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Several recent human functional imaging studies on multisen-
sory integration provided converging evidence that sensory-
specific or even primary cortical areas may be involved in the 
integration of multisensory stimulus attributes in addition to 
known integration hubs within higher association cortices, e.g., 
the superior temporal sulcus (STS),1,2 parts of the parietal cor-
tex,3 or frontal regions.4,5 A large number of experiments using 
functional magnetic resonance imaging (fMRI) reported modu-
lations of neuronal population response in sensory-specific areas 
due to multisensory stimulation,1,6-8 in accord with invasive ani-
mal studies.9-12 Moreover, studies using electroencephalography 
(EEG) in humans reported that earliest sensory-specific event-
related potentials (ERP) were modulated by concurrent stimuli 
in a second modality,13-15 though others pointed at an alternative 
explanation for these early effects.16 However, the exact neural 
mechanisms of multisensory interplay causing modulations in 
sensory-specific cortices remain unclear. Recent reviews in ref-
erence 8, 17 and 18 suggested several possible neural mecha-
nisms underlying multisensory modulations in sensory-specific 
cortices:

(1) Feedback influences from multisensory convergence zones 
within higher association cortices to sensory-specific areas.
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In everyday life our brain often receives information about 
events and objects in the real world via several sensory 
modalities, because natural objects often stimulate more than 
one sense. These different types of information are processed 
in our brain along different sensory-specific pathways, but are 
finally integrated into a unified percept. During the last years, 
studies provided compelling evidence that the neural basis of 
multisensory integration is not restricted to higher association 
areas of the cortex, but can already occur at low-level stages of 
sensory cortical processing and even in subcortical structures. 
In this article we will review the potential role of several 
thalamic structures in multisensory interplay and discuss their 
extensive anatomical connections with sensory-specific and 
multisensory cortical structures. We conclude that sensory-
specific thalamic structures may act as a crucial processing 
node of multisensory interplay in addition to their traditional 
role as sensory relaying structure.
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(2) Feedback influences from multisensory convergence zones 
at the border of two sensory-specific cortices that have been iden-
tified just recently (i.e., secondary and tertiary “sensory-specific” 
cortices).

(3) Direct cortico-cortical interconnections between low-
level modality-specific areas (including primary sensory-specific 
areas).

(4) Different sensory-specific information could be integrated 
at subcortical levels including sensory-specific thalamic nuclei 
and then fed forward to the sensory-specific cortices.

While the first three options have been discussed elsewhere 
(reviewed in ref. 8, 17 and 18), this paper will focus on the role 
of complex thalamo-cortical pathways in the integration of mul-
tisensory stimuli. In the first part of this review, we will discuss 
thalamic structures that show multisensory anatomical and func-
tional characteristics in different species and in the second part 
we will highlight their possible functional role in multisensory 
interplay, i.e., how the neuronal processing of different sensory 
information within these nuclei might contribute to integration 
at the neuronal level, plus to the optimal behavioral responses in 
multisensory situations.

Anatomical Evidence

Several animal studies performed in various species identified 
thalamic nuclei which—based on their anatomical connections 
to structures of different sensory modalities and/or based on 
multisensory response characteristics of their neurons—might 
integrate multisensory information, sometimes even before the 
information has reached neocortical areas. One candidate is 
the medial geniculate body (MGB) which is a major structure 
of the sensory-specific auditory pathway and which consists of 
at least three subdivisions (e.g., cat19). Whereas the ventral divi-
sion (MGBv) of the MGB is strongly involved in the process-
ing of auditory information, the dorsal (MGBd) and the medial 
(MGBm) divisions might be rather regarded as multisensory 
(reviewed in ref. 17, 20 and 21). For instance, cells within the 
MGBm (rat22,23) and MGBd (rat;24 cat25) have been reported to 
respond to auditory but also to visual, vestibular and somato-
sensory stimuli. Furthermore, several neuroanatomical stud-
ies report direct anatomical connections between the MGBm/
MGBd and auditory but also other sensory subcortical26,27 and 
cortical areas.26,28,29 These connections are well suited to mediate 
multisensory interplay at the level of the primary auditory cortex 
as observed, for instance, by means of invasive electrophysiologi-
cal recordings in several animal species.9,10,12,30-32
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may thus play a key role in multisensory 
and sensorimotor integration.

Other thalamic nuclei, some of them 
surrounding the MGB and pulvinar, 
which show also diverse multisensory 
responses and which have multiple con-
nections with subcortical and cortical 
areas of various sensory modalities are, 
for instance, the suprageniculate (SG), 
posterior intralaminar (PIN), laterodor-
sal (LD), lateral and ventral posterior 
(LP, VP) and posterior thalamic nucleus 
(Po).22,26,28,29,42-44 They may have similar, 
but yet uncovered functions within the 
multisensory thalamo-cortical network 
similar to the medial geniculate and pul-
vinar nuclei (see also ref. 45 and 46 for 
additional discussion of specific thalamic 
cell types that may also subserve multi-
sensory integration).

