

(NMDA) receptor (NMDAR), resulting in neuronal dam-

age and death due to the generation of excessive nitric

oxide (NO) (Fig. 2). This process has been implicated as

one patho-mechanism underlying Ab-mediated neurode-

generation in AD, despite a lack of evidence for a direct

binding of Ab to NMDARs [87, 88]. Toxicity mediated by

any particular receptor may not necessarily involve the

direct binding of Ab, but it could be due to an indirect

modulation of receptor properties, possibly through mem-

brane association. This mechanism may explain why Ab
has been reported to bind to distinct receptors under certain

conditions and not to others depending on the experimental

design [89, 90]. Results from recent studies suggest that

excessive NO can mediate excitotoxicity in part by trig-

gering down-stream protein misfolding and aggregation, as

well as mitochondrial fragmentation. S-Nitrosylation, or

covalent reaction of NO with specific protein thiol groups,

represents a convergent signal pathway contributing to NO-

induced protein misfolding and aggregation, as well as

mitochondrial fragmentation through Ab-related S-nitro-

sylation of proteins, such as dynamin-related protein-1

(Drp1) [91]. The toxic signaling pathway also involves the

release of mitochondrial cytochrome c and the activation of

down-stream caspases [92, 93]. Excessive NMDAR acti-

vation thus precipitates the neuronal degenerative process,

in part by mitochondrial dysfunction [94].

Coming back to the interaction of tau and Ab, the

important question arises how tau in fact mediates Ab
toxicity and why its removal prevents it? In order to

decipher the underlying mechanisms, we generated a

mouse strain that expresses the projection domain of tau,

while lacking the microtubule-binding domain [16]. When

these so-called Dtau mice were crossed with Ab plaque-

forming APP23 mice, the high susceptibility to excitotox-

icity that characterizes the APP23 strain was rescued; also

rescued was early mortality. In addition, the memory

phenotype of these mice improved; and again, the res-

cue occurred in the absence of any changes to APP

mRNA levels, or Ab plaque load. Similarly, crossing the

APP23 mice onto a second tau knockout background

confirmed the previous findings of Mucke and colleagues

on the protective role of not having tau [16, 86]. When we

analyzed the subcellular localization of the projection

domain tau in Dtau mice, we found that it accumulated in

the soma, while it was excluded from the dendrite. What

links tau and the NMDAR is the non-receptor tyrosine

kinase Fyn, establishing a toxic triad [95]. We found by

enhanced immunohistochemistry that already under phys-

iological conditions a fraction of tau is present in the

dendrites (Fig. 2) [16]. It functions in targeting the kinase

Fyn to the dendrite where the enzyme phosphorylates the

NMDAR subunit NR2B, thereby mediating complex for-

mation of the NMDAR with the post-synaptic density

protein 95 (PSD95) [96]. In the presence of Dtau, this

truncated version of tau competes with endogenous (full-

length) tau in the binding to Fyn, trapping it in the soma

and preventing it from entering the dendrites. Therefore,

Fyn is not available for phosphorylation of NR2B’s Y1472

and hence, the excitotoxic signaling complex cannot be

formed. Likewise, in tau knockout mice, tau is not avail-

able in the first place, and Fyn is thus not targeted to the

dendrite. While excitotoxic signaling is impaired in Dtau

over-expressing or tau knockout mice, we found no sig-

nificant changes in synaptic NMDAR expression levels and

NMDA currents [16]. In addition to the genetic approach,

we tested the pharmacological uncoupling of the NMDAR/

PSD95 complex in APP23 mice by delivering a small

peptide, Tat-NR2B9c, composed of the carboxy-terminal

amino acids of NR2b (including Y1472) fused to a HIV1-

Tat peptide [97], using an osmotic pump. This approach

permanently protected the APP23 mice from experimen-

tally induced seizures and memory impairment and

extended their lifespan to that of wild-type mice. However,

crossing the APP23 mice with P301L tau mutant pR5 mice

that are characterized by tau accumulation in the soma and,

importantly, in the dendrites, caused a dramatic effect in

that none of the mice survived beyond the age of 4 months

[16]. Tau reduction has subsequently been shown to further

prevent the Ab-induced defects in the axonal transport of

mitochondria [98].

