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Abstract
Barrett’s esophagus (BE) confers a significant increased 
risk for development of esophageal adenocarcinoma 
(EAC), with the pathogenesis appearing to progress 
through a “metaplasia-dysplasia-carcinoma” (MDC) 
sequence. Many of the genetic insults driving this MDC 
sequence have recently been characterized, providing 
targets for candidate biomarkers with potential clinical 
utility to stratify risk in individual patients. Many clini-
cal risk factors have been investigated, and associa-
tions with a variety of genetic, specific gastrointestinal 
and other modifiable factors have been proposed in 
the literature. This review summarizes the current un-
derstanding of the mechanisms involved in neoplastic 
progression of BE to EAC and critically appraises the 
relative roles and contributions of these putative risk 
factors from the published evidence currently available.
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INTRODUCTION
Barrett’s esophagus (BE) describes a condition where na-
tive esophageal stratified squamous epithelium is replaced 
by metaplastic columnar epithelium, with cephalad dis-
placement of  the squamocolumnar junction. BE repre-
sents the only identified precursor lesion and most impor-
tant risk factor for esophageal adenocarcinoma (EAC)[1]. 
Patients with BE have an estimated 30- to 125-fold greater 
risk of  developing EAC than the general population[2]. A 
systematic review of  27 studies suggested annual progres-
sion rates of  0.5%[3], whereas a review of  8 UK studies by 
Jankowski et al[4] showed cancer risk of  1.0% per year.

BE PATHOGENESIS AND MECHANISMS 
OF NEOPLASTIC PROGRESSION
BE is an acquired condition where healing from esophageal 
mucosal injury [typically triggered by gastro-esophageal 
reflux disease (GERD)] is metaplastic, with replacement 
of  damaged squamous cells by columnar epithelium. 
Ordinarily, esophageal healing involves regeneration of  
squamous cells; it remains unclear why the response is 
metaplastic in some individuals, since only a minority of  
patients with GERD develop BE. Progression of  BE to 
EAC occurs by a metaplasia-dysplasia-carcinoma (MDC) 
sequence. Metaplastic columnar epithelial cells are pre-
disposed to genetic damage with potential for developing 
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dysplasia[5]. Dysplasia represents a histological spectrum 
from low- to high-grade, defined by degree of  cytological 
and architectural disruption present, with genetic instabil-
ity resulting in progressive acquisition of  genetic abnor-
malities towards a frankly neoplastic phenotype. These 
can be considered within the framework of  Hanahan and 
Weinberg’s[6] model of  “cancer hallmarks” necessary for 
carcinogenesis, whereby cancer cells must acquire growth 
self-sufficiency, insensitivity to anti-growth signals, avoid-
ance of  apoptosis, limitless replicative potential, sustained 
angiogenesis, and invasive and metastatic potential[7].

Many genetic insults conferring these advantages in 
the BE MDC sequence have been characterized. Initiat-
ing events probably involve genes regulating cell cycle 
progression, notably p16. Mutations, loss of  heterozygos-
ity (LOH) or promoter hypermethylation (i.e. silencing) 
of  p16 have been identified in 80% of  BE, whilst p16 
hypermethylation correlated with the degree of  dysplasia 
in some studies[8]. Additional changes identified include 
upregulation of  cyclins D1 and E, transforming growth 
factor-α and epidermal growth factor (EGF), each con-
tributing towards growth autonomy[9,10]. These mutations 
should trigger apoptosis via p53-dependent pathways. 
However, subsequent accrual of  p53 lesions confers resis-
tance to apoptosis, and has been identified in 52%-93% 
of  EACs (compared with 1%-5% non-malignant BE cell 
lines)[11]. Inactivation of  p53 increases clonal genomic 
instability, predisposing to widespread DNA changes and 
evolution of  ploidy lesions, late events in cancer progres-
sion. Many other genetic and molecular alterations have 
been described[8,9,12-64] (Table 1).

The concept of  a linear, stepwise evolution of  tumor 
suppressor gene mutations in which clonal expansion of  a 
solitary mutated clone expands to fill the entire Barrett’s  
segment has been termed the “selective sweep to fixa-
tion” model. However, an alternative model has been 
proposed by Leedham et al[65], who performed genetic 
analysis of  individual crypts rather than a flow purified 
whole biopsy specimen. This technique permitted iden-
tification of  certain mutations masked by whole biopsy 
segment analysis (attributed to dilution effect of  the nor-
mal stroma on whole biopsy analysis), whilst also reveal-
ing a greater degree of  genotypical and phenotypical het-
erogeneity within the same biopsy sample than previously 
appreciated. The demonstrated lack of  a single founder 
mutation present in every crypt suggested that the clonal 
expansion arose from multiple independent clones rather 
than a single common founder mutation[65,66] (Figure 1).

