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Abstract
The purpose of this study is to develop a statistical methodology to handle a large proportion of
artifactual outliers in a population pharmacokinetic (PK) modeling. The motivating PK data were
obtained from a population PK study to examine associations between PK parameters such as
clearance of dexmedetomidine and cytochrome P450 2A6 phenotypes. The blood samples were
sparsely sampled from patients in intensive care units (ICUs) while different doses of
dexmedetomidine were continuously infused. Conventional population PK analysis of these data
revealed several challenges and intricacies. Especially, there was strong evidence that some
plasma drug concentrations were artifactually high and likely contaminated with the infused drug
due to blood sampling processes that are sometimes unavoidable in an ICU setting. If not
addressed, or if arbitrarily excluded, these outlying values could lead to biased estimates of PK
parameters and miss important relationships between PK parameters and covariates due to
increased variability. We propose a novel population PK model, a Bayesian hierarchical nonlinear
mixture model, to accommodate the artifactual outliers using a finite mixture as the residual error
model. Our results showed that the proposed model handles the outliers well. We also conducted
simulation studies with a varying proportion of the outliers. These simulation results showed that
the proposed model can accommodate the outliers well so that the estimated PK parameters are
less biased.
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1 Introduction
Recently research groups have shown that exposure to widely-used sedatives and analgesics
for relief of suffering in critically ill patients in intensive care units (ICUs) may be a major
risk factor for poor clinical outcomes such as delirium and coma. Several studies have set
out to define the factors that contribute to the risk of these adverse outcomes; one key risk
factor is the intensity of exposure to drugs. The dose of drug administered has most often
been used as a measure of the intensity of exposure to sedatives and analgesics due to
difficulty of measuring plasma drug concentrations in ICU patients. These patients are
critically ill and usually only a small number of blood samples can be obtained. A common
problem that arises with data obtained from complex clinical situations such as ICUs is the
finding of unexpectedly discrepant high or low values (outliers). In the extreme examples,
when biologically implausible, these outlier values are clearly due to error. For example,
extremely high concentrations can occur in samples drawn from an intravenous (IV) line
that was also used to infuse the drug. However, considering the rapidly changing and
complex clinical environment in the ICU, for many outlier values it is difficult to determine
which are artifactual and which represent true biological variability.

In a recent study, we analyzed the pharmacokinetic (PK) data of a sedative,
dexmedetomidine (DEX), using a population PK modeling to estimate drug exposure and
examine source of variability in drug kinetics in ICU patients. The DEX PK data, however,
posed statistical challenges to a conventional population PK modeling approach. A major
obstacle was the large number of outliers that were too numerous to be ignored (9% of the
weighted residuals had an absolute value of greater than 3 and this percentage may under-
represent the actual number of outliers due to an increased residual variability driven by the
outliers), as we will discuss later.

This problem is not unique. In clinical studies that measure drug concentrations, there often
is a proportion of outliers that could be artifactual due to assay or sampling problems, or
incorrect recording of the time after administration of drug, or could be due to biological
variability. Some outlier values in our DEX data resulted from errors in the blood sampling
process. Specifically, many ICU patients have two IV lines, one for drug infusion and the
other for blood sampling, and if possible, blood for drug concentrations is not drawn from
the line used for infusion. Other patients have multi-lumen central venous catheters that are
used for both drug infusion and blood sampling. Although the first portion of the blood
sample drawn to clear the dead space was discarded, there was always a potential for the
samples to be contaminated with a high concentration of the infused drug if the portion
drawn and discarded was insufficient or if this important step was inadvertently omitted.
Even for the patients with two IV lines, if the blood samples were drawn proximal of the
infusion site, i.e., further down along the venous drainage towards the heart, then blood
samples for analysis could be contaminated with the infused drug.

However, some outlier values may not be artifactual but rather represent individuals with
truly high drug concentrations due to biological variability - a problem relevant to the ICU
where the clinical status of patients can change rapidly, potentially affecting drug
elimination. Thus, in all patients with extreme outlying values, we first examined the
patients’ charts to check for changes in renal or hepatic function; however, outlying values
were not associated with obvious clinical deterioration in renal or hepatic function. Thus,
our problem remained to distinguish how likely it was that any particular drug concentration
value was artifactual or due to biological variability.