Together, these findings lead us to propose the ‘tau axis

hypothesis’ [45] which postulates that progressively

increasing levels of dendritic tau make neurons more
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vulnerable to Ab: at the onset of AD, Ab levels in the

brain increase. The presence of tau at low levels in the

dendrites (low compared to levels in the axon) renders, to

some degree, the dendrites (and their spines) vulnerable

to postsynaptic Ab toxicity (Fig. 2b). With disease

progressing, tau becomes increasingly phosphorylated (a

process driven in part by Ab), and tau accumulates in the

soma and the dendrites. In fully manifested AD, levels of

tau in the dendrite (dendritic spine) are high, and this is

associated with an increased neuronal vulnerability to Ab
toxicity. As Ab increases further, it exacerbates tau’s

phosphorylation and somatodendritic accumulation,

thereby hypersensitizing the synapses to Ab’s toxicity.

Ultimately, this process results in the loss of synapses and

causes neuronal degeneration [6]. There is an increasing

understanding that in AD the neuronal network is dis-

turbed and as the disease is initiated at one particular site,

it is spreading through the brain via synaptic connections.

This concept has been addressed in mice by targeting

transgene expression to distinct subregions of the brain,

such as the entorhinal cortex (EC) [99]. In this brain area,

NFT formation was found to be initiated in AD. Trans-

genic overexpression of APP/Ab in the EC elicited

abnormalities in synaptic functions and activity-related

molecules in the hippocampal dentate gyrus and CA1

regions, as well as epileptiform activity in the parietal

cortex. Soluble Ab was observed in the dentate gyrus, and

Ab deposits in the hippocampus were localized to ter-

minal fields of the perforant pathway. Thus, the authors

concluded that APP/Ab expression in EC neurons causes

transsynaptic deficits that may initiate a cortico-hippo-

campal network dysfunction in both mouse models and

human patients with AD [99].

What is the identity of the Ab receptor(s) and what are

the down-stream effectors of its toxicity? At present it is

not understood whether Ab acts via a receptor or whether

membrane binding alone is sufficient [100]. If Ab acts via a

receptor, this receptor may have specificity for Ab or it

may bind proteins or peptides with shared amyloid prop-

erties. Work on primary cortical and hippocampal cultures

treated with the amyloidogenic peptides Ab and human

amylin, respectively, indicates that the latter may be the

case, as rat amylin, which is not amyloidogenic, turns out

not to be toxic, while both Ab and human amylin are [101].

These findings underscore commonalities between AD and

type 2 diabetes mellitus [102]. Membrane interaction of Ab
can occur via its hydrophobic carboxy-terminal domain

[103, 104] or by electrostatic interactions mediated by the

charged amino acids in the amino-terminal domain [105].

Ab may bind to the cell membrane to form channels or

pores that disrupt ion homeostasis, hence leading to neu-

ronal dysfunction [103, 106–109]. As several molecules

associated with disease, such as the Prion protein, the

British peptide, or human amylin, can form soluble oligo-

mers, bind to membranes, and subsequently disrupt ion

homeostasis, this may be an inherent property of amyloi-

dogenic proteins or peptides [110].

As discussed above, toxicity mediated by the NMDAR

may not necessarily involve direct binding of Ab, rather it

could be due to an indirect modulation of receptor prop-

erties, possibly through membrane association [89, 90].

Normal NMDAR signaling is a multi-step process, with

contributions by the fast acting nuclear Ca2?/calmodulin-

dependent protein (CaM) kinase pathway and the slower

acting, longer lasting Ras-extracellular signal-regulated

kinase 1/2 (ERK1/2) pathway, which translocate to the

nucleus and ultimately result in activation of the trans-

cription factor CREB [111]. Too much calcium influx via

the NMDAR, such as under excitototoxic conditions, leads

to neuronal death. While a long-standing view is that

neuronal responses to NMDAR activity follow a bell-

shaped curve, in which both too much and too little

response is potentially harmful, this view has been recently

revisited in that the location of the NMDAR may influence

whether its activation is coupled to pro-death or pro-sur-

vival signals [111].

Ab may induce synaptic and neuronal degeneration via a

plethora of pathways [112]. Ab’s anti-LTP (long-term

potentiation) activity can be modulated by antagonists of

the p38 MAP kinase [113] and the Jun NH2-terminal

kinase (JNK) pathways [114], both of which have been

implicated in the hyperphosphorylation of tau [115, 116].