This enhanced understanding prompted research into 
> 200 candidate novel biomarkers of  disease progression 
in BE/EAC. Several, including 17p LOH, cyclin D1, tetra-
ploidy and aneuploidy, have undergone phase 3/4 valida-
tion and in future might have clinical/prognostic utility as 
intermediate markers of  progression[67]. However, Leed-
ham’s recent findings call into question the reliability of  
“surveillance” biomarker identification via genetic analysis 
of  whole biopsy specimens, since minority clones within 
the sample (harboring neoplastic potential) might not be 
detected[65].

Currently, dysplasia remains the only validated marker 
for identifying BE patients at risk, and forms the basis of  
EAC surveillance. However, this is imperfect. The tempo 
of  progression towards EAC is highly variable and it 
remains unclear whether relentless progression through 
the MDC sequence is inevitable; some evidence suggests 
that high-grade dysplasia may remain stable for years or 
even regress[68]. Patients with BE may develop EAC dur-
ing surveillance without detection of  earlier MDC stages. 
This might relate to pace of  progression, sampling error 
or lesions skipping directly from non-dysplastic disease 
to cancer. Other limitations of  dysplasia as a prognostic 
marker include inter-observer variability in histological in-
terpretation, and that inflammation may mimic dysplastic 
changes[69].

RISK FACTORS FOR NEOPLASTIC 
PROGRESSION
Until molecular biomarkers enter clinical practice it re-
mains important to identify other clinical risk factors for 
malignant progression to effectively allocate resources 
and individualize surveillance programs, targeting those 
at highest risk. Identifying modifiable risk factors will also 
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Figure 1  Clonal evolution models in Barrett’s esophagus. A: The current 
model of clonal evolution adapted from Maley et al[66]. Founder mutation (red 
cross) occurs in a single progenitor and provides a growth advantage that pre-
disposes to a selective sweep. Successive selective sweeps result in progres-
sion along the metaplasia dysplasia pathway. Clone bifurcation is responsible 
for the genetic heterogeneity in this model; B: The newly proposed model of 
evolution based on the mutation of multiple progenitor cells situated in esopha-
geal gland squamous ducts located throughout the length of the esophagus (red 
crosses). Multiple independent clones then arise and evolve separately. The 
presence of multiple different clones gives rise to a mosaic interdigitating clonal 
pattern of the Barrett’s segment represented as the striped areas[65].
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Table 1  Published evidence from selected studies investigating genetic and epigenetic changes implicated in the metaplasia-dysplasia-
carcinoma sequence of Barrett’s esophagus

Factor Summary of major findings/conclusions Ref.

Growth self-sufficiency
   Cyclin D1 ↑ nuclear cyclin D1 immunostaining in 46% BE specimens: -?cyclin D1 overexpression early event in 

MDC sequence 
Arber et al[9] 

↑ nuclear cyclin D1 immunostaining in 64% EAC specimens Arber et al[13]  
Cyclin D1 expression correlates with degree of dysplasia in BE Coppola et al[14] 
Cyclin D1 expression 43% BE mucosa (vs 0% normal mucosa) Umansky et al[15] 
Polyphenon E inhibits growth of BE and EAC cells via downregulation of cyclin D1 expression Song et al[16] 

   Cyclin E ↑ cyclin E expression in neoplastic cells in BE Coppola et al[14] 
Cyclin E expression 37% BE mucosa (vs 0% normal mucosa) Umansky et al[15] 

   p27Kip-1 83% EAC specimens displayed low p27 protein levels (despite high p27 mRNA): -p27 inactivated in 
most BE-associated EAC (post-transcriptional modification)→loss of cell cycle inhibition 

Singh et al[17] 

Experimentally-induced BE and EAC development in mouse model significantly enhanced by p27 
gene knockout

Ellis et al[18] 

   EGF (and EGF-R) ↑ EGF in cytoplasm of BE epithelial cells (vs gastric mucosa) Jankowski et al[19] 
EGF-R expression area in inflamed mucosa (43.1%) significantly > normal mucosa (29.5%); all BE 
showed positive EGF-R staining

Jankowski et al[20] 

EGF/EGF-R expression significantly ↑ in BE and EAC mucosa (vs normal mucosa) by flow 
cytometry (P < 0.01) 

Jankowski et al[21] 

EGF-R expression positive in 64% of BE-associated EAC; ↑ staining associated with poorer survival (P 
= 0.004)

Yacoub et al[22] 

EGF A61G G/G genotype associated with >double EAC risk in BE pts (vs A/A or A/G) (OR 2.2) Lanuti et al[23] 
   TGF-α ↑ TGF-α expression in cells from BE and EAC mucosa (vs normal gastric mucosa) by flow cytometry 

(P < 0.01)
Jankowski et al[21] 

