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Abstract: The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively 
unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central 
cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine 
(ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological 
strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of 
cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. 
Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are 
constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially 
inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. 

Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has 
neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation 
and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel 
chemicals for cholinergic system modulation and pain control are discussed. 

Keywords: Artemin (ARTN), analgesia, cholinergic drugs, cholinergic system, glial-derived neurotrophic factor, muscarinic 
receptors, neuropathic pain, nicotinic receptors. 

INTRODUCTION 

 Treatment of painful conditions has always been a major 
task for physicians. Ancient Egyptians treated pain 
syndromes with mixtures of several medicinal plants 
containing Papaver somniferum and Cannabis indica. These 
two components were later potentiated by Greek and Roman 
physicians by adding Mandragora officinalis and 
Hyoscyamus niger extracts [1]. About 1000 years before 
Christ, the Greek physician, Aesculapius, used “nephentes,” 
which was a mixture of opium, Mandragora officinalis and 
Hyoscyamus niger, to relieve pain. In Roman times, Celsus 
potentiated the analgesic effect of opium by dissolving it in a 
decoction of Mandragora officinalis and wine. Likewise, 
Pliny the Elder, in his Historia Naturalis reported that the 
juice of Mandragora officinalis or Hyoscyamus niger, 
administered either alone or together with Papaver 

somniferum, relieved pain of different origins. Furthermore, 
Pliny described the bark of Salix alba to relieve rheumatic 
pain. These remedies were also used in the Middle Ages and 
the Renaissance [1]. The anatomist and surgeon Gabriele 
Falloppio again proposed to relieve pain with the ancient 
mixture of opium, Mandragora officinalis and Hyoscyamus 

niger. We now know that activation or blockade of endo-
genous neurotransmission systems mediated by enkephalin 
and/or endorphins (morphine), anandamide (Cannabis  
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sativa), acetylcholine (Mandragora officinalis, Hyoscyamus 

niger), prostaglandins (willow bark) was used to relieve 
pain. In this review, the mechanisms by which the 
antimuscarinic components of Mandragora officinalis and 
Hyoscyamus niger, at very low concentrations, become 
indirect muscarinic agonists will be elucidated. 

 It is surprising that the most important current analgesic 
medications are almost the same used thousands of years 
ago. Over the centuries, progresses involved the purification 
of active ingredients and elucidation of their mechanism of 
action. More recently, some advances have been made in the 
treatment and prevention of neuropathic pain. This was 
achieved by 1) employment of novel drugs and 2) iden-
tifying their mechanisms of action. 

ROLE OF THE CHOLINERGIC SYSTEM IN 

ANALGESIA 

 The history of pain relief involving the cholinergic 
system begins with the discovery of Otto Loewi [2] that 
vagal substance (vagusstoffe) was released by parasym-
pathetic nerve endings. Loewi identified and named this 
substance acetylcholine (ACh). Dale, in 1914 [3], classified 
the activities of the cholinergic system into two main 
categories: muscarinic and nicotinic. Both actions involved 
modulation of pain perception. Nevertheless, as documented 
below, the role of nicotinic receptors is secondary to the role 
played by M1 and M2 muscarinic receptors in analgesia. 
Nicotinic receptors are of primary importance for the 
prevention and treatment of neuropathic pain. The first 
indication of the antinociceptive effect of ACh and direct 



120    Recent Patents on CNS Drug Discovery, 2011, Vol. 6, No. 2 Bartolini et al. 

and indirect cholinomimetic drugs date back to the 1960s. 
Both direct and indirect muscarinic agonists such as 
oxotremorine [4-6] and its precursor tremorine [7], arecoline 
[8], pilocarpine [9, 10], physostigmine [11, 12], and diiso-
propylphosphorofluoridate (DFP) [13] induce antino-
ciception in laboratory animals. Muscarinic-dependent 
analgesia is centrally mediated. Pedigo et al. [14] described 
the analgesic activity of ACh after i.c.v. injection. Bartolini 
et al. [15] reported that the M1 selective agonist McN-A343 
increases the pain threshold when injected i.c.v. Analgesia 
induced by peripheral injection of AF-102B, an M1 agonist is 
blocked by i.c.v. pirenzepine, an M1 antagonist. 

 Although, analgesia via activation of muscarinic 
receptors was known, the therapeutic use of direct 
muscarinic agonists clinically was never pursued due to 
severe side effects such as bradycardia, hypotension, 
tremors, sialorrhea, diarrhea, etc. Despite these side effects, 
the use of Hyoscyamus niger and Mandragora officinalis, 
compounds able to indirectly activate the muscarinic system, 
ACh synthesis enhancers, catabolism inhibitors, and 
presynaptic receptors antagonists were used occasionally. 

ANALGESIA INDUCED BY ACH SYNTHESIS 

PROMOTERS 

 The synthesis of ACh is dependent on a continuing 
supply of choline and glucose or pyruvate. It is catalyzed by 
choline acetyltransferase (ChAT), a bisubstrate enzyme, 
which transfers the acetyl group of acetyl-CoA to choline 
forming ACh (stored in the synaptic vesicles) and CoA. The 
increase of CoA content in the cytoplasm directly inhibits 
the synthesis of ACh. Subsequently, ACh removal facilitates 
restarting intraneuronal synthesis of ACh [16]. Therefore, 
removal of CoA by its acetylation represents a pharma-
cological method to accelerate ACh synthesis for two 
reasons: (1) reduced inhibitory activity by CoA and (2) 
increased efficiency of ChAT due to the higher levels of 
acetyl-CoA. A pharmacological tool to induce cholinergic 
analgesia is represented by acetyl-L-carnitine (ALCAR). By 
delivering its acetyl group to CoA, it satisfies an ideal 
condition to obtain maximal ChAT activity. Acetyl-L-
carnitine loses its acetyl group by means of carnitine 
acetyltransferase (CarAT) forming carnitine. Experiments in 
Swiss Webster mice and Wistar rats demonstrated that 
repeated i.p. administration of acetyl-L-carnitine produces a 
statistically significant increase in pain thresholds [17]. 
Acetyl-L-carnitine presumably induces analgesia by 
increasing ACh synthesis. On acute administration it is 
ineffective. After repeated administration and pre-treatment 
with muscarinic antagonists (atropine, pirenzepine) or ACh 
synthesis inhibitor (hemicolinium-3) the analgesia is 
reduced. It is completely absent in M1 knock-out animals 
obtained by administration of a specific antisense 
oligonucleotide [17]. Opioids and GABA-mimetics induced 
analgesia in M1 knock-out animals [18], further confirming 
the cholinergic mechanism of action of acetyl-L-carnitine. 
Dolezal and Tucek [19] demonstrated that tritium-labeled 
acetyl-L-carnitine produces [3H]ACh in rat caudate slices. 
Furthermore, White and Scates [20] demonstrated that 
[14C]ACh was formed directly proportional to the amount of 
[14C] acetyl-L-carnitine present in synaptosomal membrane 
preparations Fig. (1).  

 Finally, Imperato et al. [21] demonstrated, by micro-
dialysis, that acetyl-L-carnitine increases the release of ACh 
from striatum and hippocampus of freely moving rats. The 
analgesic effects of acetyl-L-carnitine, observed in 
laboratory animals have been demonstrated also in humans. 
Acetyl-L-carnitine is effective in reducing pain caused by 
traumatic injury, diabetes, and viral infections. Intramuscular 
chronic treatment with acetyl-L-carnitine significantly 
improves the outcome of painful neuropathies or radi-
culopathies [22, 23]. 

 A beneficial effect of acetyl-L-carnitine has also been 
reported in the treatment of symptomatic diabetic neuropathy 
[24-27] and in the treatment of pain in distal symmetrical 
polyneuropathy related to HIV infection [28]. Hence by 
increasing ACh synthesis and release, acetyl-L-carnitine 
potentiates the activation of both muscarinic and nicotinic 
receptors. Analgesia is thus induced by stimulation of 
muscarinic (M1) receptors (a symptomatic effect) while 
stimulation of nicotinic receptors has an anti-neuropathic 
therapeutic effect (refer to section on neuropathic pain). 
Numerous precursors of the ACh synthesis such as choline, 
phosphatidylcholine (lecithin), alfa-glyceryl-phosphoryl-
choline (choline alphoscerate) and cytidine-5´-diphos-
phocholine have been proposed to potentiate ACh synthesis. 
Nevertheless, so far, no data has been reported on analgesic 
activity induced by the administration of these drugs 
suggesting that an increase in acetyl groups is a more 
effective therapeutic strategy. 