We use a term “artifactual” to mean outlier values seen in the DEX PK data that were likely
due to error and not biological variability. In contrast, the other conventional outliers would
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be generated from a variety of unknown sources of errors. Their overall effects would be a
random fluctuation around the residual error of mean 0, and could be reasonably well
modeled by a typical residual error model.

In the presence of these artifactual outliers, the standard assumptions on residual errors in
conventional population PK models may not be valid. If not addressed, estimates of PK
parameters would be biased, and the factors altering kinetics may not be detected as a result
of inflated variances.

Many statistical methods have been developed for handling outliers [1, 2, 3] in general
settings, including the applications of robust methods [4] in univariate [5, 6, 7, 8, 9] and
multivariate samples [10, 11, 12, 13], and Bayesian methods [14, 15, 16, 17, 18]. Methods
for dealing with outliers in population PK analysis have been also proposed: finding
appropriate residual error models [19, 20, 21] including a mixture of two normal
distributions investigated in a simulation setting [22], and robust methods on distributional
assumption of random effects PK parameters, such as nonparametric [23, 24],
semiparametric [25, 26] and Bayesian robust methods [27, 28].

These existing methods for dealing with outliers may not be directly applicable to a
complicated real life population PK data with a large proportion of artifactual outliers. These
methods have been developed to handle single or few outliers in simpler settings or
developed to make robust inferences on outlying individuals in hierarchical models. Thus, a
statistical methodology is needed to analyze population PK data with a substantial
proportion of outlying observations.

Depending on how we perceive outliers to have been generated, contaminant (outlier)-
generating alternative models [5, 13, 29, 30] may be considered. We consider a mixture
model as a contaminant-generating model, since the artifactual outliers in our PK data can
be reasonably assumed to come from a population different from that of the main body of
data; i.e. our data consist of a mixture of two different populations: valid and invalid
concentrations. We propose a novel population PK model with a mixture model as the
residual error model to accommodate the artifactual outliers. In order to classify which ones
are more likely to be the artifactual outliers, as opposed to an empirical statistical model, our
model uses a PK model’s predictive ability as a structural model to predict an individual
drug concentration-time trajectory even with frequent change of doses. The proposed model
is implemented within a Bayesian framework and compared with the conventional
population PK analysis. The model is also evaluated using simulation studies.

The manuscript outline is as follows. Section 2 describes the motivating data and presents a
conventional population PK analysis. Section 3 presents the evidence of artifactual outliers.
In Section 4, we propose a Bayesian hierarchical nonlinear mixture model to accommodate
the artifactual outliers. Section 5 discusses model checking and makes inferences based on
the results from the proposed model while Section 6 presents simulation results. A summary
and discussion follows in Section 7.

2 Data and Conventional Population PK Analysis
2.1 The data

The motivating PK data consist of DEX plasma concentrations (ng/mL) with 1 to 15
measurements per patient obtained over a time interval that ranges from 13 hours to 5 days,
with a total of 247 measurements from 43 patients in the ICU at Vanderbilt University
Medical Center, Nashville, Tennessee, and Washington Hospital Center, Washington, DC
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[31]. The data are sparse: 13 patients (30%) of the 43 patients have three or fewer
measurements; the median number of measurements per patient is five.

The study drug, DEX was titrated continuously by the bedside nurse from a starting dose of
0.15 μg/kg/hr to a maximum of 1.5 μg/kg/hr to achieve the sedation goal set by the patient’s
medical team using the Richmond Agitation-Sedation Scale (RASS). Thus, the sedation
goals were individualized for every patient, and the severity of illness and the time course of
critical illness determined the depth of sedation. For example, patients who were critically ill
and had significant ventilator-patient dyssynchrony required a higher sedation level; others
who were improving clinically often required lighter sedation.