TGF-α expression positive in 100% of BE-associated EAC Yacoub et al[22] 
   HGF (and HGF-R) HGF expression significantly ↑ in BE specimens (vs normal esophageal mucosa) Konturek et al[24] 

Intense HGF-R immunostaining in 100% EAC and dysplastic BE specimens (vs minimal staining in 
non-dysplastic BE or normal mucosa); HGF-R mRNA and protein levels ↑ in EAC cell lines

Herrera et al[25] 

   Erb family tyrosine 
   kinases 

Membranous c-erbB2 overexpressed in 26% EAC (vs 0% BE with dysplasia): -?later event in MDC 
sequence

Hardwick et al[26] 

c-erbB-2 gene amplification in 14% EAC vs 11% HG-dysplasia vs 0% metaplasia/LG-dysplasia 
specimens

Geddert et al[27] 

   FGF Immunostaining intensity for FGF sequentially ↑ from metaplasia/LG-dysplasia (negligible)→HG-
dysplasia (weak/moderate)→EAC (moderate/strong)

Soslow et al[28] 

FGF-1 mRNA and protein expression sequentially ↑ in HG-dysplasia/EAC (vs metaplasia/LG-
dysplasia/controls)

Soslow et al[29] 

   Src family tyrosine 
   kinases

Src-specific activity 3-4-fold ↑ in BE and 6-fold ↑ in EAC (vs controls): -?Src activation early event in 
MDC sequence 

Kumble et al[30] 

Strong Src expression in 85% EAC vs 93% BE HG-dysplasia vs 72% BE LG-dysplasia vs 27% BE 
specimens

Iravani et al[31] 

Insensitivity to anti-growth signals
   p16 9p21 (p16) LOH observed in 89% EAC specimens (vs 0% non-dysplastic BE); homozygous p16 

deletion in only 25%
González et al[32] 

p16 promoter hypermethylation (inactivation) in 75% BE with HG-dysplasia vs 56% LG-dysplasia (vs 
3% non-dysplastic BE)

Klump et al[8] 

   APC 5q (APC) LOH seen in 80% EAC specimens (and surrounding mucosa) Barrett et al[33]

APC gene LOH observed in 60% EAC specimens (vs 0% non-dysplastic BE) González et al[32] 
APC promoter hypermethylation in 92% EAC vs 40% BE (vs 0% normal esophageal tissues) Kawakami et al[34] 

Avoidance of apoptosis
   p53 Positive p53 immunostaining in 87% EAC vs 55% BE with HG-dysplasia vs 9% LG-dysplasia vs 0% 

non-dysplastic BE
Younes et al[35] 

17p (p53) LOH found in 91% BE pts who developed aneuploid cell populations: -17p allelic losses 
precede aneuploidy 

Blount et al[36] 

p53 overexpression in 64% EAC vs 31% dysplastic BE vs 0% non-dysplastic BE; trend of ↑ p53 
expression with ↑tumour grade: -?p53 mutation early event in malignant progression

Symmans et al[37] 

p53 immunoreactivity only in EAC/BE with HG-dysplasia (not in BE with LG-/no dysplasia); 
mutated p53 in 69%: -?late event in MDC sequence (during transition to HG-dysplasia)

Rice et al[38] 

p53 protein expression in 85% EAC specimens vs 60% BE with HG-dysplasia vs 7% LG-dysplasia (P 
< 0.001)

Rioux-Leclercq et al[39] 

p53 mutations identified in 75% EAC specimens; p53 overexpression in 58% EAC vs 60% BE with 
HG-dysplasia vs 12% LG-dysplasia vs 0% non-dysplastic BE

Chung et al[40] 

   Fas (CD95) ↓ surface expression of Fas observed in EAC specimens; impaired translocation of Fas to membrane 
wild-type Fas protein retained in cytoplasm in EAC cell line: -?potential mechanism by which EAC 
cells evade Fas-mediated apoptosis

Hughes et al[41] 

↓ surface expression of Fas and resistance to Fas-mediated apoptosis observed in EAC cell lines Mahidhara et al[42] 
   Bcl-xl/Bax/Bcl-2 Bcl-xl positive in all dysplasia and EAC cells, but negative in 47% non-dysplastic BE: -?switch to 

anti-apoptotic phenotype in transformation from metaplasia to EAC
van der Woude et al[43] 

Wiseman EF et al . Risk factors in Barrett’s neoplasia
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Bcl-2 expression in 84% LG-dysplasia vs 0% HG-dysplasia or EAC Rioux-Leclercq et al[39] 
Cytoplasmic Bcl-xl immunostaining in 59% EAC vs 71% BE/HG-dysplasia vs 60% LG-dysplasia vs 
27% non-dysplastic

Iravani et al[31] 

