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There has been a recent increase in our understanding in the isolation, culture, and differentiation of mesen-
chymal stem cells (MSCs). Concomitantly, the availability of MSCs has increased, with cells now commercially
available, including human MSCs from adipose tissue and bone marrow. Despite an increased understanding of
MSC biology and an increase in their availability, standardization of techniques for adipogenic differentiation of
MSCs is lacking. The following review will explore the variability in adipogenic differentiation in vitro, spe-
cifically in 3T3-L1 and primary MSCs derived from both adipose tissue and bone marrow. A review of alter-
native methods of adipogenic induction is also presented, including the use of specific peroxisome proliferator-
activated receptor-gamma agonists as well as bone morphogenetic proteins. Finally, we define a standard,
commonly used adipogenic differentiation medium in the hopes that this will be adopted for the future stan-
dardization of laboratory techniques—however, we also highlight the essentially arbitrary nature of this deci-
sion. With the current, rapid pace of electronic publications, it becomes imperative for standardization of such
basic techniques so that interlaboratory results may be easily compared and interpreted.

Introduction

The adipogenic differentiation of mesenchymal stem
cells (MSCs) and multipotent cell lines is of basic interest

to many disparate specialties of medicine. Despite the grow-
ing body of research in obesity and adipose biology, MSC
adipogenic differentiation is not restricted to endocrinolo-
gists. Stem cell scientists, bone biologists, and tissue engi-
neering specialists all have a vested interest in the study of
MSC adipogenesis. From a clinical standpoint, surgeons are
faced with challenging reconstructive cases in patients af-
flicted with soft tissue resorption. For example, burn patients
often suffer from soft tissue atrophy and would greatly benefit
from soft tissue augmentation. Similarly, the wide use of
highly active antiretroviral therapy medications in human
immunodeficiency virus patients has left many patients with
facial lipodystrophy, which can be socially troublesome. Such
patients would greatly benefit from a tissue engineering ap-
proach to reconstruct their inadequate adipose compartment.
With this wide variety of scientific backgrounds—from en-
docrinologists to stem cell biologists to surgeon-scientists—it
stands to reason that the methods for adipogenic differentia-
tion may also vary.

This potential variation in technique is only compounded
by the commercial availability of MSCs derived from a va-

riety of species and tissue types. Although the fact that one
can order overnight as many viable human stem cells as
desired is an amazing accomplishment of science, commu-
nication, and transportation, it brings with it several prob-
lems. For example, companies often send with their MSCs a
proprietary medium whose contents are highly controlled
but not reported to the customer. This practice is clearly
driven by economic realities but not scientifically justified.

It is on the backdrop of these obvious shortcomings that
this concise review article will explore the extreme vari-
ability in adipogenic differentiation medium between insti-
tutions, specifically looking at 3T3-L1 cells and primary
MSCs of adipose tissue and bone marrow origin. Pre-
sumptively, the adipogenic supplements for a cell line (3T3-
L1) would be highly controlled in comparison to primary
cells; however, we found significant variability among both
cell types. A review of alternative methods of adipogenic
induction is also presented, including the use of specific
peroxisome proliferator-activated receptor-gamma (PPARg)
agonists as well as bone morphogenetic proteins (BMPs).
Finally, we define a standard, commonly used adipogenic
differentiation medium for each cell type with the hopes that
this may prompt a standardization of basic laboratory
practices. Although the standardization of basic in vitro
assays is necessary, there exists by no means a ‘‘quick-fix’’
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for this dilemma. However, our hopes are that this and
similar reviews will bring attention to this pressing scientific
problem.

Materials and Methods

An exhaustive literature review was performed using
PubMed. Search terms included ‘‘adipogenic differentiation
3T3-L1,’’ ‘‘bone marrow mesenchymal stem cell adipogenic
differentiation,’’ ‘‘adipose stem cell adipogenic differentia-
tion,’’ ‘‘rosiglitazone adipogenic differentiation,’’ and ‘‘bone
morphogenetic protein adipogenic differentiation.’’ Results
were stratified by species of origin, focusing only on those
articles describing culture of either mouse or human cells. All
articles in 2010 with full text available were examined. Fi-
nally, those companies that sell propriety adipogenic differ-
entiation medium were contacted in the hopes that they
would share their standardized recipes. No commercial en-
tities were willing to share their medium components.