ANALGESIA INDUCED BY CHOLINESTERASE 

INHIBITORS 

 In 1969, Harris et al. [11] described the analgesic effect 
of physostigmine (eserine) in laboratory animals. However 
as early as in 1940 some investigators already realized that 
anticholinesterase agents have antinociceptive activity since 
they were able to enhance the analgesic action of opiates 
[29-31]. Later, we demonstrated [32] that the analgesic effect 
of the cholinesterase inhibitor huperzine is antagonized by 
adequate concentrations of scopolamine (0.1mg kg-1 i.p.). 
Not only is this due to the activation of muscarinic receptors, 
but also this compound, as well as physostigmine [18], has a 
central mechanism of action. Analgesia can be prevented by 
the i.c.v. administration of an aODN (antisense oligo-
nucleotide) against M1 receptors [32]. It should be noted that 
eseroline [33-37], a compound structurally related to 
physostigmine, is a potent analgesic. Eseroline has two 
different mechanisms of actions. It produces selective 
blockade of acetylcholinesterases (no activity on the 
pseudocholinesterases) and stimulation of opioid receptors. 
The chemical structure of eseroline is almost identical to that 
of physostigmine except for the lack of the methylcarbamyl 
group. The lack of this group prevents eseroline from 
interacting with pseudocholinesterases and, therefore, has 
milder effects than physostigmine. Eseroline can be 
administered at doses about 100 times higher (10 mg kg-1) 
than physostigmine. At these concentrations eseroline acti-
vates both opioid receptors directly and indirectly muscarinic 
effects through the inhibition of acetylcholinesterase. By 
contrast, physostigmine is only able to activate the 
cholinergic system since at therapeutic concentrations 
(0.1mg kg-1) it does not interact with opioid receptors. 
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 By comparing the chemical structures of the three 
molecules eseroline, physostigmine and morphine, one can 
observe that they share the same spatial configuration 
required for an interaction with opioid receptors Fig. (2). 

 These molecular similarities suggest why the induced 
analgesia by eseroline is mediated by both the cholinergic 
and opioid systems. The dual mechanism of action of 
eseroline is well documented by experiments performed on 
electrically stimulated longitudinal fibers of guinea pig ileum 
Fig. (3). Concentrations ranging from 0.2 and 0.8 g/ml, 
eseroline dose-dependently inhibits contractions whereas at 
higher concentrations (ranging from 1.6 and 8.3 g/ml) it has 
progressively decreasing inhibitory effects. 

 This experiment indicates that at low doses the opioid 
component of eseroline prevails. At higher concentrations 
inhibition of acetylcholinesterase counteracts the opioid-
mediated inhibitory effect. To further support this hypothesis 
the administration of naloxone, by blocking the opioid 
component, unmasked the stimulatory effect produced by the 
inhibition of acetylcholinesterases. 

 It is interesting to note that, in contrast to the isolated 
ileum in which the two mechanisms of eseroline produce 
opposite effects, in analgesic tests both properties contribute 
to its analgesic response. This pharmacologic peculiarity of 
eseroline allows one to consider the analgesic potency of the 
opioid system in comparison to the cholinergic system on 
different pain conditions. In the presence of inflammatory 
pain (writhing test) the analgesic potency of morphine is 
greater than that of eseroline Fig. (4). By contrast, in a 
condition of acute thermal pain, eseroline is endowed with a 
higher analgesic potency Fig. (5).  

 It is well known that there are no really effective 
treatments for Alzheimer’s disease. However, in the early 
phases of the disease an improvement of the cognitive deficit 
can be obtained with acetylcholinesterase inhibitors endowed 

with low intrinsic activity. These are better tolerated due to 
fewer side effects. Drugs approved for this therapy are: 
donepezil, rivastigmine, and galantamine. These compounds, 
similar to other indirect cholinomimetics, are endowed with 
analgesic properties (Table 1) [38-40]. 

 Even though cholinesterase inhibitors are not commonly 
employed in the relief of pain due to serious side effects, 
some studies indicate the possibility of a clinical use of these 
compounds in the management of painful syndromes. 
Among cholinesterase inhibitors, the primary clinically-used 
compound is neostigmine, administered by the epidural or 
subarachnoidal route. This administration bypasses the 
blood-brain barrier. The drug can be used at low doses 
without any severe cholinomimetic side effects. Mainly post-
operative pain can be relieved by neostigmine which is 
administered only as hospital treatment [41-45]. Cholines-
terase inhibitors endowed with lower intrinsic activity such 
as donepezil can also be used to relieve other painful 
conditions such as migraine [38]. 

ANALGESIA INDUCED BY ENHANCERS OF ACh 

RELEASE 

 As mentioned in above, the analgesic effect of direct 
muscarinic agonists is not of clinical use due to their side 
effects. It is evident that full agonist continuous stimulation 
of muscarinic cholinergic receptors is not physiological. This 
problem is less dramatic with the use of cholinesterase 
inhibitors. These drugs increase the synaptic content of ACh 
and, therefore, allow stimulation of postsynaptic receptors 
only during the physiological release of ACh. If the presy-
naptic terminal is physiologically silent, no postsynaptic 
stimulation occurs even in the presence of the cholinesterase 
inhibitor. In other words, low doses of cholinesterase inhi-
bitors amplify physiological cholinergic neurotransmission 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Synthesis of ACh from acetylcarnitine in a crude synaptosomal membrane preparation [14C]. Glucose (45 M) was incubated for 60 
min with freshly prepared extract in the absence and presence of [3H]acetyl-L-carnitine at concentration shown. (modified from [20]). 
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Fig. (2). Dreiding stereomodels of chemical structures of physostigmine, eseroline and morphine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Effect of increasing doses of eseroline in comparison with morphine on the electrically evoked contractions of the myenteric plexus 
longitudinal muscle preparation of guinea-pig ileum and antagonism by naloxone [37]. 
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Fig. (4). Comparison between eseroline and morphine dose-response curves in the mouse abdominal constriction test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Comparison between eseroline and morphine dose-response curves in the mouse hot-plate test [40]. 

 

without altering it. A similar, and even better, pharma-
cological strategy is the use of agents to block presynaptic 
autoreceptors. Such blockade will amplify the cholinergic 
transmission by preventing auto-inhibition of further ACh 
release. By the use of drugs to selectively block the presy-
naptic autoreceptors, a condition similar to that of a volume 
control in an electronic amplifier can be achieved. The 
amplification system enhances the transmitted signal; it 
neither distorts nor modifies it by adding new signals. 

Pharmacologically, only a few compounds act through 
simple amplification of physiological pathways either pre- or 
post-synaptically. When this is achieved, compounds with a 
wide clinical use can be obtained. Among them currently one 
can cite the use of benzodiazepines. These drugs are so well 
accepted that they can be abused before the appearance of 
the physical dependence. In contrast to direct action 
GABAmimetics, the benzodiazepines amplify physiological 
GABAergic neurotransmission by interacting with an 
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allosteric site on the GABAA receptor. They are completely 
inactive on those neuronal circuits which, for a physiological 
reason, are temporarily silent. It is evident that the impor-
tance of such a therapeutic strategy is to amplify a specific 
physiological function rather than to indiscriminately 
activate or inhibit all target mechanisms of a full drug 
agonist or antagonist. It is possible to amplify cholinergic 
neurotransmission by maintaining physiological modulation 
by various means as follows: 

Antagonists of Muscarinic Presynaptic Autoreceptors 

 M2 receptors are located mainly presynaptically where 
they regulate ACh release via a negative feedback 
mechanisms [46, 47]. By blocking M2 presynaptic 
autoreceptors with AFDX-116, it is possible to obtain a good 
antinociceptive effect in mice tested on the hot-plate [48]. 
AFDX-116 is unable to cross the blood-brain barrier. Hence 
it was injected i.c.v. The best analgesic effect was obtained 
with a dose of 6.3 ng/mouse. Antinociception was also ob-
tainable with the other two selective M2 antagonists, methoc-
tramine [49, 50] and AQRA-741 [51]. AFDX-116 is also 
able to induce antinociception in rats [15]. During the first 
30 min after injection, analgesia obtained with AFDX-116 is 
of comparable intensity to that obtained with 5mg kg-1 of 
morphine. The analgesia induced by M2 antagonists was 
without any cholinergic side effects. Pirenzepine and 
dicyclomine, two selective M1 antagonists, as well as the 
unselective atropine, are able to antagonize antinociception 
induced by AFDX-116 and methoctramine (two selective M2 
antagonists [52, 53]). Atropine methylbromide, which is 
unable to cross the blood-brain barrier, and naloxone were 
not effective antagonists. However, cerebral ACh depletion 
following i.c.v. hemicholinium-3 (HC-3), completely pre-
vents M2 antagonist analgesia [48, 49, 51] but does not 
modify the analgesic effect of direct muscarinic agonists.  