   COX-2 ↑ COX-2 mRNA levels in 80% BE and 100% EAC specimens (vs normal gastric controls) (P < 0.001); 
COX-2 immunostaining strongly positive in 100% BE samples (> gastric controls)

Wilson et al[44] 

COX-2 immunopositivity in 91% non-dysplastic BE vs 94% dysplastic vs 97% EAC Lagorce et al[45] 
Natural/synthetic COX-2 inhibitors suppressed proliferation, induced apoptosis and blocked cell 
cycle in EAC cell lines

Cheong et al[46] 

Cox-2 mRNA strongly upregulated in experimentally-induced BE epithelium in rat model (vs absent 
in control animals); COX-2 overexpression observed in human BE patients with dysplasia

Majka et al[47] 

Limitless replicative potential
   Telomerase Telomerase RNA positive in 100% EAC/BE with HG-dysplasia vs 90% LG-dysplasia vs 70% non-

dysplastic BE: marked ↑ telomerase RNA accompanies transition along MDC sequence
Morales et al[48] 

human telomerase reverse transcriptase (catalytic subunit of telomerase) expression ↑ at all stages of 
BE vs normal controls, and in EAC (P = 0.003) and dysplastic BE (P = 0.056) vs non-dysplastic BE

Lord et al[49] 

Telomerase activity (by telomeric repeat amplification protocol assay) ↑ in EAC samples vs adjacent 
mucosa (P = 0.0002) and in EAC vs BE (P = 0.001); no difference BE vs adjacent mucosa

Barclay et al[50] 

Telomerase inhibition (by small interference RNAs) induced senescence in 40% and apoptosis in 
86% in BE cell lines

Shammas et al[51] 

Sustained angiogenesis
   VEGF (and VEGF-R) VEGF expression correlated with higher vascularisation in BE and EAC specimens Couvelard et al[52] 

VEGF-A expressed in BE epithelium; VEGFR-2 strongly expressed in immature endothelial cells 
feeding BE epithelium; ↑ VEGF-C expression in BE (vs absent in normal epithelium); ↑ VEGFR-3 in 
EAC: ?aberrant neovasculature early in MDC sequence

Auvinen et al[53] 

VEGF expressed in 64% EAC specimens; significantly correlated with angiolymphatic invasion/
survival

Saad et al[54] 

VEGF expression significantly ↑ in EAC (> dysplastic BE > BE > normal epithelium) Griffiths et al[55] 
Invasive/metastatic potential
   CAMs ↓ expression in EAC specimens of E-cadherin (in 74%), α-catenin (60%) and β-catenin (72%) Krishnadath et al[56] 

Abnormal expression of β-catenin (P = 0.022), α-catenin (P < 0.01) and E-cadherin (P = 0.049) 
significantly associated with higher degrees of BE-related dysplasia

Washington et al[57] 

↓ expression of E-cadherin with progression along MDC sequence (P < 0.01); in contrast P-cadherin 
absent from BE (± dysplasia) but expressed in 67% EAC specimens 

Bailey et al[58] 

Slug (E-cadherin repressor) immunostaining and mRNA levels overexpressed in EAC vs BE 
metaplasia specimens: -?Slug upregulation represents mechanism of E-cadherin silencing

Jethwa et al[59] 

   Cathepsins Detected amplicon at chromosome 8p22-23 resulting in cathepsin B overexpression (observed in 
73% EAC samples)

Hughes et al[60] 

↑ cathepsin C expression in EAC (vs BE vs normal) in rat model Cheng et al[61] 
   CD44 Stepwise ↑ cathepsin D mRNA levels in GERD→BE→EAC tissue Breton et al[62] 

CD44-H and -V6 variant frequently expressed in BE; differing expression patterns along spectrum 
normal→dysplastic BE→EAC: -?CD44H and V6 involved in carcinogenesis of BE mucosa

Lagorce-Pages et al[63] 

↓ CD44 expression in EAC/HG-dysplasia (vs BE/LG-dysplasia) Darlavoix et al[64] 

BE: Barrett’s esophagus; MDC: Metaplasia-dysplasia-carcinoma; EAC: Esophageal adenocarcinoma; EGF: Epidermal growth factor; EGF-R: EGF receptor; 
pts: Patients; OR: Odds ratio; TGF: Transforming growth factor; HGF: Hepatocyte growth factor; HGF-R: HGF receptor; mRNA: Messenger RNA; FGF: 
Fibroblast growth factor; HG: High grade; LG: Low grade; LOH: Loss of heterozygosity; APC: Adenomatous polyposis coli; COX-2: Cyclooxygenase-2; 
VEGF: Vascular endothelial growth factor; VEGF-R: VEGF receptor; CAM: Cell adhesion molecule; GERD: Gastro-esophageal reflux disease.

inform disease prevention strategies. Epidemiological 
studies of  EAC have described a “birth cohort effect”, 
with higher incidence rates observed in recent cohorts 

suggesting exposure to an exogenous risk factor in early 
life contributing increased risk in all ages of  the cohort[70] 
(Figure 2). Multiple risk factors for neoplastic progres-
sion of  BE have been investigated (Table 2).