Blood samples were collected at 3 predefined time points each day during continuous DEX
infusion: at 05:00 ± 2 hr by the bedside nurse, at 10:00 ± 2 hr by the investigators during the
morning sedation level assessment, and at 16:00 ± 2 hr with the evening sedation level
evaluation. Thus, every attempt was made to standardize blood draw times. Differences in
the number of samples among patients were due to a variety of reasons, including patients
being in procedures during the planned blood draw or a lack of adequate access sites (e.g.,
central lines). Thus, missing blood draws were not necessarily related to the severity of
illness, and hence there was little chance of sampling bias. While collected at two sites, the
data were well standardized. Each patient’s blood was collected and processed in a similar
fashion from the time it was drawn to the point at which it was stored in the freezer at −80
°C and then assayed.

Five covariates were considered: age, gender, smoking status, weight, and P450 2A6
(CYP2A6) phenotypes. The major interest of the DEX PK study is to characterize the
genetic factors which could alter the pharmacokinetics of DEX, particularly the associations
between cytochrome CYP2A6 phenotypes and a PK parameter, clearance.

2.2 Conventional population PK analysis
We define the notation for general population PK models. Suppose that drug plasma
concentration, yij, is measured on individual i, i = 1, …, N, at the jth time tij, j = 1, …, ni. The
drug plasma concentration-time profile for each individual i is predicted by a nonlinear
function f(θi, tij) characterized by the ith individual parameters θi = (θ1i, θ2i, …, θpi). Let Zi
be a design matrix which may include the ith individual’s covariates. The most commonly
used distributional assumption for PK parameters is a multivariate lognormal distribution, θi
= Ziθ + bi, bi ~ MVN(0, Ω), where θi are a p–vector of logarithmic transformed PK
parameters specific to the individual i, θ are a p–vector of fixed parameters, and bi is a p–
vector of random effects. The MVN stands for a multivariate normal with mean vector 0 and
a covariance matrix Ω. Let eij denote the intra-individual errors associated with the
measurement yij, and assume the following regression model yij = f (θi, tij) + eij.

We analyzed the DEX PK data using a conventional population PK model implemented in
NONMEM [32] that uses maximum likelihood methods to estimate PK parameters in
population PK models [33]. We fit model candidates using first order conditional estimation
methods.

Since DEX was intravenously infused with constant rate multiple times, we considered a
multiple-infusions model [34] as f(θi, tij). We tried both one- and two-compartment models,
and the one-compartment model was chosen as the final model since the latter did not
improve the fit. The model has two PK parameters, clearance (Cl), the key parameter of
interest, and volume of distribution (V). This final model was used in the conventional PK
analysis and our proposed model.
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We tried several residual errors models, such as lognormal and normal models. For normal
residual error models, (a) additive (eij = εij), (b) proportional [eij = f (θi, tij) εij], (c) combined
proportional and additive [eij = f (θi, tij) ε1ij + ε2ij], and (d) power models [eij = f (θi, tij)α εij]
were considered, where εij are independently and normally distributed with mean zero. For
the the random effects PK parameters, a multivariate lognormal distribution was assumed; θi
= (log Cli, log Vi). We also included patients covariates, Zi, such as age, gender, smoking
status and weight in addition to CYP2A6 phenotypes to adjust for other covariates altering
kinetics; however, these time-invariant covariates did not explain much of the between-
subject variability, and hence their inclusion did not improve the fit.

The final estimates of PK parameters and the predicted concentrations from the best model
without covariates are presented in Table 1 and Figure 1. For comparison purposes, the
results from both the normal proportional error model and the lognormal model are
presented. As a model check, the observed DEX concentrations versus the predicted ones
are also shown for both models. Many of the predicted concentrations are severely
underestimated compared to the observed ones. This suggests that the distribution of drug
concentrations is highly skewed to the right, probably due to the unusual number of outliers.
The difference in the estimates of PK parameters from the two models in Table 1 is minimal.
The estimate of Cl (32.5 L hr−1) is much smaller, and the estimate of V (190 L) is larger,
when compared to the systemic clearance and the central volume of distribution reported in
literature, also suggesting that they may be biased due to the artifactual outliers. For
example, Venn et al. [35] estimated Cl = 49.2 L hr−1 and V = 44.1 L for critically sick ICU
patients, a population similar to ours, and Petroz et al. [36] reported Cl = 54.6 L hr −1/70 kg
and V = 56.7 L/70 kg for children aged in 2 – 12 years (the estimates were converted to 70
kg unit). This leads us to conclude that the commonly used residual error models are not
appropriate to fit the DEX data.