In one study, inhibitors of p38, JNK, GSK-3b, and phos-

phatidylinositol 3-kinase showed either no or only minor

inhibition of Ab oligomer-mediated cell death in mouse

hippocampal slices, but inhibitors of MAPK kinase kinase

(MAPKKK), which is upstream of the extracellular ERKs,

significantly inhibited Ab-mediated neuronal death [117].

Another interesting kinase is Fyn, as it links Ab and tau

[45]. Not only is Fyn an interaction partner of tau [118], it

also phosphorylates tau at Y18 [119]. Fyn is necessary for

the toxicity of Ab-derived diffusible ligands (ADDL, an

oligomeric form of Ab) as Fyn knockout neurons are

resistant to ADDL-mediated neuronal cell death [120].

Moreover, when crossed with APP transgenic mice, Fyn

knockout mice display reduced synaptotoxicity without

affecting aberrant sprouting [121, 122]. Fyn has a role in

modulating synaptic activity and plasticity through its

phosphorylation of NMDAR [123]. While tau reduction

prevents cognitive deficits in Ab-forming APP transgenic

mice, Fyn overexpression exacerbates them.

Using electroencephalography (EEG) to examine net-

work effects, researchers have recorded whole-cell currents

in acute hippocampal slices from APP mice in the presence

or absence of tau. APP mice with tau had increased

spontaneous and evoked excitatory currents, reduced
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inhibitory currents, and NMDAR dysfunction. Tau

reduction increased inhibitory currents and normalized the

excitation/inhibition balance and NMDAR-mediated

currents in the APP mutant mice [124]. These findings are

consistent with the fact that Ab oligomers alter the

transport of NMDAR by promoting its endocytosis,

resulting in decreased receptor activity both in vitro and

in the APP transgenic mice [125]. Work on neuronal and

astrocyte cultures further suggests that Ab causes Ca2?-

dependent oxidative stress by activating an astrocytic

NADPH oxidase, with neuronal death following through a

failure of antioxidant support [126]. Together, these

results suggest a fine-balanced network of molecular

interactions [100].

Neurotoxicity of different Ab species

Alzheimer’s disease is believed to be a disease of the

synapses and has hence been termed a ‘synaptic failure’

[6]. While Ab can kill neurons, synaptotoxicity may be

more relevant for the earlier stages of AD that are best

characterized by synaptic loss rather than neuronal death.

Loss of synaptic terminals or dendritic spines could cause

the associated decline in cognitive functions that charac-

terizes AD. Whether the neurotoxic and synaptotoxic

actions of Ab are separate activities or whether they share

common mechanisms is not known [100].

The interpretation of Ab toxicity studies is complicated

by the fact that different preparations are being used, such

as Ab42 versus the less amyloidogenic Ab40 versus the

shorter, cheaper Ab25-35 version, aged versus fresh prep-

arations, monomers versus oligomers versus fibrils; on top

of that, different concentrations, incubation times, and

cellular system add additional levels of complexity [127,

128]. For example, it was found early on that while

Ab peptide added at micromolar concentrations to

primary neuronal cultures induces cell death [129], low,

subnanomolar concentrations are neurotrophic, arguing in

favor of a physiological function of Ab [129]. When Ab
aggregation was induced, this aggregation increased the

neurotoxic activity of the Ab peptide, suggesting that the

toxic species are associated with the formation of fibrils

[130–132]. At present, however, major research efforts of

many groups concentrate on non-fibrillar soluble Ab as the

major toxic species in AD [120, 133–135]. These have

been given different names, including ADDLs [120],

globulomers [136], and the dodecameric Ab species Ab*56

[137]. Recent structural analysis has revealed that penta-

meric and hexameric oligomers may be the building blocks

of the more toxic decameric and dodecameric complexes

[138]. To assist in identifying the different Ab species,

conformational antibodies have been developed that not

only stabilize the Ab protofibrils but also prevent mature

amyloid fibril formation [135, 139].