 In conclusion, antagonists of muscarinic autoreceptors 
induce analgesia by amplifying the physiological release of 

ACh. This analgesia is blocked by antimuscarinic drugs able 
to antagonize the postsynaptic muscarinic receptors as well 
as by compounds which deplete ACh neuronal contents such 
as HC-3. The antagonistic effect induced by HC-3 further 
indicates that the mechanism of analgesic action of selective 
M2 antagonists is at a presynaptic level since these 
antagonists, to induce their antinociceptive activity, need the 
presence of neuronal ACh. The involvement of the M2 
muscarinic receptor subtype in the induction of analgesia has 
also been proven in generating M2 muscarinic receptor 
knockout mice [54]. 

 Many local anesthetics, when administered systemically 
in small doses, are able to induce analgesia just like AFDX-
116 and methoctramine as described by Bartolini et al. [6]. 
Procaine, lidocaine and bupivacaine, administered slowly by 
i.v., as well as orally-administered tocainide, suppress 
certain types of pain in humans. These include neoplastic 
[55], post-operative [56-62], post-traumatic [63], neuralgic 
[64, 65], muscular [66, 67], adiposa dolorosa [68-71], labour 
[72], and pain due to administration of radiological contrast 
agents [73]. Local anesthetics, by blocking presynaptic 
muscarinic autoreceptors, increase endogenous ACh release. 
This in turn produces not only analgesia, but also beneficial 
effects on memory, attention, psychic depression (CNS 
effects) and prokinetic effects (mainly on PNS) [6]. In 
anesthetic doses, local anesthetic drugs block action 
potentials responsible for nerve conduction. They bind 
reversibly to a specific receptor site within the pore of the 
Na+ channels blocking ion movement. This action occurs 
with local anesthetic concentrations higher than 1 x 10-8 M. 
The analgesic and the other central and peripheral effects of 
local anesthetics are obtained at concentrations much lower, 
that is between 1 x 10-13 and 1 x 10-10 M) [6]. Hence it is 
difficult to attribute a role in analgesia to blockade of Na+ 
channels. We have reported that, at low concentrations 
(between 1 x 10-13 and 1 x 10-10 M), procaine, lidocaine and 
bupivacaine do not interfere with normal contractions of 
guinea-pig ileum myenteric plexus longitudinal muscle strips 

Table 1. Analgesic Effect Induced by Rivastigmine and Donepezil in the Mouse Hot-plate Test and Antagonism Exerted by 

Scopolamine. 

  LICKING Latency in Mice (s) 

TREATMENT Before After Treatment  

 Treatment 30 Min 45 Min 60 Min 

SALINE 16.2 + 1.1 16.3 + 1.4  15.5 + 2.0  15.4 + 1.7  

SCOPOLAMINE 0.1 14.3 + 1.2 15.0 + 1.8 13.9 + 2.2 15.6 + 1.8 

RIVASTIGMINE 0.5 15.9 + 1.5 17.0 + 1.6 16.1 + 1.8 15.4 + 1.6 

RIVASTIGMINE 1.0 16.4 + 1.2 25.7 + 2.1* 25.9. + 1.9* 24.8 + 1.5* 

RIVASTIGMINE 2.0 17.1 + 1.8 21.6 + 2.8* 35.9 + 2.7* 35.5 + 3.6* 

DONEPEZIL 5 14.3 + 1.3 33.2 + 3.4* 25.9 + 3.1.* 19.3 + 2.5 

DONEPEZIL 10 13.6 + 1.4 35.1 + 3.6* 31.5 + 2.8* 21.7 + 2.9* 

SCOPOLAMINE +DONEPEZIL 5 14.0 + 0.9 18.5 + 2.6^ 16.4 + 2.3^ 15.8 + 1.5 

The doses are expressed as mg kg-1 s.c. There were at least 12 mice per group. * P < 0.01, versus saline control mice. ^P < 0.01 versus Donepezil (5 mg kg -1 s.c.) treated mice [40]. 
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[6]. At these very low concentrations local anesthetic drugs 
do not interfere with Na+ channels mediated action 
potentials. However, they are able to increase neuronal ACh 
release by blocking the feedback mechanism mediated by 
muscarinic autoreceptors [6]. Indeed procaine and lidocaine 
are endowed with antimuscarinic effects since they are able 
to antagonize ACh induced contractions of guinea pig ileum 
without reducing contractions mediated by histamine, 
serotonin and BaCl2 [74]. Nevertheless some authors [75-78] 
report data showing that local anesthetic drugs can block 
pain by interfering with Na+ conductance. They speculate 
that a partial blockade of Na+ channels occurs that does not 
block action potential generation or propagation, but 
significantly increases the threshold current required for 
spike generation. By this mechanism, analgesia could be 
produced while nerve conduction remains intact. This 
hypothesis, in our opinion, is correct as far as neuropathic 
pain is concerned but not for their common analgesic effects 
in low doses. It is well known that neuropathic pain origi-
nates from a mechanical or biochemical lesion of nerve 
axons which, as a result, became electrically unstable. From 
the injured sensitive nerves a burst of firing occurs which 
induces lancinating pain. This kind of pain is sensitive to 
antiepileptic drugs such as carbamazepine, phenytoin, 
valproic acid, etc. Local anesthetic drugs by stabilizing 
membranes, could be active on neuropathic pain but their 
mechanism of action is completely different from that which 
we have described for analgesia. The latter is obtained at 
interstitial concentrations a thousand times lower. Interesting 
enough is the fact that the authors, who propose sodium 
channel partial block for the antinociceptive effect of local 
anesthetics, have used larger M concentrations of local 
anesthetics and their experiments were performed only  
in vitro. 

 As already stated in the introduction, the ancient 
physicians Galen and Pliny the Elder used atropine-like 
preparations (Mandragora and Hyosciamus niger) to reduce 
pain. Of special interest, atropine, if used at very low doses, 
is able to induce analgesia in laboratory animals [79]. The 
pain threshold is either increased or decreased by atropine as 
a function of the dose injected. In the range of 1-100 g kg-1 
s.c., atropine increases the pain threshold. In a dose of 5mg 
kg-1 it reduces the pain threshold [5]. Antinociception 
induced by 1-100 g kg-1 is completely prevented by both 
HC-3 and pirenzepine [79]. Therefore, very low doses of 
atropine behave like AFDX-116, methoctramine, AQRA-
741 and local anesthetics to induce analgesia via an 
amplification of endogenous ACh release. The low-dose 
atropine effect on ACh release is also well observable in 
vitro on isolated guinea-pig ileum [79]. Parasympathetic 
fibers of the ileum can be activated either chemically by 
using nicotine, DMPP (dimethyl-4-phenylpiperazinium), or 
by electrical field stimulation. The huge difference between 
chemical and electrical stimulation lies in the fact that 
sympathetic fibers are activated only with electrical stimu-
lation since, anatomically, sympathetic ganglia are not 
present in the ileum which, on the contrary, contain para-
sympathetic ganglia. This is an important point since 
catecholamines are released by sympathetic nerves only 
during electrical stimulation, but not during nicotine and 
DMPP stimulation. Catecholamines have an inhibitory 

action on endogenous ACh release via 2 and ß receptors. 
Very low concentrations of atropine (10-14M) greatly 
increase nicotine-evoked contractions of isolated guinea-pig 
ileum. In fact, nicotine, in the presence of atropine (10-14 M), 
induces an ileum contraction which is about 50% higher than 
without atropine. On the contrary, low doses of atropine do 
not modify ACh and oxotremorine effectiveness. When 
atropine concentration in the bath is increased up to 10-8 M it 
is not possible to induce contractions with any of the three 
agonists because at these higher concentrations atropine 
blocks postsynaptic muscarinic receptors as well. Atropine, 
employed at three different concentrations on electrically 
evoked contractions of the ileum gives the following results: 
an amplification of contractions at 10-14 M, no modification 
at 10-11 M and an antagonism at 10-8 M. 

 These in vitro results [79] demonstrate that atropine 
when used at very low concentrations between 10-14 and  
10-12 M is a selective antagonist of muscarinic presynaptic 
auto-receptors. At higher concentrations atropine loses its 
potentiating activity. Both in vitro and in vivo experiments 
have shown that atropine has an indirect cholinomimetic 
activity only when used in small amounts. By using water 
extraction, ancient physicians could obtain only a very small 
quantity of Hyoscamus niger and Mandragora officinarum 
alkaloids. The present results provide an explanation of why 
it was possible to relieve pain with these remedies. It is 
interesting to note, that ancient Egyptians used not only 
morphine but also muscarinic alkaloids to relieve pain as 
documented in Fig. (6), where a priestess dispenses both 
Mandragora flowers and Papaver somniferum popies to a 
suffering man.  