3 Evidence of Artifactual Outliers
The poor fit from the conventional population PK analysis suggested plotting individual PK
data fits. When investigating potential outliers, we considered a feasible range of DEX
concentrations. The maximum tolerated plasma concentration of DEX in humans described
in the literature is 16 ng/mL during continuous infusion at stepwise increasing dose rates
[37]. The dose rates at which these concentrations were reached in 2 subjects were not
reported. An earlier study reported peak plasma concentration was about 10 ng/mL at the
end of a 5-min infusion of DEX (2 μg/kg) [38]. The average plasma concentrations for
healthy Caucasians receiving low doses of DEX in a study conducted by the authors [39, 40]
was 0.14 ng/mL after three 10-min infusions of DEX (at 0.1, 0.15, and 0.15 μg/kg;
cumulative dose, 0.4 μg/kg) over 90 minutes. This information and the distribution of drug
concentrations suggested that some of the extreme outliers were obviously artifactual.

Figure 2 shows DEX plasma concentrations-time profiles for three patients who had diverse
DEX dose histories. In the upper panel of Figure 2, along with the observed concentrations
(red empty circles), the blue solid lines are drawn to distinguish the high values due to high
doses from outliers. The lines are the predicted concentrations from individual fits. The
green dots are simulated values from the estimated PK parameters with standard deviation of
0.3 to present uncertainty around the predicted lines. Figure 2(A) shows that all the DEX
plasma concentrations lie within the feasible range and the envelope of predicted line,
supporting that they are all valid measurements. On the other hand, the measurements in
Figure 2(B) appear to be a mixture of valid and invalid values based on the predicted line,
although all of them lie within the described range. Note that the data point at around 120
min is close to zero (0.04 ng/mL) although the infusion was continuously given, implying
that it may be a data entry error. In Figure 2(C), the values greater than 16 ng/mL are likely
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to be contaminants, and also some values between 5–15 ng/mL may be artifactual if the first
set of detected contaminants is removed (based on new predicted line which will be
downward after the first set is removed).

Notice that the predicted lines in Figures 2(B) and (C) are biased upward, driven by the
outliers. This demonstrates how the large outlying values could markedly affect the
estimates of the PK parameters, resulting in overestimation of the plasma concentrations and
underestimation of Cl. Although we could remove some of the extreme outliers by visual
inspection or some other relatively arbitrary criterion based on the distribution of the data
before performing the PK analysis, it would be problematic for the following reasons. First,
there were too many potentially problematic values similar to the ones shown in these plots.
Second, many suspect values were not very far from the boundaries of the expected range
and thus were not totally improbable. Third, the uncertainty in regard to these high values
being contaminants would not be taken into account. Alternatively, we have also seen that
ignoring these outliers is not viable. The individual plots, along with the blood sampling
process, provide strong evidence that some of the blood samples were contaminated with
high concentrations of the infused drug and thus the estimated PK parameters would be
seriously biased, if the outliers are not accommodated.

4 A Bayesian Hierarchical Nonlinear Mixture Model
We propose a Bayesian hierarchical mixture PK model to accommodate the artifactual
outliers observed in the motivating PK data. Bayesian hierarchical models are well suited to
population PK models [28, 41, 42, 43] with one more level defining priors. We will use the
same model for inter-individual variation as in the conventional population PK analysis. The
key component of our new model is the model for the intra-individual variation at the first
stage. Specifically, we propose a finite mixture model as the residual error model to
accommodate the outliers. Such a mixture model assumes that the contaminants are
generated from a population (high concentration of the infused drug) different from the main
population (valid plasma drug concentrations).

At the first stage, we specify the following nonlinear regression model for yij with a mixture
error distribution as follows:

where dq is a distribution with parameters ψq and w = (w1, …, wQ) is an unknown vector of
mixing weights. We assume that the number of components Q is fixed. We have found that
setting Q = 3 appears to be adequate to accommodate the outliers in our motivating data.