Ab can inhibit long-term potentiation (LTP), a model

system for synaptic strengthening and memory [120, 133,

140–142]. When cell medium containing abundant Ab
monomers and putative oligomers—but not amyloid

fibrils—was microinjected into rat brain, this markedly

inhibited hippocampal LTP [133]. Immunodepletion of all

Ab species from the medium completely abrogated this

effect. Pretreatment of the medium with insulin-degrading

enzyme (IDE), which degrades Ab monomers but not

oligomers, did not prevent the inhibition of LTP, indicating

a crucial role for Ab oligomers. These were shown to

disrupt synaptic plasticity in vivo at concentrations found

in the human brain and cerebrospinal fluid, in the absence

of monomeric or fibrillar amyloid. When cells were treated

with c-secretase inhibitors at doses which prevented

oligomer formation but allowed appreciable monomer

production, LTP was not longer inhibited, indicating that

synaptotoxic Ab oligomers can be targeted therapeutically

[133, 143]. Oligomers caused a tenfold greater toxicity in

Neuro-2A cells than in fibrils [144]. However, whereas

LTP seems to be inhibited by oligomeric Ab only and not

by fibrillar Ab, in a different experimental paradigm, the

two species seem to have both toxic, yet diverse effects

[145]. Using rat astrocyte cultures, oligomeric Ab42 was

shown to induce initial high levels of the pro-inflammatory

molecule interleukin (IL)-1b that decreased over time,

whereas fibrillar Ab caused increased levels over time

[145]. With respect to mitochondrial functions, we

observed that fibrillar and oligomeric species demonstrated

a very similar degree of toxicity (see below). It has been

suggested that the neurotoxic activity of oligomers is

associated with dimeric and trimeric species [133, 142]

and, in a recent study, Ab dimers were found to be the most

abundant form of soluble oligomer detectable in the human

brain [146]. They were isolated from the cortices of typical

AD subjects, at subnanomolar concentrations, they first

induced tau hyperphosphorylation in hippocampal neurons,

subsequently disrupting the microtubule cytoskeleton, and

they caused neuritic degeneration—all in the absence of

amyloid fibrils.

The relative contribution of the two forms of Ab—Ab40

and Ab42—to disease is a matter of debate. One of the

major puzzles in the AD field is that a difference of just

two residues between Ab40 and Ab42 markedly changes

toxicity and aggregation properties. A structural study

showed that the hydrophobic carboxy-terminal residues in

Ab42 stabilize the neurotoxic low-order oligomers in a

non-b-sheet secondary structure and that the conversion to

protofibrils and fibrils having b-sheet secondary structure

reduces toxicity [138]. In Drosophila, Ab42 expres-

sion causes the formation of diffuse amyloid deposits,
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age-dependent learning deficits, and neurodegeneration.

Ab40 causes similar learning deficits without aggregation

and neurodegeneration [147]. On the other hand, rational

mutagenesis applied to the Ab42 peptide confirmed that the

rate of aggregate formation in vitro is linked to brain

toxicity [148]. Furthermore, flies expressing wild-type or

E22G Ab42 had a median survival of 24 and 8 days,

respectively, whereas Ab40-expressing flies had a median

survival of 30 days, indicating that Ab40 may be

non-toxic, and possibly protective [147]. This possibility is

supported by nuclear magnetic resonance (NMR) studies

which revealed that Ab40 prevents Ab42 from aggregating

in vitro [149]. Thus, this aspect of toxicity and the relative

role of monomeric, oligomeric, and fibrillar species are far

from being resolved.

Ab-binding proteins and mitochondrial targets

A number of Ab-binding proteins have been identified on

the outside of the plasma membrane of neurons and glial

cells that are limited to dealing with a highly sticky pep-

tide, such as Ab42. These proteins include the a7-nicotinic

acetylcholine receptor, the receptor for advanced glyco-

sylation end-products (RAGE), APP itself, NMDAR, the

P75 neurotrophin receptor (P75NTR), CD36, and low-

density lipoprotein receptor-related protein (LRP) members

[150]. LRP, apoE, and the serum protein a2-macroglobulin

(a2M) probably modulate Ab toxicity via clearance of

apoE:Ab and a2M:Ab complexes or Ab alone from the

brain and hence reduce Ab levels [151, 152]. Interestingly,

in a study involving metabolic labeling, Ab clearance rates

were found to be relatively impaired in the central nervous

system (CNS) of AD patients compared with controls,

while production was unaffected [153]. Specifically, late-

onset AD was associated with a 30% impaired clearance of

both Ab42 and Ab40, indicating that clearance mecha-

nisms may be critically important in the development of

AD. Estimates based on a 30% decrease in Ab clearance

rates suggest that the AD brain accumulates Ab over a

period of about 10 years. The impaired clearance of both

Ab40 and Ab42 is consistent with prior findings of the

deposition of both Ab40 and Ab42 in parenchymal

amyloid plaques and the substantial deposition of Ab40 in

cerebral amyloid angiopathy in about 80% of cases of AD

[154].