 Because very low doses of atropine have selective 
inhibitory effects only on M2 receptors, while usual doses 
have specific M1 and M2 inhibitory activity, Ghelardini et al. 
[80] deduced the dose-related behavior of atropine, might be 
due to different activity of its two enantiomers. They found 
that R-(+) and S-(-)-hyoscyamine have different stereo-
chemical requirements on muscarinic presynaptic autore-
ceptors and muscarinic postsynaptic receptors Fig. (7) [80]. 
Only R-(+)-hyoscyamine was able to induce antinociception 
in the mouse hot-plate test, while the S-(-) enantiomer was 
completely inactive Fig. (8) [81]. 

 Similar results were obtained using the paw-pressure test 
in rats and the writhing test in mice [80]. In vitro 
experiments on electrically evoked contractions of guinea-
pig ileum confirmed that the effectiveness of very low 
concentrations of atropine is due to the R-(+) enantiomer. 
Atropine and its two enantiomers were able to inhibit ileum 
contractions at 10-7 M, but only the R-(+)-enantiomer was 
able to increase electrically-evoked contractions at 10-13 M 
just like atropine [80]. The most interesting outcome is that 
only one enantiomer is active on presynaptic autoreceptors. 
S-(-)-hyoscyamine is completely devoid of any action on our 
models while its enantiomer is responsible for all of the 
activity of racemic atropine. 

Antagonist of Cholinergic Neuronal Heteroreceptors 

 Enhancement of ACh release and the resulting analgesia 
are also produced by antagonizing two presynaptic hetero- 
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Fig. (6). Mandragora flowers and Papaver somniferum capsules 
depicted on ancient friezes (Egyptian Museum of Berlin). 

 

 

 

 

 

 

 

 

Fig. (7). Structure of atropine and its enantiomers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Effect of R-(+) and S-(-) hyoscyamine in the mouse hot-
plate test. The test was performed 15 min after treatment. Doses are 
expressed as g kg-1 s.c [81]. 

 

receptors D2 and A1. Stimulation of both receptors decreases 
central cholinergic activation. It is well known that in 
Parkinson's disease the lack of striatal dopamine leaves the 
cholinergic system unbridled. This is responsible for many 
Parkinsonian symptoms such as tremors which are reduced 
by anticholinergic drugs. If dopamine inhibits central ACh 
release we can increase this release by blocking presynaptic 
D2 heteroreceptors with antipsychotic drugs such as halo-
peridol, raclopride, domperidone and prochlorperazine. 
Indeed antipsychotic drugs are used clinically for the treat-
ment of chronic severe pain [82-85]. Recently a compre-
hensive review of literature analyzed 770 patients in eleven 
studies [86]. Quantitative analysis of these studies showed a 
significant reduction of pain intensity after antipsychotic 
administration compared to placebo. Extrapyramidal 
movements and sedating effects were the most frequently 
reported adverse effects. The authors concluded that 
antipsychotics might be used as an add-on therapy in pain 
treatments although unwanted effects have to be considered 
[86]. The use of antipsychotics for pain is usually restricted 
to hospitalized patients. 

 Haloperidol (0.5mg/kg i.p.) produces in the writhing test 
antinociception of the same intensity as that induced by M2 
antagonists. It should be noted that the dose of 0.5 mg/kg of 
haloperidol does not impair mouse rota-rod performance. 
The antinociception induced by D2 antagonists (haloperidol, 
raclopride and prochlorperazine) is completely prevented not 
only by 5mg kg-1 of atropine and 0.1 g/mouse i.c.v. of 
pirenzepine, but also by the depletion of ACh with HC-3, as 
shown in Fig. (9). The antagonism obtained with HC-3 again 
suggests a presynaptic mechanism of action of D2 
antagonists. Drugs which reduce dopamine release, such as 
the antagonists of 5-HT3 receptors (ICS-205930, MDL-
72222) and agonists of 5HT1A receptors (sumatriptan, 8-OH-
DPAT, buspirone), may also increase antinociception 
through a similar presynaptic mechanism [87-90]. In agree-
ment with these results are the findings of Bianchi et al. [91]. 
They reported that 5-HT1A and 5-HT3 agonists respectively 
increase and decrease ACh efflux from the cerebral cortex of 
freely-moving guinea-pigs. 

 Another heteroreceptor involved in inhibiting ACh 
release is the adenosine A1 receptor. In 1984, Pedata et al. 
[92], reported that 50 M caffeine (a well known A1 
antagonist) greatly increases ACh release from electrically-
stimulated rat cortical slices. It is thus not surprising that 
caffeine is able to induce antinociception in mice. Figure 10 
shows that caffeine injected 1mg kg-1 s.c. produces 
analgesia. Pretreatment of mice either with atropine (5mg  
kg-1 i.p.) or HC-3 (1 g/mouse i.c.v.) completely blocks 
caffeine-induced analgesia [93]. The most likely mechanism 
is that by blocking A1 presynaptic heteroreceptors, caffeine 
increases endogenous ACh release which, in turn, induces 
analgesia via postsynaptic M1 receptors. It is now easy to 
understand why caffeine is so often a component of anal-
gesic pills. "Cafergot" represents a famous example of such 
associations. The reason is not simply that of opposing the 
depressive effect of analgesics, but rather of improving their 
analgesic effects. 
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Agonists of Cholinergic Neuron Heteroreceptors 

 As described above, it is possible to enhance cholinergic 
transmission by antagonism of M2-4 muscarinic autoreceptors 
as well as via D2 and A1 heteroreceptors. Enhancement of 
ACh endogenous release can also be obtained by stimulation 
of 5HT4 heteroreceptors. These heteroreceptors, located on 
the presynaptic cholinergic terminal, can amplify ACh 
release by a positive feed-back mechanism. Converse to the 
D2 and A1 heteroreceptors that regulate the ACh release by a 

negative feedback mechanism, these receptors induce 
analgesia when activated by receptor agonists. Among these 
agonists metoclopramide, cisapride, BIMU-1 and BIMU-8 
show analgesic properties. Romanelli et al. [94] and 
Ghelardini et al. [95] found that the analgesia induced by 
these compounds is prevented by 5HT4 receptor antagonists 
such as SDZ205-557. Among the four 5HT4 receptor 
agonists, metoclopramide is the only one that has had a wide 
clinical use not only for its well known antiemetic and 
prokinetic properties, but also because it relieves painful 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Effect of atropine, HC-3, pirenzepine and naloxone on haloperidol and raclopride antinociception in the mouse hot-plate test. The test 
was performed 15 min after haloperidol and raclopride injection [81]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Dose-response of s.c. caffeine in the mouse hot-plate test. Doses are expressed as mg kg-1 [93]. 
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symptoms associated with gastroenteric disorders such as 
gastroesophageal reflux; gastric pyrosis etc. Metoclopramide 
increases ACh endogenous release not only by activation of 
5HT4 receptors, but also through D2 receptor antagonism. 
Due to its antidopaminergic activity, it can be classified 
between domperidone (that is unable to cross the blood-brain 
barrier) and haloperidol that has a marked central activity. 
Because of its dual mechanism of action, metoclopramide 
has a peculiar pharmacological profile that makes this drug 
particularly useful. 

ANALGESIA INDUCED BY THE CLEVER 

ASSOCIATION BETWEEN CHOLINESTERASE 

INHIBITORS AND AUTORECEPTOR-BLOCKERS 

 In order to increase synaptic ACh content using 
acetylcholinesterase inhibitors, it is necessary to inhibit the 
enzyme almost at 100%. With lower degrees of inhibition, 
the inter-synaptic content of ACh is constantly low due to 
the auto-regulatory effect mediated by presynaptic mus-
carinic receptors (negative feed-back mechanism). It is, 
therefore, rational to combine low doses of a cholinesterase 
inhibitor (physostigmine, eseroline, rivastigmine) with a M2-4 
muscarinic autoreceptor antagonist (AFDX-116, methoc-
tramine, R-(+)-hyoscyamine) in order to obtain greater ACh 
release and, consequently, analgesia with negligible side 
effects. In other words, with less inhibition of the 
acetylcholinesterase activity (about 30-50%) proportionally 
greater increases in the amount and half-life of synaptic ACh 
occurs in the presence of a blockade of the presynaptic 
cholinergic autoreceptor. In the absence of this blockade, the 
increased ACh induces an immediate activation of the 
autoreceptors to reduce ACh release Fig. (11). 