We performed a residual analysis that could be helpful in choosing the number of
components in the mixture model and candidate distributions. The distribution of residuals
obtained from the conventional population PK analysis is overlaid by a normal density curve
(blue dashed line) in Figure 3. The figure clearly shows that the residual error distribution is
highly skewed in both tails, more skewed to the right (due to a high proportion of large
values of outliers), suggesting that a three-component mixture would be a good choice. A
three-component mixture described below is shown on the right panel (black solid line), and
the components are separately presented on the left panel with a fixed set of parameters
shown in the figure. This figure suggests that each component could appropriately model the
heavy-tailed residuals in both tails while still adequately modeling the bulk of the data. That
is, the three-component mixture appears to fit the whole residuals reasonably well. Although
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not necessary for a similar type of data, this empirical approach would be especially useful
when a dataset does not provide enough information for a certain parameter in the model,
for example, due to a limited population size, so that we need to fix some parameters.

For the DEX data, we consider the following: d1 is a normal (N) with mean 0 and variance
τ1, N(0, τ1), d2 is the convolution of a N(0, τ2) and a Gamma (Ga) with shape a and rate
parameter b, and d3 is the convolution of a N(0, τ3) and the distribution of the negative of a
gamma random variable (henceforth referred to as the negative gamma, NGa) with shape c
and rate d. To elaborate, if X ~ Ga(c, d) then − X ~ NGa(c, d) and our residual error
distribution is eij ~ w1N(0, τ1)+w2N(0, τ2)*Ga(a, b)+w3N(0, τ3)*NGa(c, d), where an *
denotes distributional convolution. Instead of Ga and NGa, a lognormal, and the distribution
of the negative of a lognormal random variable, may be used as alternative distributions
when the distribution of artifactual concentrations would be expected to be less skewed.

The rationale behind this distribution is as follows. We presume that w1 is large; hence most
of the data are assumed to have normally-distributed errors (e.g. the normal density
represented by blue dashed line in Figure 3). The second component is the convolution of a
N(0, τ2) and Ga(a, b), which accommodates large values of contaminants close to the
boundary of the valid concentrations as well as more obviously large outliers (e.g. the
density represented by red dashed line). The third component, a convolution of a N(0, τ3)
and NGa(c, d), is for small values of artifactual concentrations (hence large negative
residuals), which will be likely due to dilution of the sample with saline flush or
discontinuation of the infusion which had not been recorded. This term is also for
accommodating the outliers close to the boundary and the more obviously small ones (e.g.
the density represented by green dashed line).

Though we presented the full model above, a useful submodel fits the data well and presents
a parsimonious and interpretable subclass. Specifically, consider a case where τ1 = τ2 = τ3 =
τ. Then the model is specified as

where δ(0) is a distribution that is degenerate at 0. It is informative to note that this
distribution arises from the equation eij = εij + ξij where εij is a N(0, τ) random variable and
ξij is a mixture of a distribution degenerate at 0, a Ga(a, b) and a NGa(c, d) with
probabilities w1, w2 and w3, respectively.

Represented in this form, the error model is uniquely interpretable. Specifically, εij can be
thought of as representing natural residual error, while ξij represents the outlier shift. Here,
the outlier shift process, ξij, is degenerate at 0 with probability w1, is positive with
probability w2 and is negative with probability w3. To reiterate, the model is:

where w.p. stands for ‘with probability’. This parsimonious approach worked well as
discussed in Section 5 and was implemented using Markov chain Monte Carlo (MCMC)
methods in WinBUGS [44] and PKBugs [45, 46].
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Notice that our model specification naturally produce an ordering constraint in the
components means that would avoid the label switching problems, a well known problem in
a mixture modeling [47, 48]. This problem is due to the invariance of likelihood for re-
labeling of the mixture components (this means the likelihood is the same for all
permutations of the components’ indices of the mixture). A commonly used solution is to
impose an identifiability constraint by ordering the components means or the mixture
weights [47].