Results

Adipogenic differentiation of 3T3-L1 cells

3T3-L1 cells are the most commonly studied adipogenic cell
line that is available through American Type Culture Collec-
tion (American Type Culture Collection No. CL-173). The L1
substrain of 3T3 was developed through clonal isolation.
Generally, 3T3-L1 cells undergo adipogenic differentiation
rapidly, within 1 week in most instances. In the last year, 45
articles have been published across United States, European,
and Asian academic centers (Fig. 1A) [1–45]. As demonstrated
in Fig. 1B, articles using 3T3-L1 cells have been published in a
wide range of journals including Biochemistry, Cell Biology,
Endocrinology, and others (Fig. 1B). The majority of articles use
standard Dulbecco’s modified Eagle’s medium supplemented
with 10% fetal bovine serum; however, this varies. Additional
components are numerous; however, generally 3 components
are used for nearly all differentiation of 3T3-L1 cells. These
standardly include insulin, dexamethasone, and IBMX. For a
cell line, all components were found to vary considerably in
concentration from article to article (Fig. 1C). Insulin is widely
used to induce proliferation and differentiation of pre-
adipocytes [46]. At high concentrations, insulin is known to
mimic insulin-like growth factor-1, activating mitogen-acti-
vated protein kinase pathways [47,48]. Dexamethasone is an
anti-inflammatory steroid molecule that stimulates both os-
teogenic and adipogenic differentiation in a cell-, time-, and
concentration-dependent manner [49,50]. However, when
MSCs experience either prolonged exposure or increased
concentrations of dexamethasone, they yield higher number
of adipocytes in cultures while inhibiting osteogenic differ-
entiation [51]. IBMX in combination with dexamethasone
regulates PPARg, promoting adipogenesis [52]. IBMX is a
competitive, nonselective phosphodiesterase inhibitor, rais-
ing intracellular cAMP and protein kinase A (PKA). PKA
signaling pathway is required for transcriptional activation
of PPARg and thus adipogenic gene expression [18]. In ad-
dition, both dexamethasone and IBMX are inducers of C/
EBPd and C/EBPb, which are transcription factors for
growth and differentiation [53]. Despite the consistent use of
these 3 components, concentrations for each vary widely

(Fig. 1C). For example, the concentration of insulin varies
from 0 to 1,800 nM depending on the article. A list of addi-
tional components occasionally added, such as PPARg ago-
nists, is given in Table 1. A comprehensive breakdown of
major components by article is available in Table 2.

FIG. 1. Variation in adipogenic differentiation of 3T3-L1
cells. A literature review for articles within 2010 was per-
formed for any publication examining the adipogenic differ-
entiation of 3T3-L1 preadipocytes. (A) Breakdown of 45
publications by country of origin. (B) Breakdown of publica-
tions by area of scientific interest. (C) Breakdown of 3 major
components of induction medium used for each individual
publication. Although nearly all publications used insulin,
dexamethasone, and IBMX, the concentrations varied widely.
See Table 2 for a complete listing of induction components.

Table 1. Additional Components of 3T3-L1
Adipogenic Induction Medium

Rosiglitazone
Troglitazone
Biotin
Pantothenate
Triiodothyrone
Transferrin
Indomethacin
Hydrocortisone
Cortisol
Corticosterone
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Adipogenic differentiation of primary BMSCs

Unlike an immortalized cell line, primary cells are a het-
erogenous mixture of MSCs, unipotential and bipotential
cells, and fibroblastic cells among numerous other cell types.
With this variability in cell population, one would expect
that the adipogenic differentiation of primary MSCs is, ex-
pectedly, even more variable (Fig. 2). For the purposes of this
literature review, 2 of the most commonly studied MSC
populations were examined: bone marrow mesenchymal
stem cells (or BMSCs) and adipose-derived mesenchymal
stem cells (most commonly abbreviated ASCs).