 In the presence of low concentrations of cholinesterase 
inhibitors, synaptic ACh rapidly returns to the pre-existing 

values. Table 2 summarizes the evidence of the potentiating 
effect of cholinesterase inhibitors and muscarinic autore-
ceptors antagonists in the mouse hot-plate test. 

SUBTYPES OF MUSCARINIC RECEPTORS 

INVOLVED IN ANALGESIA 

 There are five types of mammalian muscarinic receptors, 
M1 through M5, which differ structurally as determined by 
molecular cloning [96]. As mentioned in the section 
“Analgesia induced by ACh enhancers”, M2 and M4 recep-
tors are involved in producing analgesia because of their 
presynaptic mechanism of action.  

 These receptors reduce the pain threshold when activated 
[15] whereas they increase it when blocked [48-50, 97]. 
Conversely, the postsynaptic receptors responsible for the 
induction of muscarinic analgesia belong to the M1 subtype. 
Antinociception induced by muscarinic drugs has been 
reported to be antagonized by pretreatment with either M1 or 
M3 muscarinic receptor subtype antagonists, although the 
major role involves M1 receptors [15, 98-100]. Analgesia 
induced by administration of M1 selective agonists such as 
McN-343 and AF-102B [15] further confirms this 
hypothesis. Yash et al. [98] hypothesized that M3 receptors 
could also play a role in the increasing pain thresholds. 
These two receptor subtypes share similar pharmacological 
properties because both activate the same intracellular 
pathway through Gq/11 proteins. We demonstrated, by means 
of an antisense oligonucleotide (aODN) strategy, that the 
only muscarinic receptor subtype involved in the induction 
of analgesia at a postsynaptic level is M1 [18]. The aODN 
can transiently inactivate a single gene and, therefore, can 
inactivate receptor functions in a more specific and selective 
manner than receptor antagonists. The effects on antino-
ciceptive processes of anti-M1 aODN were evaluated in mice 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Cholinergic synapse. Synergic effect among cholinesterase inhibitors, ACh synthesis promoter, autoreceptor blockers , 

excitatory heteroreceptor agonists , inhibitory heteroreceptor antagonists . Postsynaptic ACh receptor . 
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by means of the hot-plate test. A degenerate ODN (an oligo-
nucleotide accounting for the eventual aODN nonspecific 
effects) was used as control. The results clearly demonstrate 
that M1 muscarinic receptors play an essential role in the 
modulation of pain perception. Cholinergic antinociception 
induced both directly, through muscarinic agonists, and 
indirectly, by enhancing ACh extracellular levels through 
cholinesterase inhibitors, is prevented, in a dose-related 
manner, by i.c.v. administration of an antisense to the M1 
gene coding for the mouse M1 receptor [18]. 

INTRACELLULAR PATHWAYS INVOLVED IN 

MUSCARINIC ANALGESIA 

 It is well established that “odd-numbered” muscarinic 
receptors (M1-M3-M5) typically couple the  subunits of the 
Gq/11 family to activate phospholipase C (PLC), stimulating 
phosphoinositide (PI) hydrolysis [101]. In particular, 
reconstitution experiments (performed with purified M1 
receptors, G protein subunits and PLC) suggest that the ß1 
subtype of PLC serves as the primary effector for the M1 
receptor [102]. Receptor-mediated activation of PLC results 
in the generation of at least two messengers, inositol-1,4,5-
triphosphate (IP3) and diacylglycerol (DAG). The main 
effect of DAG is to activate protein kinase C (PKC). The 
effect of IP3 is to release Ca++ stored in the endoplasmic 
reticulum. The “even-numbered” members (M2-M4) are 
preferentially coupled via Gi proteins to inhibit adenylate 
cyclase [101]. The M1 muscarinic receptor subtype is 
responsible for postsynaptic analgesia. Galeotti et al. [103] 
elucidated the underlying intracellular mechanisms through 
which pain threshold is increased. Experiments were carried 
out in mice with acute thermal nociception. The adminis-
tration of an aminosteroid: U-73122, a new phospholipase C 
inhibitor [104, 105], dose-dependently prevented antinoci-

ception induced by physostigmine and oxotremorine [103] 
Fig. (12). 

 Phosphoinositide-specific PLC represents a family of 
isozymes found in eukaryotes composed of ß,  and  
subtypes, that cleave the polar head group from inositol 
lipids [106]. Among them, the isozyme PLCß1 has been 
reported to be selectively activated by M1 receptors [102]. In 
order to elucidate the role of this PLC subtype in muscarinic 
antinociception, an aODN complementary to the sequence of 
PLCß1 was employed. Inhibition of expression of this 
isozyme prevented the increase of pain threshold induced by 
two cholinomimetics. These results indicate PLC, and in 
particular the isozyme PLCß1, as an important intracellular 
effector in muscarinic analgesia [103]. The “odd-numbered” 
muscarinic receptors activate PLC via the  subunit of the 
Gq/11 proteins [101]. Furthermore, activation of PLCß1 is 
achieved with the help of G  subunits of the Gq proteins 
[107]. Administration of aODNs against the  subunit of Gq 
and G11 proteins antagonized physostigmine and oxotre-
morine antinociception. These results indicate that 
stimulation of the PLC-mediated intracellular pathway in 
muscarinic analgesia requires receptor-mediated activation 
of Gq/11 transducer proteins. 

 As described above, PLC isozymes hydrolyze the highly 
phosphorylated lipid phosphatidylinositol 4,5-biphosphate 
generating two intracellular products: IP3, a universal 
calcium-mobilizing second messenger, and DAG, an 
activator of PKC. To investigate the IP3-mediated pathway, 
LiCl, an uncompetitive inhibitor of inositol monophospha-
tase, which regenerates inositol from inositol monophos-
phate, was used. The LiCl-induced inhibition depletes 
inositol and prevents the formation of IP3 [108, 109]. 
Animals pre-treated with LiCl showed an impaired 
antinociceptive response to administration of physostigmine 
and oxotremorine. The role of IP3 in muscarinic analgesia 

Table 2. Potentiating Effect of Physostigmine and Rivastigmine on AFDX-116 and R(+)-hyoscyamine -induced Analgesia in the 

Mouse Hot-plate Test. 

  Licking Latency in Mice (s) 

TREATMENT  TREATMENT Before After Treatment  

  Treatment 15 Min 30 Min 45 Min 

SALINE SALINE 15.2 + 1.1 14.7 + 1.5 13.2 + 2.0  14.6 + 1.9  

SALINE AFDX-116 16.1 + 1.2 23.2 + 2.1* 20.7 + 1.9* 16.3 + 1.5 

SALINE R-(+)-HYOSCIAMINE 13.9 + 0.9 24.7 + 1.9* 22.6 + 1.7* 17.1 + 1.8 

PHYSOSTIGMINE SALINE 14.8 + 1.2 25.6 + 2.6* 21.7 + 1.9* 19.3 + 2.0 

PHYSOSTIGMINE AFDX-116 15.0 + 1.1 36.5 + 1.7* 35.2 + 1.6* 24.0 + 1.7* 

PHYSOSTIGMINE R-(+)-HYOSCIAMINE 14.3 + 1.5 39.1 + 2.4* 36.2 + 2.3* 26.7 + 2.8* 

RIVASTIGMINE SALINE 14.3 + 1.1 26.2 + 2.1* 22.5 + 1.2* 17.5 + 1.2 

RIVASTIGMINE AFDX-116 13.2 + 1.7 38.7 + 2.8* 35.5 + 2.6* 22.9 + 1.8* 

RIVASTIGMINE R-(+)-HYOSCIAMINE 14.5 + 1.2 37.0 + 3.2* 34.6 + 2.9* 26.5 + 1.6* 

AFDX-116 (0.1μg i.c.v.) and R-(+)-hyoscyamine (10μg i.c.v.) were administered 30 min after rivastigmine (0.75mg kg-1 s.c ) and physostigmine (0.075mg kg-1 s.c). There were at 
least 12 mice per group. * P < 0.01, versus control mice. ^P < 0.01 versus saline AFDX/R-(+)-hyosciamine [40]. 
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was also confirmed by dose-dependent reduction, induced by 
low molecular weight heparin. Heparin is a potent and 
selective IP3 receptor antagonist [110]. These results indicate 
the importance of IP3 production in the mechanism of 
muscarinic analgesia. 