INNATE HOST FACTORS
Age is a well-recognized risk for both BE and EAC. Corley  
et al[71] reported an incidence of  BE of  2/100 000 for 
21-30-year-old and 31/100 000 for 61-70-year-old, whilst 
El-Serag et al[70] calculated the risk of  EAC to increase by 
6.6% for each 5-year age increase. Evidence specifically 
linking age to risk of  neoplastic progression within BE is 
lacking, but it seems intuitive to propose advancing age as 
an independent risk factor. 

BE displays a male preponderance of  approximately 
2:1, rising to 4:1 for BE-associated EAC, suggesting an in-
dependent influence of  gender on risk of  neoplastic pro-

Table 2  Clinical and demographic risk factors for neoplastic 
progression of Barrett’s esophagus

Innate 
factors

Gastrointestinal factors Other modifiable 
factors

Age Bile and acid reflux Obesity
Gender Anti-reflux surgery Diet
Ethnicity Proton pump inhibition Alcohol

Pharmacological lower esophageal 
sphincter relaxation

Smoking

Salivary nitrates Socioeconomic status
Barrett’s segment length Pharmacological 

COX-2 inhibition

COX-2: Cyclooxygenase-2.

Wiseman EF et al . Risk factors in Barrett’s neoplasia



gression[71,72]. Why male gender should confer additional 
risk is unknown; some have speculated that male propen-
sity toward visceral pattern of  obesity might be relevant[73].

A higher prevalence of  BE in Caucasians has long 
been recognized[74]; again, this association strengthens 
with development of  BE-associated EAC[75]. Analysis 
of  the US Surveillance, Epidemiology and End Results 
registry found that the annual incidence of  EAC for Cau-
casian males was double that for Hispanic males and four 
times higher than Black, Asian, Pacific Island and Native 
American males[76]. Although selection bias and differing 
endoscopy uptakes between ethnic groups might partially 
explain this, other factors seem to be involved. Whilst en-
vironmental influences are probably important, hitherto-
unidentified genetic variations influencing protection 
against reflux-induced mucosal damage seem likely. A US 
study found similar GERD prevalence in Caucasian and 
Black Americans from the same geographical population, 
yet the latter displayed significantly less esophagitis and 
almost no BE[77].

GASTROINTESTINAL FACTORS
Bile/acid reflux 
The relationship between GERD and BE is well es-
tablished, and whilst reflux of  gastric acid is known to 

induce chronic mucosal esophageal injury the contribu-
tion of  bile salts and acids (from duodenal refluxate) is 
increasingly recognized. Vaezi and Richter demonstrated 
patients with complicated BE (dysplasia/stricture/ulcer-
ation) reflux significantly greater amounts of  both gastric 
and bile acids than those with uncomplicated BE, and 
postulated that complications might result from syner-
gism between the two[78]. Bile salts induce esophageal 
injury over a wide pH range, and patients with BE display 
significantly more bile salts in aspiration studies than pa-
tients with mild reflux only[79]. Menges et al[80] observed 
a strong correlation between duration of  esophageal 
exposure to acid and bile with severity of  pathological 
change in BE. Furthermore, proton pump inhibitor (PPI) 
therapy predisposes to upper gastrointestinal bacterial 
colonization and consequent bile salt-deconjugation, 
which, in this high pH environment, has been linked to 
chronic inflammation[81].

Refluxate-mediated inflammation might promote 
carcinogenesis via both the arachidonic acid (AA) path-
way and induction of  oxidative stress. Low pH and bile 
salts promote expression of  cyclooxygenase-2 (COX-2), 
catalyzing conversion of  AA into various prostaglandins, 
including PGE2. PGE2 increases proliferation of  BE 
epithelial cells and inhibits tumor surveillance through 
suppressing natural killer cell function. Consequently, 
abnormal cells displaying genomic instability may accu-
mulate. COX-2 expression has been shown to increase 
with neoplastic progression of  BE, supporting a role for 
the AA pathway in EAC carcinogenesis[44]. Chronic mu-
cosal injury also induces production of  reactive oxygen 
species (ROS), depletes antioxidants and increases ex-
pression of  oxidative stress-related genes. High levels of  
oxygen radicals and lipid peroxidation products have been 
demonstrated in BE epithelial cells, with reduced levels 
of  vitamin C and glutathione, indicating compromised 
oxidant defences[82]. ROS have well-established mutagenic 
capacity, whilst subsequent apoptosis of  mutated cells is 
additionally suppressed by capacity of  bile salts to induce 
proteasomal degradation of  p53[83].