In the last year, *20 articles have been published on the in
vitro adipogenic differentiation of mouse and human
BMSCs, respectively (see Tables 3 and 4 for a complete list-
ing). The majority of these articles were published in the
United States or Asia (Fig. 2A) and were primarily in the
fields of cell biology and biochemistry (Fig. 2B). Generally, a
3-component cocktail is used for BMSC adipogenic induc-
tion, including insulin, dexamethasone, and IBMX (Fig. 2C).
Vast inconsistency exists, however, between published pro-
tocols. Notice that a logarithmic scale is used for Fig. 2C,
illustrating the extreme variability from 1 protocol to an-
other. Moreover, a 1- or 2-component cocktail is sometimes

Table 2. Use of 3T3-L1 Cells

Article no. PMID Field Country FBS (%)
Insulin
(nM)

Dexamethasone
(nM)

IBMX
(lM)

1 21161354 Pharmacology Taiwan 10 320 1,000 500
2 21152033 Other United States 10 167 1,000 500
3 21140438 Biochemistry Canada 10 1,721 1,000 500
4 21136482 Cell biology Canada 10 1,000 250 500
5 21084448 Endocrinology Italy 10 175 250 100
6 21084441 Endocrinology Germany 5 100 0 500
7 21080714 Biochemistry Taiwan 10 1,720 1,000 500
8 21080334 Biochemistry China 10 1,700 1,000 500
9 21053274 Biochemistry The Netherlands 10 1,720 1,000 500

10 21047783 Biochemistry Korea 10 172 500 100
11 21037091 Other United States 10 12,052 1,020 500
12 21036149 Biochemistry Japan 10 172 1,000 500
13 21031614 Other Korea 10 1,700 1,000 500
14 20951125 Pharmacology Korea 10 172 1,000 500
15 20943959 Cell biology Canada 10 0.2 500 500
16 20881252 Endocrinology Italy 10 1,000 250 500
17 20826223 Biochemistry Korea 0 860 250 500
18 20719859 Endocrinology Japan 10 1,720 250 500
19 20693579 Biochemistry Korea 10 172 250 500
20 20665227 Other Taiwan 10 0 0 0
21 20661713 Pharmacology Korea 10 860 1,000 0
22 20656681 Biochemistry Spain 10 850 1,000 500
23 20648622 Cell biology China 10 1,720 1,000 500
24 20638365 Biochemistry Korea 10 344 400 500
25 20627088 Biochemistry Korea 10 172 250 500
26 20552250 Cell biology Austria 10 344 1,000 500
27 20529675 Biochemistry Korea 10 860 250 500
28 20519739 Cell biology United States 10 860 1,000 500
29 20471953 Biochemistry China 10 344 1,000 100
30 20460371 Biochemistry United States 10 860 1,000 500
31 20444940 Endocrinology China 10 860 1,000 500
32 20427709 Cell biology China 10 860 1,000 500
33 20427485 Endocrinology United States 10 1,700 1,000 500
34 20406654 Other Taiwan 10 1,500 1,000 500
35 20357182 Cell biology Korea 10 172 250 250
36 20346961 Cell biology Korea 10 1,720 250 500
37 20200519 Other United States 10 860 1,000 500
38 20181984 Cell biology United States 10 344 250 500
39 20179325 Biochemistry Canada 10 100 1,000 500
40 20133456 Endocrinology Spain 10 50 1,000 500
41 20097210 Cell biology Korea 10 172 250 500
42 20093363 Biochemistry Japan 10 1,720 1,000 500
43 20081842 Cell biology Japan 10 1,720 250 500
44 20060380 Biochemistry Korea 10 860 1,000 500
45 20036887 Biochemistry United States 10 172 1,000 500
Average 10 1,037.04 703.78 445.56
Median 10 860 1,000 500

FBS, fetal bovine serum.
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used, with the other drugs simply omitted (Fig. 2C). A
comprehensive breakdown of major components by article
and by species is available in Tables 3 and 4.