 In addition to inducing IP3 formation, PLC causes the 
activation of PKC through stimulation of DAG production 
[106]. Pretreatment with calphostin C, a very selective, 
potent and membrane-permeable PKC inhibitor [111], 
enhanced antinociception induced by both physostigmine 
and oxotremorine. The administration of the PKC inhibitor 
also shifted to the left the dose-response curve of physos-
tigmine. Furthermore, activation of PKC by phorbol esters, 
such as PMA and PDBu [112], dose-dependently prevented 
physostigmine and oxotremorine pain threshold increases. 
These data indicate that activation of PKC by cholino-
mimetics constitutes a significant pathway involved in 
negative modulation of the central muscarinic antinocicep-
tive response. We, therefore, propose that the intracellular 
negative feed-back action by PKC on the central muscarinic 
antinociceptive pathway is necessary to maintain the basal 
level of pain sensitivity. The role of PLC-IP3 pathway in the 
induction of cholinergic analgesia in mice appears well 
established. Furthermore, the concomitant activation of PKC 
through DAG generation induced by cholinomimetics can 
partially counteract the role of PLC-IP3 in muscarinic 
antinociception. 

 So far, we do not know through which way PLC-IP3 and 
PKC can modulate pain perception. Recently some authors 
[113, 114], speculated that postsynaptic muscarinic receptors 
could induce analgesia either by increasing GABA release 
(which induces analgesia via GABAB receptors) or by 
decreasing glutamatergic transmission (which, it is well 
known, to increase pain). 

ANALGESIA INDUCED BY NICOTINIC AGONISTS 

 Nicotine is a potent modulator of cholinergic nervous 
system function because of its ability to alter ion flux and 
neurotransmitter release which leads to various behavioral 
effects. Activation of nicotinic receptors elicits antinocicep-
tive effects in a variety of species and pain tests [115-117]. 
Nicotine-induced antinociception appears to be a complex 
phenomenon that involves multiple nicotinic receptor 
(nAChR) subtypes depending on the pain type and sites of 
action. In particular 4ß2 neuronal subtypes have been 
implicated in thermal acute pain tests such as hot-plate and 
tail-flick assays [118, 119]. Knockout mice deficient in the 
nicotinic 4ß2 receptor subunits lack nearly all high affinity 
3H-nicotine and 3H-epibatidine binding sites. They are 
insensitive to nicotine on the hot-plate test and display 
diminished sensitivity to nicotine in the tail-flick test [120]. 
The nAChRs exist almost exclusively on presynaptic 
terminals in the central nervous system and stimulate 
neurotransmitter release [121]. However, antinociception 
induced by nicotine is not due to an increase in ACh release 
acting on muscarinic receptors since we have demonstrated 
that nicotine analgesia is not modified by atropine or HC-3 
pretreatment Fig. (13). 

 Contrary to the lack of effect of nicotine on ACh release 
in vivo, some authors [122, 123] have reported that nicotine 
is able to release ACh in vitro in cortical slices and 
synaptosomes. In our opinion the discrepancy between  
in vivo and in vitro experiments may depend on the high 
concentrations of nicotine used in vitro (~10-4 M).  

 Nicotine is able to release norepinephrine in vivo. That 
could explain the antinociceptive activity of nicotine 
mediated via 2 adrenergic receptors. Li and Eisenach [121] 
reported that both nicotine and metanicotine induce  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Pretreatment with U-73122 (0.6-5 g per mouse i.c.v.) and anti-PLCß1 (2-3 nmol per mouse i.c.v.) antagonizes physostigmine (0.1 
mg kg-1 s.c.)- and oxotremorine (60 g per mouse i.c.v.)-induced antinociception in the mouse hot-plate test [103]. 
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Fig. (13). Antinociception induced by nicotine (1.5mg kg -1 s.c.) in 
mouse hot-plate test and lack of antagonism by atropine (5mg kg-1 
i.p.) and by HC-3 (1 g per mouse i.c.v.). Saline: open circles; 
Nicotine: closed squares; Atropine + Nicotine: open squares; HC-3 + 
nicotine: closed circles. ** P< 0.01; * P<0.05 in comparison with 
saline controls [81]. 

 
norepinephrine release in spinal microdialysates, an effect 
reduced by nicotinic antagonists. Both nicotinic agonists 
stimulate norepinephrine release in synaptosomes. The effect 
of metanicotine was blocked by lower concentrations of 

4ß2-nAChR antagonists. These results [121] suggest that 
one mechanism by which nAChR agonists produce analgesia 
is to stimulate spinal norepinephrine release. The release of 
norepinephrine is obtained via activation of the same 
receptor subtype ( 4ß2-nAChR) responsible for nicotinic 
analgesia. In support of the involvement of the adrenegic 2 
receptors in nicotine antinociception are: the antagonism 
exerted by yohimbine ( 2 antagonist) [124] and the 
prevention by pertussis toxin (inhibitor of Gi proteins) [125] 
of nicotine analgesia. Since Ghelardini et al. [126] reported 
that 2 receptors are also responsible for analgesia induced 
by amitriptyline and imipramine, it appears evident anti-
depressants and nicotine have one common mechanism of 
action. Clinically, antidepressants are more used than 
nicotine to relieve pain. Their preference, in spite of the one 
common mechanism of action, could be ascribed to the fact 
that antidepressants increase norepinephrine concentration in 
the synaptic cleft by blocking reuptake mechanism while 
nicotine acts by activating nicotinic heteroreceptors. The first 
mechanism is much more physiological than the second. In 
the case of antidepressant drugs, the increase of 
neurotransmitter release takes place only when the synaptic 
terminal is physiologically activated. Besides nicotine, many 
other nicotinic agonists have been reported to increase pain 
threshold [127-131]. The most potent and effective is 
epibatidine (isolated from the skin of the frog epipedobates 
tricolor). Unfortunately, it is also very toxic and, therefore, 
has a low therapeutic index. No nicotinic agonists, excluding 
nicotine itself, have been found, clinically useful to date. 

CHRONIC CHOLINERGIC ACTIVATION OF N1 

NICOTINIC RECEPTORS PREVENTS AND 

RESTORES NEUROPATHIC INJURIES 

 Neuropathic pain is an unpleasant, abnormal signaling 
associated with injury or malfunction in the nervous system. 

It is the main symptom of many complex disorders termed 
neuropathies which affect up to 7-8% of the population [132, 
133]. Neuropathic pain may result from disorders of the 
peripheral or the central nervous system. Thus, neuropathic 
pain may be divided into peripheral or central or mixed 
(peripheral and central) neuropathic pain. Central neuro-
pathic pain is found in spinal cord injury, multiple sclerosis, 
and some strokes. Aside from diabetes and other metabolic 
conditions, the common causes of painful peripheral neuro-
pathies are herpes zoster infection, HIV-related neuro-
pathies, nutritional deficiencies, toxins, remote manifes-
tations of malignancies, genetic, and immune mediated 
disorders [134, 135]. Neuropathic pain is common in cancer 
as a direct result of compressing peripheral nerves, or as a 
side effect of chemotherapy, radiation injury, or surgery. As 
a consequence, a large percentage of patients, affected by 
neuropathic pain, need pharmacological treatments (carba-
mazepine, gabapentin, lamotrigine, pregabalin, amitriptyline, 
imipramine, venlafaxine, mirtazapine, nortriptyline, dulo-
xetine, etc.). These agents are not able to prevent or revert 
morphological and molecular injury of tissue damage and 
their effects are limited to partial symptomatic relief only. 
Recently, we [136] reported that, by increasing ACh release 
and synthesis, by chronically injecting acetyl-L-carnitine in 
rodents, it is possible to increase artemin levels in normal 
and damaged areas of the nervous system Fig. (14). Artemin 
is a growth factor, belonging to the glial derived neuro-
trophic factor family ligands (GDFLs). They are notable for 
their ability to promote growth and survival of neurons. 
Artemin is neuroprotective and supports regeneration after 
nervous tissue damage [137, 138]; moreover, it is able to 
normalize pain thresholds. Also GDNF and other related 
ligands have been reported to reduce mechanical hyperal-
gesia and ectopic discharges within sensory neurons after 
nerve injury [139]. Porreca and co-workers [138,140] found 
that repeated artemin administration prevented pain behavior 
after spinal nerve ligation. Artemin and other GDNFs have 
anti-hyperalgesic and anti-neuropathic effects. Their 
characteristic actions on pain and neuron survival strongly 
suggests their use as therapeutical agents in neuropathy. In 
2003, Gardell et al. [140] demonstrated that systematic 
administration of artemin normalized the behavioral 
hypersensitivity to mechanical and thermal stimuli in rat that 
underwent spinal nerve ligation. Artemin treatment was able 
to restore sensorimotor functions and improve morphological 
and neurochemical features of the injury state induced by 
spinal nerve axotomy [141] and dorsal root crush [138]. The 
trophic effects of artemin are in sensory neurons where its 
receptor GFR 3 is mainly expressed. Thus artemin could be 
a valuable tool to affect neuropathic pain without having 
broader effects on other organs and tissues [142]. 