P75NTR can bind a variety of Ab oligomeric species

and modulate Ab toxicity in a cell type- and P75 isoform-

dependent manner [155, 156]. Full-length P75NTR blocks

toxicity of both fibrillar and non-fibrillar Ab preparations

in primary neuronal cultures [157], but promotes toxicity of

fibrillar Ab in neuroblastoma cells [158]. The binding of

Ab oligomers to neurons can be blocked with an anti-

NMDAR antibody and, as a consequence, reactive oxygen

species (ROS) stimulation in hippocampal cultures is

reduced [159]. These results indicate different modes of

toxicity in different cell types.

There is an increasing amount of data being published

on intracellular sites of Ab production and targeting,

including intracellular organelles, such as mitochondria

[160–164], whose function it impairs [165–169]. When we

analyzed the total brain proteome of P301L tau transgenic

pR5 and wild-type mice, we discovered that it consisted

mainly of metabolically related proteins, including

mitochondrial respiratory chain complex components,

antioxidant enzymes, and synaptic proteins, that were

modified. This deregulation could be functionally validated

in the pR5 mice as mitochondrial dysfunction, and the

reduction in mitochondrial complex V levels was

confirmed in human P301L FTDP-17 brains [166]. In one

study, we found that P301L tau mitochondria displayed an

increased vulnerability towards fibrillar Ab42 compared to

control mitochondria, suggesting a synergistic action of tau

and Ab pathology on the mitochondria [166]. In a follow-

up study we investigated the toxicity of oligomeric Ab
species [127, 128]. Interestingly, in cortical pR5 brain

cells, both oligomeric and fibrillar—but not monomeric—

Ab42 caused a decreased mitochondrial membrane poten-

tial. This was not observed with cerebellar preparations,

indicating selective vulnerability of cortical neurons [167].

We also measured reductions in state 3 respiration, the

respiratory control ratio, and uncoupled respiration when

P301L tau mitochondria were incubated with either oligo-

meric or fibrillar preparations of Ab42. We found that

aging specifically increased the sensitivity of mitochondria

to oligomeric Ab42 damage, indicating that while oligo-

meric and fibrillar Ab42 are both toxic, they exert different

degrees of toxicity in mitochondria from older animals

[167]. When we performed a comparative, quantitative

iTRAQ proteomic analysis of single-transgenic pR5, dou-

ble-transgenic APP/PS2 mutant, and tripleAD (pR5/APP/

PS2) mice, as well as of wild-type controls, we found that

one-third of the deregulated proteins were mitochondrial.

Notably, deregulation of complex I was tau dependent,

while deregulation of complex IV was Ab dependent, both

at the protein and activity levels. Synergistic effects of Ab
and tau were evident in 8-month-old tripleAD mice as only

they showed a reduction of the mitochondrial membrane

potential at this early age. At the age of 12 months, the

strongest defects on the oxidative phosphorylation system,

the synthesis of ATP, and ROS levels were exhibited in the
tripleAD mice, again emphasizing synergistic, age-associ-

ated effects of Ab and tau in perishing mitochondria [78].

Synergistic effects were also found by us in the neuro-

blastoma cell system in promoting aberrant cell cycle

reentry [170].
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Mitochondrial dysfunction has been linked to full-length

and carboxy-terminally truncated APP, which was shown

to accumulate exclusively in the protein import channels of

mitochondria of human AD, but not age-matched control

brains [163]. Similarly, the accumulation of full-length

APP in the mitochondrial compartment in a transmem-

brane-arrested form, but not lacking the acidic domain, was

shown to cause mitochondrial dysfunction and impair

energy metabolism [171]. Ab can disrupt mitochondrial

cytochrome c oxidase activity [161, 172] in a sequence-

and conformer-dependent manner [161]. The Ab binding

protein alcohol dehydrogenase (ABAD, also known as

ERAB) is a short-chain alcohol dehydrogenase that binds

to Ab in the mitochondrial matrix. ABAD can bind to

oligomeric Ab42 present in the cortical mitochondria

of APP transgenic mice [173]. This interaction pro-

motes leakage of ROS, mitochondrial dysfunction, and

cell death—potentially underlying the mechanism of

Ab-induced mitochondrial toxicity [160]. The results of

protease sensitivity assays suggest that Ab indeed gains

access to the mitochondrial matrix rather than being simply

adsorbed to the external mitochondrial surface [162]. The

interaction between Ab and mitochondria may explain how

Ab induces apoptosis and caspase activation [160, 174,

175]. In general, intracellullar Ab may be derived either

from internalized extracellular Ab or from intracellularly

generated Ab [176–178]. As it stands, the putative exis-

tence of intracellular Ab adds a further level of complexity

to the mechanism of Ab toxicity, obtaining direct access to

organelles that are vital for the function and viability of

neurons [179].