Functional Role  
of Thalamic Structures  

in Multisensory Integration

The functional role of thalamic struc-
tures and in particular their relevance for 
multisensory integration is still debated. 
Nonetheless, some studies provide evi-
dence of thalamic influence on multisen-
sory information processes in rats47 and 
humans48 and others link modulations of 
neuronal activity in subcortical structures 
with behavioral consequences like audio-
visual speech processing,49 audiovisual 
stimulus onset asynchrony detection50 and 
multisensory attention tasks.51 Kreifelts 
et al. reported in humans an enhanced 
classification accuracy of audiovisual 
emotional stimuli (relative to unimodal 
presentation) and linked this increase in 

perceptual performance to enhanced fMRI-signals in multisen-
sory convergence zones of the cortex (STS) and thalamus.

In another recent human fMRI study we tested how co-occur-
ring sounds modulate the subjects’ perceptual sensitivity and the 
neural responses to visual stimuli of higher or lower intensity.53

We found that a task-irrelevant auditory stimulus increases 
the sensitivity to low-intensity but not to high-intensity visual 
targets and that this perceptual enhancement relates to fMRI-
signal increases in sensory-specific and multisensory cortical brain 
regions (reviewed in ref. 1, 9 and 11). Most importantly, modula-
tions of the fMRI-signals were also observed in the sensory-spe-
cific visual (lateral geniculate body, LGB) and auditory (MGB) 
thalamus (Fig. 1). Furthermore, LGB and MGB showed a stronger 
interregional coupling (psychophysiological interaction54) with the 
STS, and the strength of these functional connections scaled with 

Another important thalamic structure which is also linked 
with the processing of multimodal information is the pulvinar-
posterior complex (pulvinar nucleus in primates). The pulvinar 
is usually associated with visual processes (e.g., macaque;33,34 
rhesus monkey35), but several electrophysiological studies 
reported that neurons within the pulvinar can also be activated 
by other or more than one sensory modality.36,37 Moreover, the 
extensive connections between the pulvinar and different sen-
sory-specific cortical areas might be instrumental in multisen-
sory modulations of cortical activity within these areas.20,28,38-41 
Most recently, Cappe et al.29 injected different retrograde neu-
ronal tracers into the auditory, somatosensory and premotor 
cortex of the macaque monkey; they found that the pulvinar 
nucleus exhibited the most extensive overlap of differentially 
retrogradely labeled neurons and concluded that this nucleus 

Figure 1. Illustration of fMRI BOLD (blood oxygen level dependent) responses in subject-specific 
visual and auditory thalamus (adapted from Noesselt et al.53). Top: Brain section depicts visual (LGB, 
blue) and auditory (MGB, red) thalamus for one illustrative individual subject (for more details see 
Noesselt et al.53). The bar graphs below of the brain sections depict the height of the fMRI-signal 
for the experimental conditions deduced from subject-specific ROIs (region of interest; see bar 
graphs, with grey bars for sound conditions and black for no-sound for the three visual stimuli: 
high intensity, low intensity, no visual target). An enhanced fMRI-signal was found when a sound 
was added to a lower-intensity visual target, but no significant change in response when the same 
sound was added to a higher-intensity visual target in accord with the behavioral findings.
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concurrent sounds and low-intensity visual targets (cf. Lakatos 
et al.55 for attention-related phase resetting of visual cortex) and 
may reflect one role of the thalamus in coupling of “functionally 
distant” cortical regions.

Taken together, there is now converging evidence that not only 
sensory non-specific (i.e., nonlemniscal) nuclei but also sensory-
specific thalamic nuclei may integrate different sensory stimuli 
and may influence cortical multisensory processing by means of 
thalamo-cortical feed-forward connections. Modulations of con-
nection strength of these sensory-specific thalamic nuclei with 
cortical regions are directly linked to behavioral performance 
and strongly suggest that a neurobiologically plausible theory of 
multisensory integration needs to take subcortical and especially 
thalamic influences into account.
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the subjects’ behavioral performance (Fig. 2). These results pro-
vide evidence in humans that sensory-specific thalamic structures 
are involved in multisensory integration processes and resulting 
behavior performances, here psychophysical detection sensitivity.

Due to the known limitations in temporal resolution of the 
used method (fMRI), conclusions about the functional direction 
or type of connections (feed-forward or feed-back) could not be 
made. However, one possible mechanism underlying the detected 
multisensory integration effects was suggested by Schroeder/
Lakatos and colleagues on the basis of experiments on time-fre-
quency relationships of multisensory inputs into the primate cor-
tex.12,55-57 Lakatos et al.12 reported enhanced neuronal responses 
in the auditory cortex of macaques during simultaneous audi-
tory and tactile stimulation which was accompanied by a phase 
reset of neural oscillations in the auditory cortex. The authors 
suggested that this phase reset may be mediated by fast feed-
forward projections from thalamic structures. Such phase reset-
tings might also help to increase the signal-to-noise ratio between 

Figure 2. Brain-behavior relations for coupling of thalamic structures with higher association cortices as a function of behavioral performance. Right: 
The scatter plot depicts the relation between the size of the behavioral interaction pattern (i.e., the difference in subject’s visual detection hit rate 
for sound minus no-sound conditions being more pronounced for lower- than higher-intensity visual targets; along the y-axis) and the significant 
changes in LGB- and MGB-seeded (conjunction) interregional coupling-strength (PPI, along the x-axis) with the remote region STS (shown on the left 
side). This analysis highlights stronger coupling of both LGB and MGB with multisensory STS for subjects with higher behavior benefit than for those 
with lower behavioral benefit (adapted from Noesselt et al.53).
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