The Factors Influencing the Barrett’s Adenocarci-
noma Relationship (FINBAR) study suggested GERD 
symptom chronicity and frequency appeared better pre-
dictors for neoplastic progression than severity[84]. How-
ever, a significant proportion of  EAC patients (40%-50%) 
do not recall ever having prior reflux[85]. Furthermore, 
reflux of  gastroduodenal contents correlates poorly with 
heartburn symptoms, BE is frequently asymptomatic and 
development of  less sensitive Barrett’s epithelium may 
ameliorate symptoms. Thus, symptom-based risk scores 
for assessing progression risk have so far not proved use-
ful in clinical practice. 

PPIs
PPIs increase pH of  gastric refluxate, attenuating acid-
induced damage. Ouatu-Lascar et al[86] showed “normal-
ization” of  intraesophageal pH with acid suppression 
favors differentiation and reduces cellular proliferation in 
BE biopsy specimens. However, PPIs have not prevented 
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Figure 2  Age distribution of cases diagnosed with oesophageal adeno-
carcinoma (A) and gastric cardia adenocarcinoma (B) in the USA between 
1977-1996, displaying the "birth cohort effect". Each individual curve repre-
sents the age-specific incidence rates in a five year period (from El-Serag et al[70]).
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recent increases in EAC, and the observation of  EAC 
with PPI administration in animal models raises concern 
they might actually favor progression of  BE[87]. This 
might be mediated via interaction of  gastrin with its cho-
lecystokinin receptor, CCK2R. PPIs elevate serum gastrin 
levels, which on binding to CCK2R, stimulate expression 
of  EGF and trefoil peptide, inducing COX-2 expression. 
Gastrin exposure increases proliferation in esophageal 
cell culture, and BE mucosa expresses more CCK2R than 
normal squamous mucosa. CCK2R stimulation also inac-
tivates pro-apoptotic factors[88].

Despite this, the clinical relevance in humans remains 
unproven. Three large studies have examined PPI usage 
and EAC risk in BE patients, each reporting a strong in-
verse correlation. Two observed a decreased risk with lon-
ger duration of  PPI, and one showed an increased risk with 
delayed PPI use[89]. Obszynska et al[90] investigated effects 
of  hypergastrinemia induced by different PPI doses in 
cell models and BE patients. Despite increased cell prolif-
eration in vitro, COX2 induction and enhanced epithelial 
restitution, they found no evidence of  longer-term harm 
using surrogate biomarkers of  proliferation or apoptosis 
in vivo. The Aspirin Esomeprazole Chemoprevention Trial 
(AspECT) is currently investigating effects of  different 
PPI doses in combination with aspirin on EAC risk.

Anti-reflux surgery
Theoretically, anti-reflux surgery should prevent reflux 
of  duodenal contents, against which PPIs have no effect, 
potentially mitigating against progression of  BE. Unfortu-
nately this is not supported by the available evidence. Two 
large cohort studies failed to show cancer protection in 
GERD patients[91,92], whilst a meta-analysis by Corey et al[93] 
concluded no reduction in progression risk for BE. How-
ever, different surgical procedures were employed and ef-
fectiveness of  reflux control was not always assessed. 

Lower esophageal sphincter-relaxing drugs
Pharmacological lower esophageal sphincter (LES) relax-
ation might promote development/progression of  BE 
by increasing reflux, suggested by the observation that 
drugs with these effects (e.g. tricyclic antidepressants) 
have increased in use alongside the rise in EAC. A Swed-
ish population-based study by Lagergren et al[94] reported 
a positive association between EAC and long-term use 
of  LES-relaxing drugs, with the strongest association for 
anticholinergics; this association disappeared after adjust-
ment for reflux symptoms. 

Helicobacter pylori infection
An increase in BE-associated EAC alongside falling rates 
of  Helicobacter pylori (H. pylori) infection has led some to 
propose a protective effect of  H. pylori, mediated by its in-
fluence in reducing gastric acidity. The virulent cagA strain 
is particularly associated with high-grade gastric inflamma-
tion and atrophy[95]. A meta-analysis by Rokkas et al[96] re-
ported statistically significant inverse relationships between 
H. pylori infection and both EAC and BE [odds ratio (OR), 

0.52% and 0.64%, respectively]. Furthermore, a large pro-
spective study of  BE patients and GERD controls found 
less H. pylori infection with increasing “severity” of  disease: 
44% in GERD; 35% in uncomplicated BE; 14%-15% in 
BE with high-grade dysplasia/EAC[97].