 Di Cesare Mannelli et al. [143], used a model of 
peripheral neuropathy described by Bennett and Xie [144], 
consisting of a loose ligation of the rat sciatic nerve or 
chronic constriction injury (CCI). They demonstrated that 
acetyl-L-carnitine (100 mg kg-1 i.p twice daily for 14 days) 
was able to prevent trauma-induced hyperalgesia. Under the 
same experimental conditions, acetyl-L-carnitine prevented 
regulated cell death improving a nerve apoptotic state that 
encompassed cytochrome C cytosolic release, activation of 
the cysteine protease caspase 3, up to genome fragmentation 
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[143]. Moreover, its neuroprotective properties are also 
described in other animal models of neuropathy [145]. The 
muscarinic blocker atropine, injected to the dose of 5 mg kg-1 
i.p., simultaneously did not antagonize the acetyl-L-carnitine 
anti-neuropathic effect in the paw-pressure test (right paw 
with CCI) Fig. (15). 

 On the contrary, as previously described above, atropine, 
at the same dose, significantly reduced its analgesic effects 
(left paw, that is the contralateral paw to CCI ones). 
Conversely, anti-neuropathic effect of acetyl-L-carnitine is 
prevented by the nicotinic antagonist mecamylamine (2mg 
kg-1 i.p. twice daily for 14 days, ipsilateral paw with CCI 
Fig. (15). This experiment shows the existence of two type 
of pain reverted by cholinergic activation: a) pain evoked by 
a mechanical stimulus applied on an healthy tissue (normal 
pain threshold) and b) pain evoked by the same stimulus 
applied on an injured tissue (reduced pain threshold). a) 
represents an “alarm bell” pain, the second represents a 
neuropathic pain. Both kind of pain are reduced by cho-
linegic activation, however the first is antagonized by 
atropine while the second is antagonized by mecamylamine. 
Therefore, muscarinic signal mediates analgesia likewise 
other analgesic drugs such as opioids and NSAID, while 
repeated nicotinic stimulation reverts neuropathic pain 
likewise antiepileptic and antidepressant drugs. Moreover, 
significant blockade of nicotinic receptors reduced the 
XIAP-related protective effect of acetyl-L-carnitine on the 
apoptotic state of the ligated nerve. The involvement of 
nicotinic receptors in acetyl-L-carnitine anti-neuropathic 
effect is further supported by both the prevention of neuro-

pathic pain by chronic nicotine Fig. (16) in the CCI model 
and by the increase, following nicotine chronic treatment, of 
artemin mRNA Fig. (17) and artemin protein levels Fig. (18) 
in various parts of the peripheral and the central CNS. 

 These results are consistent with the hypothesis that 
muscarinic receptors (subtype M1), are involved in analgesia 
and the repeated activation of nicotinic receptors prevents 
and mitigates neuropathic injuries. The last effect appears to 
be mediated by growth factors of the GDNF family 
particularly artemin. Most relevant, the anti-neuropathic 
effect of acetyl-L-carnitine is completely antagonized by 
mecamylamine-mediated blockade of the nicotinic receptors 
[143]. These results differentiate drugs acting on nicotinic 
receptors from antiepileptics that have only a symptomatic 
effect on neuropathic pain. 

 In conclusion, acetyl-L-carnitine presents both analgesic 
and anti-neuropathic properties mediated by the cholinergic 
system. In neuropathic pain management it is clinically used 
without severe unwanted effects. It is able to promote ACh 
synthesis achieving a more physiological effect on both 
muscarinic and nicotinic receptors. 

 Clinical validation of the nicotinic acetylcholine 
receptors (nAChR) approach has been extensively studied. 
Development of nicotinic agonists for the management of 
moderate-to-severe pain has been limited due to cardiovas-
cular and gastrointestinal adverse effects [146,147]. As yet, 
no direct nicotinic agonists have been successfully 
developed and approved for the treatment of neuropathic 
pain. Nevertheless, nicotine and nicotine receptor agonists 
have been demonstrated to exhibit antinociceptive, antihy-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). A): Artemin levels in spinal cord of rats detected by the Odyssey method following standard immunoblotting procedure. Rats 
underwent to surgical process with (CCI) or without (sham) the loose ligation of the sciatic nerve. The administration of saline or acetyl-L-
carnitine (100mg kg-1 i.p., twice per day) began on the day of the operation and continued for 15 days. B): Artemin expressed in spinal cord 
(immuno-histochemically detected) in saline or ALCAR treated rats (treatment time and doses as in A). 
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Fig. (15). Paw pressure test: Effect of acetyl-L-carnitine in the presence of atropine (atr.) or mecamylamine (mec.). Response to noxious stimuli 
on the ipsilateral paw that underwent CCI respect to the contralateral un-operated paw. Effects of treatments with saline alone, acetyl-L-
carnitine (100mg/kg twice daily for 15 days), atropine (5mg/kg twice daily for 15 days) or co-administration of both. Effects of treatments with 
saline alone, acetyl-L-carnitine (100 mg/kg twice daily for 15 days), mecamylamine (2mg/kg twice daily for 15 days) or co-administration of 
ALCAR and mecamylamine. Paw Pressure test was performed 30 min after the last injection. Each value represents the mean of 2 experiments 
with 12 rats per group. *P < 0.01 versus control (saline + saline) rats. °P < 0.01 versus acetyl-L-carnitine + saline treated rats [143]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (16). Effects of 7 days and 15 days repeated treatments of rats with nicotine (1.5 mg kg-1 i.p.) on paw pain threshold starting from the day 
of their chronic constriction injury of right sciatic nerve (CCI). Paw Pressure test was performed 10 minutes after the last nicotine or saline 
injection. Each value represents the mean of 2 experiments with 6 rats per group. ^P < 0.05 and *P < 0.01 versus control (saline-treated) rats. 
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Fig. (17). Artemin mRNA levels. Total mRNA was extracted from the periaqueductal grey matter (PAG) and RT-PCR was performed 
(Forward primer 5´ TAGGTGGCAACCAGCCTTG 3´; Reverse primer 5´ TGTGTCCCCCAGGTAGGT 3´). Comparison among naive, CCI 
and CCI-nicotine-treated rats. 1.5mg kg-1 nicotine was administered i.p. for 15 days starting from the day of ligation. Quantitative analysis is 
shown as the mean ± s.e.m of 5 different animals. *P < 0.01 with respect to naive, saline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (18). Artemin protein levels. Protein expression levels were analyzed in CCI rats in respect to naive and the effect of Nicotine (1.5 mg 
kg-1 i.p.) was evaluated after administrations repeated for 15 days.  
 
 
Densitometric analysis of A) ipsilateral dorsal root ganglia (DRG); B) total spinal cord; C) periaqueductal grey matter (PAG). Panel D) shows 

representative Western blot performed in the different areas with an artemin specific antibody; a colorimetric method was used to visualize the 

peroxidase-coated bands. Results are expressed as the mean + s.e. of 5 different animals; -actin normalization was performed for each 

sample. Measurements in control samples (naive, saline) were assigned a relative value of 100%. *P < 0.05, significantly different from naive, 

saline; ^P < 0.05 significantly different from CCI, saline. 
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peralgesic, and antiallodynic effects [146, 148, 149] across a 
range of preclinical models of pain, involving peripheral and 
central sites of action [146]. In particular the 4 2 nicotinic 
receptor subtype agonist ABT-594 has antinociceptive 
properties equal in efficacy to those of morphine across a 
series of diverse animal models of acute thermal, persistent 
chemical, and neuropathic pain states [148]. Recently, the 
results of a clinical phase 2 study of this compound have 
been published. ABT-594 (150-300 g BID) was able to 
significantly decrease the Pain Rating Scale in patients with 
diabetic peripheral neuropathic pain. However, because of 
adverse effects (nausea, dizziness, vomiting, abnormal 
dreams and asthenia) dropout rates were significantly higher 
than placebo indicating a limited value for possible future 
clinical use [150]. Other 4 2 agonists effects are blocked by 
mecamylamine in acute and chronic pain models in animals 
[146,149]. On the other hand, the 9 10 subtype, recognized 
in several tissue including immune cells, seems to have an 
opposite effect since specific antagonists can alleviate 
chronic pain resulting from nerve injury [151]. 