Interestingly, the concentrations of adipogenic compo-
nents used for mouse and human BMSC culture differ sig-
nificantly. Figure 3 demonstrates the clear difference in the
standard concentration of supplements when taking into
account species of derivation. Insulin was not used in the
majority of publications in human BMSCs, whereas a near
100% increase in dexamethasone and a presence of indo-
methacin was observed in human compared with mouse
BMSCs (Fig. 3). Collectively, these results suggest overall
that a different stimulus may be needed for human com-
pared with murine BMSC adipogenic differentiation.

Adipogenic differentiation of primary ASCs

In the last year, *20 articles have been published on the in
vitro adipogenic differentiation of ASCs [22,54–79]. The
majority of these articles were published in the United States
(Fig. 4A) and were primarily in the fields of biochemistry
and cell biology (Fig. 4B). Generally, a 3–4-component
cocktail is used for ASC adipogenic induction, including
indomethacin, insulin, dexamethasone, and IBMX (Fig. 3C).
As with BMSCs, vast inconsistency exists between published
protocols (Fig. 4C). A few articles use propriety, undisclosed
components for adipogenic induction [75]. A comprehensive
breakdown of major components by article is available in
Tables 5 and 6. Interestingly, and in similarity to BMSCs, the

FIG. 2. Variation in adipogenic differentiation of BMSCs. Again, a literature review for articles within 2010 was performed
for any publication examining the adipogenic differentiation of BMSCs—broken down by either mouse (left) or human (right)
origin. (A) Country of origin for each article. (B) Area of scientific interest. (C) Breakdown of 3 major components of induction
medium used for each individual publication. Although most publications used insulin, dexamethasone, and IBMX, the
concentrations varied widely. See Tables 3 and 4 for a complete listing of induction components. BMSCs, bone marrow
mesenchymal stem cells.
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differences in induction components between ASCs of mouse
or human origin differ significantly (Fig. 3). For example,
insulin concentration is approximately equivalent between
mouse ASCs (mASCs) and human ASCs, whereas an *10-

fold increase in dexamethasone concentration was observed
in mASCs in comparison to their human counterpart (Fig. 3).
These results again suggest clear differences in adipogenic
induction between mouse and human MSCs.

Table 3. Use of Mouse Bone Marrow Mesenchymal Stem Cells

Article no. PMID Field Country FBS (%)
Insulin
(nM)

Dexamethasone
(nM)

Indomethacin
(lM)

1 19243475 Biology China 10 10,000 1,000 200
2 20939016 Other United States 10 10,000,000 100 0
3 20877012 Dentistry Japan 10 5,000 1,000 0
4 20872592 Orthopedics United States 9 500 100 50
5 20850355 Immunology Japan 10 0 0 0
6 20692234 Biochemistry Japan 10 10,000 1,000 0
7 20676132 Oncology Japan 10 0 0 0
8 20672310 Biochemistry United States 10 5,000 100 0
9 20649960 Other United Kingdom 10 0 100 0

10 20506495 Biology United States 10 167 1,000 0
11 20498072 Other United States 10 10,000 1,000 0
12 20417614 Biology Finland 10 50,000 1,000 0
13 20410440 Biology United States 10 0 0 0
14 20374652 Biology Finland 10 50,000 1,000 0
15 20374200 Biology United States 0 167 1,000 0
16 20363288 Biology China 10 10,000 100 0
17 20200977 Neuroscience Australia 10 5,000 10 0
18 20039258 Orthopedics United States 10 10,000 10 0
19 20007694 Biochemistry United States 10 10,000 1,000 0
20 19929432 Pharmacology Canada 10 5,000 100 0
21 20875915 Biology Korea 10 0 0 0
22 20590530 Biology Japan 0 10,000 1,000 0
Average 9 463,219.73 482.73 11.36
Median 10 5,000 100 0