Ab, altered gene expression and miRNA deregulation

The last years have seen vast improvements in the methods

available for functional genomics studies. The effects of

Ab on the proteome and transcriptome can be assessed

with increasingly smaller sample sizes and a higher sen-

sitivity, and these methods have been applied successfully

to AD and its model systems [180, 181]. Previously, we

and others identified deregulated genes and proteins either

in human AD tissue itself, or in tissue culture systems and

animal models [182–184]. This approach not only identi-

fied deregulated genes and proteins but also pathogenic

mechanisms, such as mitochondrial dysfunction, impaired

unfolded protein responses, and changes in microRNA

(miRNA) expression [185]. MicroRNAs (miRNAs) add

another level of complexity to gene regulation. While ini-

tially identified for their roles in development and cellular

identity, the role of miRNAs in human neurodegenerative

disease has been increasingly acknowledged in more recent

times [186–188]. miRNAs are evolutionarily conserved

non-coding RNAs that are approximately 22 nucleotides

and which negatively regulate gene expression in a

sequence-specific manner [189, 190]. Changes in miRNA

profiles have been reported for postmortem human AD

brain tissue, where they include miRNAs that regulate

genes such as APP itself or BACE1, which encodes the

b-secretase involved in APP processing and Ab formation

[191–194]. Although the role of genes such as APP and

PSEN in familial AD is firmly established, little is known

about the molecular mechanisms affecting Ab generation

in sporadic AD. A deficiency in Ab clearance is a possi-

bility, as discussed above, but an increased expression of

proteins such as APP or BACE1 may also be associated

with the disease: a study of miRNA expression profiles in

sporadic AD patients revealed that several miRNAs

potentially involved in the regulation of APP and BACE1

expression appear to be decreased in the diseased brain. Of

these, miR-29a, -29b-1, and -9 can regulate BACE1

expression in vitro. The miR-29a/b-1 cluster was signifi-

cantly (and AD-specific) decreased in AD patients

displaying abnormally high BACE1 protein. Similar cor-

relations between the expression of this cluster and BACE1

were found during brain development and in primary

neuronal cultures. These results suggest that the loss of

specific miRNAs can contribute to increased BACE1 and

Ab levels in sporadic AD [192]. In a comparison of human

brain tissue to Ab-treated primary neuronal cultures or

brain tissue derived from Ab-depositing APP mutant

APP23 transgenic mice, we found a remarkable overlap in

deregulated, mostly down-regulated miRNAs [185]. The

down-regulation of approximately 50% of the miRNAs

tested in response to Ab was also observed, including

down-regulation of miR-9 and 181c, which are also down-

regulated in human AD brain tissue [192, 195, 196].

Whether changes in miRNA profiles are specific for

sporadic AD, or whether they are a cause or a consequence

of the disease process, remains to be investigated: the

interesting opportunity that is offered, however, is that

miRNAs, similar to protein markers, can be used for

diagnostic purposes [192], as is the case for cancer patients

[197].

Conclusions

What can be expected in the forthcoming years? Some of

the current therapeutic trials targeting Ab may come to

fruition [11]. The mode of Ab uptake and/or binding by

neurons and other cell types will be elucidated and inter-

acting proteins, both under physiological and pathologic

conditions, will be identified. With the advent of new tools,

it will likely become easier to discriminate Ab conforma-

tions and hence allow the role of specific conformers in
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toxicity to be defined [139]. Moreover, the role that tau

plays in mediating Ab toxicity in disease will assist in the

development of treatment strategies for AD and related

disorders [45].
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Abeta treatment and P301L tau expression in an Alzheimer’s