 Recent advances concerning the neuroprotective and 
neurotrophic effects of acute or chronic nicotine exposure 
are published [152]. A great deal of interest has developed 
that several nAChR subtypes might be involved in the 
neuroprotective mechanisms against neuronal damage [153]. 
Experimental and clinical data largely indicate long-lasting 
effects of nicotine and nicotinic agonists that imply both an 
anti-hyperalgesic and a neuroprotective role of nAChR 
activation, involving mainly 7 and 4 2 nAChR subtypes 
[152, 154, 155]. We have recently demonstrated that the 
repeated administration of the 7 agonist PNU-282987 (30 
mg kg-1 once a day for 7 days and 10 mg kg-1 for 28 days) is 
able to decrease pain perception in the CCI model of 
peripheral neuropathy. Histological studies indicated that 
ligation-induced edema and macrophagic infiltrate was 
present. Moreover, osmicated preparations revealed a 
decrease in axon compactness and diameter, together with a 
significant loss of myelin sheaths. Repeated treatment with 
PNU-282987 reduced the presence of edema and macro-
phagic infiltrate. On nerve coronal sections, a significant 
increase in myelin sheath, axonal diameter and number of 
fibers were observable. These results strongly suggest the 
pivotal role of 7 nAChR in the neuroprotection during 
neuropathy [156].  

CONCLUDING REMARKS 

 Many strategies to induce analgesia involving cholinergic 
mechanisms are summarized. This type of analgesia has 
been used from the mists of time (Mandragora, Hyoscyamus 

niger, Nicotiana tabacum, Lobelia inflata) together with 
other substances (opium, Cannabis sativa, Salix alba) with 
different mechanisms of action. In the modern times 
cholinergic induced analgesia lost its importance, as a 
consequence of the numerous side effects. Understanding the 
numerous mechanisms through which this form of analgesia 
can be induced without aversive effects makes possible a 
reemergence of this therapeutic approach. All experiments 
performed in our laboratory [5, 6, 15, 17, 18, 33-38, 48, 49, 
51, 79, 80, 87-89, 93, 136, 143] were carried out using doses 
of each compound that did not cause any detectable  
 

modification in laboratory animal gross behavior. All 
treatments did not impair motor coordination nor modify 
spontaneous motility or inspection activity in comparison 
with control groups. Moreover treatment with drugs such as 
ACh synthesis promoters like acetyl-L-carnitine, ACh 
release enhancers (R-(+)-hyoscyamine, AFDX-116, methoc-
tramine, metoclopramide, caffeine, prochlorperazine, and 
low doses of local anesthetic drugs) not only did not modify 
rota-rod performance and other behavioral parameters, but 
also did not induce any detectable cholinergic sympto-
matology. Our studies using very small doses that produce 
minimal side effects indicate the value of this approach for 
using cholinergic agents for pain control. 

PATENTS RELATED TO CHOLINERGIC SYSTEM 

AS TARGET FOR PAIN TREATMENT 

 Cholinergic system modulation for the pharmacological 
management of nervous disease has provided several 
interesting patents. Astra Zeneca secured in 2009 
(US0275574) several muscarinic receptor agonists useful in 
the treatment of pain, Alzheimer's disease and schizophrenia 
[157]. Piperidine derivatives, agonists of muscarinic 
receptors, have been proposed by the same company with the 
specific application as analgesics (WO2009034380) [158]. 
Also pain due to neuropathies may be treated with a 
muscarinic approach. Acadia Pharmaceuticals patented 
compounds that selectively interact with the M1 muscarinic 
receptor subtype as agonists effective in neuropathic pain 
(WO2004087158) [159]. 

 No applications exist around the block of the presinaptic 
M2 subtype to enhance ACh physiological antinoceptive 
action. Benzocycloalkylenylamine (US6645958) [160], 
amino-tetralin-derivatives (US6686278) [161] and 
heterocyclylalkylamines (US7361648) [162] has been 
patented as M2 antagonists. All these compounds show M3 
affinity and no authors describe them as analgesic. 

 In recent years, attention has been increasing for the 
nicotinic subtype of the ACh receptors in particular for 
neuropathic pain relief. Nicotinic signalling has a pivotal 
role both in pain sensation and neuroplasticity. Nicotinic 
receptor modulators are candidates to treat neuropathic pain 
by a neurorestorative mechanism. Peters et al, as inventors, 
patented diazabicyclicaryl derivatives active at nicotinic 
ACh receptors. These substances are useful for the treatment 
of peripheral and central nervous system disorders related to 
pain (US20100113428) [163]. 

 A role of the immune system in the beginning and in the 
maintenance of neuropathic pain is well established [164]. 
Since the homomeric 7 subtype is expressed in neurons as 
well as in glia cells with a regulatory function it could be a 
target for the management of the immune component of 
neuropathies. Mazurov et al. (US20080138287) secured 3-
substituted-2-(arylalkyl)-1-azabicycloalkanes as 7 modu-
lators [165]. Finally, the glia-derived neurotrophic factor 
artemin results to be stimulated by cholinergic compounds. 
Biogen Idec patented a method for evaluating neuropathic 
pain and neurotrophic activity of a drug or a drug candidate 
by measuring artemin and correlated gene expression levels 
from skin biopsys (WO2005083125) [166]. 
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CURRENT AND FUTURE DEVELOPMENTS 

 Damage to the nervous system is the primary cause of 
neuropathy and chronic pain. Current pharmacological 
treatments for neuropathic pain are not able to prevent or 
reverse morphological and molecular consequences of tissue 
injury. Current therapies for pain relief are not able to induce 
tissue regeneration. The most clinically used compound 
gabapentin is active for pain relief but is ineffective for 
neuroprotection or neuroregeneration. Neuropathic pain is 
rapidly increasing because of many diseases such as type 2 
diabetes, HIV immunodeficiency, various types of neoplastic 
pathologies requiring chemotherapeutic agents such as 
paclitaxel, oxaliplatin, cisplatin, vincristine, etc., all cause 
major and painful neuropathies. There exists a significant 
interest in developing novel pharmacological treatments to 
prevent and treat neuropathic pain. In this respect the artemin 
growth factor and the other member of the GDNF family are 
of great interest. Artemin is notable for its ability to promote 
growth and survival of neurons, after nervous tissue damage 
[137,138]. Artemin, contrary to neurotrophins (NGF and 
BDNF) is also able to normalize pain threshold. We have 
recently reported [136] that the ACh synthesis promoter 
acetyl-L-carnitine, whose patent expired long ago, is able, 
following repeated treatments, to display not only an 
antihyperalgesic effect but also neurorestorative properties 
and good safety profile. Clinical studies on diabetic 
peripheral neuropathy show that acetyl-L-carnitine reduces 
excessive pain sensation and improves nerve conduction 
velocities and regeneration [167]. Open studies involving 
HIV-positive patients have shown that chronic treatment 
with acetyl-L-carnitine ameliorates pain symptoms related to 
peripheral polyneuropathy [28]. Hart and colleagues [168] 
report that six months of oral acetyl-L-carnitine treatment 
result in peripheral nerve regeneration of small sensory 
fibers as observed from skin biopsies in patients with distal 
symmetrical polyneuropathy. 

 Future developments should involve screening for an 
artemin promoter and/or releaser, as well as new chemical 
structures capable to increase ACh synthesis and release. 
Alternatively, it is essential to identify specific agonists for 
one of the many known nicotinic subtype receptors, which 
are able to increase artemin levels and its release. This 
second strategy appears more challenging. 
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ABBREVIATIONS 

ACh = Acetylcholine 

ALCAR = Acetyl-L-carnitine 

aODN = Antisense Oligodeoxynucleotide 

ARTEMIN = Artemin 

CCI = Chronic constriction injury 

ChAT = Choline acetyltransferase 

CNS = Central Nervous System 

CarAT = Carnitine acetyltransferase 

DAG = Diacylglycerol 

DFP = Diisopropyl-phosphorofluoridate or 
Diisopropyl fluorophosphate 

DMPP = Dimethyl-4-phenylpiperazinium 

GABA = Gamma-Aminobutyric acid 

GDNF = Glial cell line-derived neurotrophic factor 

GFLs = Glial cell-line derived neurotrophic factor 
family ligands 

HC-3 = Hemicholinium-3 

HIV = Human immunodeficiency virus 

IP3 = Inositol trisphosphate 

nAChR = Nicotinic receptor 

PAG = Periaqueductal grey matter 

PI = Phosphatidylinositol 

PKC = Protein kinase C 

PLC = Phospholipase C 

PNS = Peripheral nervous system 

XIAP = X-linked Inhibitor of Apoptosis Protein  
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