Table 4. Use of Human Bone Marrow Mesenchymal Stem Cells

Article no. PMID Field Country FBS (%)
Insulin
(nM)

Dexamethasone
(nM)

Indomethacin
(lM)

1 19243475 Biology China 10 10,000 1,000 200
2 20939016 Other United States 10 10,000,000 100 0
3 20877012 Dentistry Japan 10 5,000 1,000 0
4 20872592 Orthopedics United States 9 500 100 50
5 20850355 Immunology Japan 10 0 0 0
6 20692234 Biochemistry Japan 10 10,000 1,000 0
7 20676132 Oncology Japan 10 0 0 0
8 20672310 Biochemistry United States 10 5,000 100 0
9 20649960 Other United Kingdom 10 0 100 0

10 20506495 Biology United States 10 167 1,000 0
11 20498072 Other United States 10 10,000 1,000 0
12 20417614 Biology Finland 10 50,000 1,000 0
13 20410440 Biology United States 10 0 0 0
14 20374652 Biology Finland 10 50,000 1,000 0
15 20374200 Biology United States 0 167 1,000 0
16 20363288 Biology China 10 10,000 100 0
17 20200977 Neuroscience Australia 10 5,000 10 0
18 20039258 Orthopedics United States 10 10,000 10 0
19 20007694 Biochemistry United States 10 10,000 1,000 0
20 19929432 Pharmacology Canada 10 5,000 100 0
21 20875915 Biology Korea 10 0 0 0
22 20590530 Biology Japan 0 10,000 1,000 0
Average 9 463,219.73 482.73 11.36
Median 10 5,000 100 0
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Use of PPARc agonists

Other specialized components have been used to induce
adipogenesis, either in addition to the standardized cocktail
of agents or alone. One of the most commonly studied is the
PPARg agonist rosiglitazone, as well as similar agents (tro-
glitazone, etc.). PPARg agonists (thiazolidineldiones or gli-
tazones) are not only a boon to those under treatment for
diabetes but also, in general, work to speed up the differ-
entiation of preadipocytes or adipoprogenitor cells in vitro.
Rosiglitazone binds to PPARg, thus ‘‘sensitizing’’ fat cells to
insulin. It is known that glitazones reduce bone mineral
density—postulated to be via diverting MSCs to adipogen-
esis rather than osteogenesis in vivo [80,81]. Glitazones are
also known to increase bone loss via stimulation of osteo-
clasts and promotion of bone resorption [80]. There exists
some debate as to the extent that rosiglitazone is able to
induce MSC adipogenesis as a single agent [82]; however, in
general, rosiglitazone both speeds and increases the degree

of differentiation of adipoprogenitor cells. Thus, addition of
rosiglitazone may be a useful addition to the standard adi-
pogenic induction cocktail if cells are of late passage or
otherwise resistant to speedy differentiation. A standard
dose of 1mM rosiglitazone is suggested.

Use of BMPs

BMPs are a subset of the transforming growth factor-b
superfamily, so named as they were first observed to induce
osteogenic differentiation when implanted in muscle pouch
model. BMPs are powerful osteoinductive agents, and they
have clear pleiotropic effects, including the induction of
chondrogenesis [83], adipogenesis [84–86], and angiogenesis
[87]. In some specific scenarios, the stimulation of BMP2 on
adipogenesis results in the formation of cyst-like bone voids
filled with lipid [88,89]. For example, in a recent study, BMP2
was implanted at high doses in a femoral defect in rats [90].
It was observed that there exists a dose-dependent increase
in the formation of cyst-like bone voids with escalating doses
of BMP2. Similar observations have been made in an ectopic
bone formation model (nude mouse muscle pouch) by 2 in-
dependent investigators—in which various BMPs were ob-
served to induce ‘‘lipid-laden’’ bone cysts [84,89]. BMP7 in
particular (otherwise known as OP-1, which is also approved
for human use for bone tissue regeneration) has been asso-
ciated with adipogenic differentiation [91–93]. These obser-
vations bring up troubling questions regarding the lack of
specificity of BMPs for skeletal tissue regeneration, but also
whether BMPs may be appropriate induction agents for in
vitro adipogenesis. In essence, should BMPs be standardly
supplemented to adipogenic differentiation medium? BMP-
induced adipogenesis, however, is a relatively newly de-
scribed phenomenon and may have as-yet undescribed, po-
tentially biologically relevant differences from so-called
‘‘standard’’ adipogenic differentiation. Thus, we would ex-
tend caution to those supplementing BMPs to ‘‘standard-
ized’’ adipogenic medium, unless specifically studying this
interesting phenomenon in cell signaling.