However, another study, controlling for demographic 
and lifestyle factors, failed to demonstrate reduced EAC 
with cagA+ infection[98]. A confounding factor might be 
the degree of  bile acid reflux, since excessive bile reflux 
may prevent H. pylori colonization and contribute to 
chronic mucosal injury[88]. The protective role for H. pylori 
is debatable and since H. pylori is a World Health Orgaisa-
tion class 1 mutagen for gastric adenocarcinoma it is diffi-
cult to argue against its eradication whenever it is detected. 

Salivary nitrates
Dietary nitrate, concentrated in saliva and reduced to ni-
trites by oral flora, produces intraesophageal nitric oxide 
(NO) during reflux. Achlorhydria induced by PPI or atro-
phic gastritis may cause overgrowth of  nitrate-reducing 
bacteria in the upper gut, providing another source of  
nitrite[88]. Clemons demonstrated the capacity of  NO to 
induce double-strand DNA breaks in esophageal BE cells 
in vitro, which could promote neoplastic progression[99]. 
Increasing agricultural nitrate use in the latter 20th centu-
ry caused significant increases in nitrate content of  leafy 
vegetables and drinking water[100] and could have partially 
contributed to the increase in EAC incidence.

Barrett’s segment length
Although EAC can develop in BE segments of  any 
length, several observational studies support the intui-
tive notion that longer segments confer greater risk[101]. 
However, a meta-analysis by Thomas et al[102] showed only 
a non-significant trend towards reduced progression with 
shorter BE segments, and evidence remains insufficient 
to advocate surveillance strategies based on segment 
length alone. 

OTHER MODIFIABLE RISK FACTORS
Obesity
Increasing obesity has also paralleled increased rates of  
BE and EAC. Strong links between obesity and both 
GERD and erosive esophagitis have been established[103]. 
It is logical that this might predispose to BE, but a meta-
analysis specifically comparing body mass index (BMI) in 
BE cases with population controls showed only a modest 
risk increase[104]. However, elevated BMI is a strong risk 
factor for EAC (OR, 1.8 and 2.4 for BMI > 25 and BMI 
> 30, respectively)[105]. Increased risk may relate more to 
distribution of  body fat than BMI alone, with visceral 
(abdominal) obesity conferring greater risk[106]. Other 
studies noted an association between obesity in early life 
and EAC risk, suggesting adiposity may act early in the 
disease process[84,107]. 

Although a small prospective study by Oberg and col-
leagues failed to identify any association between BMI 
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and progression from BE to low- or high-grade dyspla-
sia[108], it had limited power, and a larger study from the 
Seattle Barrett’s Esophagus Program revealed strong 
correlations between waist-to-hip ratio and intermediate 
biomarkers of  progression[109]; again, associations were 
less apparent for elevated BMI per se. 

Obesity causes GERD through several mechanical 
and physiological mechanisms. However, part of  the as-
sociation between obesity and EAC is independent of  
GERD, suggesting a role for reflux-independent mecha-
nisms, probably linked to important endocrine actions of  
adipose tissue. Many recent studies have linked several 
adipokines (metabolically active factors) to plausible ac-
tions in the MDC process[110-117] (Table 3). 

Kristal et al[118] investigated whether weight loss (along-
side other dietary measures) impacted upon measured 
biomarkers of  cellular proliferation in BE. Despite weight 
loss (mean 3.6 kg) at 18 mo no differences in biomarkers 
were observed. This study was relatively small, and the lack 
of  response might relate to the relatively modest weight 
loss, and/or choice of  proliferation markers employed. 

Diet
Several studies have shown an association between a diet 
high in fruit and vegetables and reduced EAC. A large 
population-based Swedish study found individuals in the 
highest exposure quartile of  fruit and vegetable intake 
to have approximately 50% less EAC compared to the 
lowest quartile[119]. However, Kristal et al’s study observed 
no effect on biomarkers of  BE cell proliferation despite 
a net increase in fruit and vegetable consumption[118], 
whilst the FINBAR study observed a reduction in EAC 
with increased fruit, but not vegetable, consumption[84]. A 
protective effect for the natural anti-oxidants in fruit was 
proposed. A well-controlled, prospective study by Dong 
et al[120] showed patients who took multivitamin pills had 
significantly decreased risk of  tetraploidy [hazard ratio 
(HR), 0.19] and frank EAC (HR, 0.38). Significant inverse 
associations with EAC were also observed for supple-

mental vitamins C (HR, 0.25) and E (HR, 0.25), both 
well-recognized antioxidants.

Chen et al[121] observed a significant inverse associa-
tion between zinc intake and EAC risk compared with 
controls (OR, 0.5); inverse associations were also noted 
for vitamin A, β-cryptoxanthin, riboflavin, folate, fiber, 
protein and carbohydrate, whilst saturated fat intake was 
positively associated with EAC. Rudolph et al[122] investi-
gated selenium levels in 396 BE patients: those with lev-
els in the upper three quartiles were less likely to display 
high-grade dysplasia (OR, 0.5), aneuploidy (OR, 0.4) or 
17p LOH (OR, 0.5) than the lowest quartile. No associa-
tion was observed with p16 LOH (an early event in the 
MDC sequence), indicating selenium’s protective effects 
might occur late in progression to EAC. 