disease tissue culture model act synergistically to promote

aberrant cell cycle re-entry. Eur J Neurosci 26:60–72

171. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG

(2003) Mitochondrial targeting and a novel transmembrane

arrest of Alzheimer’s amyloid precursor protein impairs mito-

chondrial function in neuronal cells. J Cell Biol 161:41–54

172. Takuma K, Yao J, Huang J, Xu H, Chen X, Luddy J, Trillat AC,

Stern DM, Arancio O, Yan SS (2005) ABAD enhances Abeta-

induced cell stress via mitochondrial dysfunction. FASEB J

19:597–598

173. Yan Y, Liu Y, Sorci M, Belfort G, Lustbader JW, Yan SS, Wang

C (2007) Surface plasmon resonance and nuclear magnetic

resonance studies of ABAD-Abeta interaction. Biochemistry

46:1724–1731

174. Ivins KJ, Bui ET, Cotman CW (1998) Beta-amyloid induces

local neurite degeneration in cultured hippocampal neurons:

evidence for neuritic apoptosis. Neurobiol Dis 5:365–378

175. White AR, Guirguis R, Brazier MW, Jobling MF, Hill AF,

Beyreuther K, Barrow CJ, Masters CL, Collins SJ, Cappai R

(2001) Sublethal concentrations of prion peptide PrP106–126 or

the amyloid beta peptide of Alzheimer’s disease activates

expression of proapoptotic markers in primary cortical neurons.

Neurobiol Dis 8:299–316

176. Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der

Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Dro-

becq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz

C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive

CA1/2 neuronal loss with intraneuronal and N-terminal trun-

cated Abeta42 accumulation in a novel Alzheimer transgenic

model. Am J Pathol 165:1289–1300

177. Gomez-Ramos P, Asuncion Moran M (2007) Ultrastructural

localization of intraneuronal Abeta-peptide in Alzheimer disease

brains. J Alzheimers Dis 11:53–59

178. Wegiel J, Kuchna I, Nowicki K, Frackowiak J, Mazur-Kolecka

B, Imaki H, Wegiel J, Mehta PD, Silverman WP, Reisberg B,

Deleon M, Wisniewski T, Pirttilla T, Frey H, Lehtimaki T,

Kivimaki T, Visser FE, Kamphorst W, Potempska A, Bolton D,

Currie JR, Miller DL (2007) Intraneuronal Abeta immunoreac-

tivity is not a predictor of brain amyloidosis-beta or

neurofibrillary degeneration. Acta Neuropathol 113:389–402

179. Eckert A, Schmitt K, Gotz J (2011) Mitochondrial dysfunc-

tion—the beginning of the end in Alzheimer’s disease? Separate

and synergistic modes of tau and amyloid-beta toxicity. Alz-

heimers Res Ther 3:15

180. Hoerndli F, David D, Gotz J (2005) Functional genomics meets

neurodegenerative disorders. Part II: application and data inte-

gration. Prog Neurobiol 76:169–188

181. Sowell RA, Owen JB, Butterfield DA (2009) Proteomics in

animal models of Alzheimer’s and Parkinson’s diseases. Ageing

Res Rev 8:1–17

182. Chen F, Wollmer MA, Hoerndli F, Münch G, Kuhla B, Rogaev

EI, Tsolaki M, Papassotiropoulos A, Gotz J (2004) Role for

glyoxalase I in Alzheimer’s disease. Proc Natl Acad Sci USA

101:7687–7692

183. Hoerndli FJ, Toigo M, Schild A, Gotz J, Day PJ (2004) Refer-

ence genes identified in SH-SY5Y cells using custom-made

gene arrays with validation by quantitative polymerase chain

reaction. Anal Biochem 335:30–41

184. David DC, Ittner LM, Gehrig P, Nergenau D, Shepherd C,

Halliday G, Gotz J (2006) b-Amyloid treatment of two com-

plementary P301L tau-expressing Alzheimer’s disease models

reveals similar deregulated cellular processes. Proteomics

6:6566–6577

185. Schonrock N, Ke YD, Humphreys D, Staufenbiel M, Ittner LM,

Preiss T, Gotz J (2010) Neuronal microRNA deregulation in

response to Alzheimer’s disease amyloid-beta. PLoS ONE

5:e11070

186. Hebert SS, De Strooper B (2009) Alterations of the microRNA

network cause neurodegenerative disease. Trends Neurosci

32:199–206

187. Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga

J, Stromberg AJ, Huang Q, Saatman KE, Nelson PT (2010)

3374 J. Götz et al.
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