Discussion

In summary, while the use of in vitro adipogenic differ-
entiation of MSCs has increased in recent years, a lack of
clear standardization is clear from the present review.
Overall, improved standardization of basic laboratory tech-
niques such as adipogenic differentiation will vastly improve
the interpublication comparability. In examining the aver-
ages and medians of adipogenic induction medium, we
suggest the following formulas (see Tables 2–6 and 7 for a
summary). Noteably, these are based on a compromise be-
tween all available techniques for the past year and not the
authors’ current laboratory practices.

For 3T3-L1 cells, 1,000 nM insulin, 700 nM dexamethasone,
and 500mM IBMX are used. For mBMSCs, 5,000 nM insulin
and 100 nM dexamethasone are used. For hBMSCs, 175 nM
dexamethasone and 50 mM indomethacin are used. For
mASCs, 320 nM insulin and 1,000 nM dexamethasone are
used. For human ASCs, 393 nM insulin and 100 nM dexa-
methasone are used. All induction components should in-
clude 10% fetal bovine serum and no other components
unless specifically being tested. Although no single recipe is

FIG. 3. Differences in adipogenic differentiation of BMSCs
and ASCs based on species. Median values for each com-
ponent of BMSC/ASC adipogenic induction medium was
calculated and compared between mouse and human cells.
(A) Mean concentration of insulin. (B) Mean concentration of
dexamethasone. (C) Mean concentration of IBMX. ASCs,
adipose-derived mesenchymal stem cells.
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the definitive ‘‘cocktail’’ for adipogenic differentiation, we
suggest these concentrations as a reasonable starting point
for new experiments. Such attempts at standardization will
improve interlaboratory comparisons.

At least for primary MSCs, a certain degree of heterogeneity
in adipogenic induction supplements is understandable—as
in fact there is still debate about the exact identity of MSCs.
For example, the stem cell surface markers characteristic of
ASCs are still being examined, and so a precise identity and
purity of these cell populations are still forthcoming. Despite

our evolving definition of an MSC, the clear lack of stan-
dardization of adipogenic differentiation is quite apparent
based on our review. To this end, we propose the afore-
mentioned standardized components, which is a compromise
based on available studies. Importantly, these adipogenic
differentiation conditions represent by no means an ideal or
maximal stimulation condition, but rather a simple average of
recently published articles. Thus, these values have an es-
sential arbitrary nature to them and should be simply used as
a ‘‘starting-off’’ point rather than a ‘‘gold standard.’’

Table 5. Use of Mouse Adipose-Derived Mesenchymal Stem Cells

Article no. PMID Field Country
FBS
(%)

Insulin
(nM)

Dexamethasone
(nM)

Indomethacin
(lM)

1 21161354 Pharmacology Taiwan 10 320 1,000 0
2 21152033 Other United States 10 167 1,000 0
3 21140438 Biochemistry Canada 10 1,721 1,000 0
4 21136482 Cell biology Canada 10 1,000 250 0
5 21084448 Endocrinology Italy 10 175 250 0
6 21084441 Endocrinology Germany 5 100 0 0
7 21080714 Biochemistry Taiwan 10 1,720 1,000 0
8 21053274 Biochemistry The Netherlands 10 1,720 1,000 0
9 21047783 Biochemistry Korea 10 172 500 0