Alcohol 
Data supporting links between alcohol and BE/EAC 
are sparse. The UK BE registry found no association 
between alcohol consumption in patients with BE com-
pared with reflux esophagitis[123]. Although at least eleven 
studies have investigated the relationship between alcohol 
and EAC only six have shown a positive association, and 
in most it was weak[124-134]. One study even seemed to sug-
gest wine to be protective[133]. 

Smoking
Studies of  smoking and BE/EAC are contradictory. An 
Australian population-based case-control study found 
smoking was associated with 2- to 3-fold increased risk 
of  BE and BE with dysplasia[135]. However, there was no 
dose-response effect. Other small studies found no clear 
association[131]. Whilst smoking is a strong risk factor for 
esophageal squamous cell carcinoma, studies of  EAC 
have been inconsistent, yielding conclusions ranging from 
complete absence of  association[132-134] to a significant 
OR of  3.4 for current smokers[128]. Problems with study 
methodology occur and certainly smoking has rarely been 
a primary endpoint for studies of  BE/EAC.
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Table 3  Selected published evidence linking adipokines (and ghrelin) with Barrett’s esophagus and progression to esophageal 
adenocarcinoma

Adipokine                                                                       Evidence in BE and EAC

Relevant study findings Ref.

Adiponectin 
(↓ in obesity)

↓ adiponectin receptors in Barrett’s mucosa compared with normal mucosa from controls Konturek et al[110]

↑ Bax (pro-apoptotic), ↓ Bcl-2 (anti-apoptotic) and ↑ apoptosis of EAC cell lines on incubation with adiponectin Konturek et al[110]

Plasma adiponectin levels inversely associated with BE risk in 50 matched cases (OR 4.7 for each 10 µg/mL ↓ in 
level) (independent of BMI)

Rubenstein et al[111]

No difference in adiponectin levels between 51 BE patients and 67 controls Kendall et al[112]

Leptin 
(↑ in obesity)

Leptin receptors expressed in esophagus Francois et al[113]

↑ proliferation and ↓ apoptosis (via various signalling pathways) in EAC cell lines Ogunwobi et al[114]

Leptin levels strongly associated with ↑ risk of BE in males (no association in females) Kendall et al[112]

Gastric (fundic) leptin levels positively associated with BE  (no association with serum leptin) Francois et al[113]

Ghrelin 
(↓ in obesity)

↑ gastric emptying (so may ↓ gastric reflux) Dornonville et al[115]

↓ TNF-α-induced COX-2 and interleukin-1-β expression in BE cell line Konturek et al[110]

Ghrelin expression negligible in archived EAC cell specimens (vs rich expression in normal mucosa) Mottershead et al[116]

↑ serum ghrelin associated with ↓ EAC risk (in overweight subjects) de Martel et al[117]

BE: Barrett’s esophagus; EAC: Esophageal adenocarcinoma; OR: Odds ratio; BMI: Body mass index; COX-2: Cyclooxygenase-2; TNF: Tumor necrosis factor.
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Socioeconomic status
There are no clear associations between socioeconomic 
status and neoplastic progression of  BE. Some stud-
ies suggest increased EAC risk in higher socioeconomic 
groups, others the reverse[72].

COX-2 inhibition
Given the role of  the AA pathway in neoplastic progres-
sion, pharmacological inhibition of  COX-2 might modify 
the natural history of  BE. Various studies have investigat-
ed whether aspirin and non-steroidal anti-inflammatory 
drugs (NSAIDs) might confer protection against EAC. A 
meta-analysis by Corley et al[136] including 1813 EAC pa-
tients suggested a protective association (OR, 0.67). Both 
intermittent and frequent use appeared advantageous, 
with evidence of  a dose-effect, whilst aspirin conferred 
greater protection than NSAIDs. 

However the Chemoprevention for Barrett’s Oesoph-
agus Trial randomized 100 BE patients with dysplasia to 
either celecoxib 200 mg twice daily or placebo, with nega-
tive results[137]. A retrospective analysis of  the UK BE 
registry with a total follow-up of  3683 patient-years also 
failed to demonstrate a protective effect of  aspirin[138]. 
AspECT should provide further useful information. 

CONCLUSION
The etiology of  progression of  BE is probably multi-fac-
torial, with contributions from environmental risk factors 
interacting with genetically-determined characteristics. 
Obesity and ongoing bile and acid reflux are emerging 
as potentially modifiable risk factors, though designing 
practical interventions has so far proved difficult. Devel-
opments in understanding the MDC process in BE may 
provide future testable therapeutic targets.
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