10 21037091 Other United States 10 12,052 1,020 0
11 21036149 Biochemistry Japan 172 1,000 0
12 21031614 Other Korea 10 1,700 1,000 0
13 20951125 Pharmacology Korea 10 172 1,000 0
14 20943959 Cell biology Canada 10 0.2 500 0
15 20881252 Endocrinology Italy 10 1,000 250 0
16 20826223 Biochemistry Korea 10 860 250 0
Average 10 1,422.08 688.75 0
Median 10 320 1,000 0

Table 6. Use of Human Adipose-Derived Mesenchymal Stem Cells

Article no. PMID Field Country FBS (%)
Insulin
(nM)

Dexamethasone
(nM)

Indomethacin
(lM)

1 21039998 Other Korea 10 10,000,000 1,000 1
2 20932943 Bioengineering United States 10 0 0 0
3 20807102 Biology Israel 10 0 100 0
4 20709022 Biochemistry Japan 10 0 1,000 0
5 20653721 Dermatology Korea 10 1,000 1,000 200
6 20640914 Engineering China 10 0 0 0
7 20601560 Surgery Japan 0 0 0 0
8 19852056 Other United States 4 10,000 1,000 60
9 20070733 Other Korea 5 10,000 1,000 200

10 20304481 Other Canada 0 66 0 0
11 20370354 Other Germany 0 66 100 0
12 20380539 Other United States 3 1,000 1,000 0
13 20420826 Other United States 10 10,000 1,000 200
14 20528671 Other United States 10 720 1,000 60
15 20572797 Other Germany 10 0 0 0
16 20590410 Other Korea 10 1,000 10,000 100
17 21039998 Other Korea 10 1,000 1,000 1
18 19863253 Engineering Japan 10 — 1 —
19 19929314 Pharmacology Italy 10 — 0 —
20 20693579 Biochemistry Korea 10 — 0 —
21 20561744 Other United States 10 0 0 0
22 20097210 Biology Korea 10 — — —
Average 8 557,491.8 914.33 45.67
Median 10 393 100 0
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One additional surprising result from our study besides
the clear interlaboratory variation was the difference in adi-
pogenic stimuli used for mouse and human cells (Fig. 3). For
example, a 10-fold difference in dexamethasone concentra-
tion was observed between mouse and human ASCs (Fig.
3B). Such a difference could be in part anticipated, as species

of derivation seems to impart basic biologic differences onto
ASCs. For example, we have previously observed that mouse
and human ASCs differ significantly in their ability to dif-
ferentiate down an osteogenic lineage, both in vitro and
in vivo [94–96]. In addition, cytokine responsiveness seems
to differ as well. For example, transforming growth factor-b1

Table 7. Suggested Formulas for Adipogenic Differentiation

FBS (%) Insulin (nM) Dexamethasone (nM) Indomethacin (lM) IBMX (lM)

Mouse BMSCs 10 5,000 100 0 0
Human BMSCs 10 0 175 50 0
Mouse ASCs 10 320 1,000 0 0
Human ASCs 10 393 100 0 0

ASCs, adipose-derived mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem cells.

FIG. 4. Variation in adipogenic differentiation of ASCs. Again, a literature review for articles within 2010 was performed for
any publication examining the adipogenic differentiation of ASCs—broken down by either mouse (left) or human (right)
origin. (A) Country of origin. (B) Area of scientific interest. (C) Breakdown of 4 major components of induction medium used
for each individual publication. Although most publications used indomethacin, insulin, dexamethasone, and IBMX, the
concentrations varied widely.
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appears to repress osteogenic differentiation in mouse ASCs;
however, it has a significantly muted effect among human
cells [96]. Such observations are indeed curious, and the basic
interspecies differences among MSC populations have yet to
be identified.
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