In addition, the model allows the probability of being valid or an outlier for each point
depending on how far the data point is from the expected range by taking advantage of the
predictive ability of a PK model. Although we do not expect that the amount of shift from
the PK model would be systemic, the direction of outliers can be expected, either much
larger or smaller than the predicted at each point. The greater the deviation from the
prediction, the higher the chance of being contaminated; this is incorporated as a probability
weight. Although some covariates could be helpful to better model contaminants, they were
not collected in this study; in fact, it may not even be feasible to collect them in a ICU
setting.

As a note, a normal proportional error model would not be a good choice for the valid
population, since it would compete with the Gamma component of the model to model
outliers, making the MCMC sampling for posterior distributions difficult. Even if the valid
population follows a normal proportional error model, the use of a normal additive error
model would result in little bias in the estimates for PK parameters, since some skewed valid
concentrations on the boundary of the invalid would be categorized as the valid in many
MCMC iterations (so still high probability of being valid, although not 1), allowing them to
contribute in estimating the PK parameters most of times. Our simulation results below also
support this.

At the third stage, we define priors as follows. We use vague priors for fixed effects θ,
normal distributions with zero means and very small precision 10−4 (i.e. very large
variance). We use the conjugate prior for the inverse of the normal variance, τ ~ Ga(0.1, 0.1)
(i.e. τ has a prior mean of 1 and a prior variance of 10). The inverse of Ω is assigned the
conjugate prior, a Wishart prior W(R, ρ) with a scale matrix R of order 2 × 2 for which
diagonal elements set about 0.18 (i.e. the 2 × 2 mean of the Wishart distribution is ρR−1; the
precision of each element is approximately 11 ≈1/0.32), corresponding to 30% CV for inter-
individual variability of PK parameters and off-diagonals set to 0. The degrees of freedom ρ
is set 2 which allows the least informative proper Wishart prior for the inverse of Ω (ρ must
be equal to or greater than 2 for the prior to be proper, and the larger ρ represents stronger
belief in the prior guess on R). We use the conjugate prior probabilities of group
membership, a Dirichlet distribution for the mixing weights, w ~ Dirichlet(α1, α2, α3), with a
common default set for a vague prior, α1 = α2 = α3 = 1, which assigns equal prior masses on
each group membership and is equivalent to a prior sample size of 3. Finally, the priors for a
and c are assumed to be a uniform (Unif) with boundaries of 1 and 10, Unif(1, 10), and those
for b and d to be Unif(0, 10), based on the shape of residual distribution and a plausible
range of the parameters.

5 Model Checking and Inferences
5.1 Goodness-of-fitness

The observed DEX concentrations versus the posterior means of the predicted ones obtained
from Bayesian hierarchical nonlinear mixture model are shown in Figure 4 for the whole
range (left panel), and for the zoomed-in range of 0 – 4.5 ng/mL where the majority of data
lie (right panel). The circles represent data points classified as valid whereas the squares and
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triangles are classified as artifactual outliers (the second and third component, respectively)
on at least half of the MCMC iterations. Each point is filled with color in proportion to the
w1 (the color coding is shown below the figure); the darker the pink color, the higher the
probability of being a valid concentration, and the darker the blue, the higher the probability
of being an outlier. The white represents an estimated 50% chance of being valid or an
outlier. Each data point was weighted by its corresponding the posterior probability of w1
(probability of being valid) in estimating PK parameters. Notice that the data points with
dark blue color (w1 ≈ 0) have little influence on estimating PK parameters, so that they are
practically removed in the estimation procedure. All the posterior means of the predicted
concentrations are in good agreements with the observed concentrations.

The lower panel of Figure 2 shows the posterior means of the individual predicted
concentrations and 95% credible intervals obtained from Bayesian hierarchical nonlinear
mixture model overlaid with the observed drug plasma concentrations represented by red
empty circles for the same three subjects discussed in Section 4. The interpretation of the
color is the same as the one in Figure 4. The blue solid lines represent the predicted
concentrations from the model given the posterior means of individual PK parameters. All
the data points from the individual in Figure 2(D) were fully counted in estimating PK
parameters as valid data (w1 ≈ 1). The two large data points and the one very small value
from the individual in Figure 2(E) almost did not contribute in estimating PK parameters (w1
≈ 0) whereas the rest of data points did fully contribute (w1 ≈ 1). Notice that in contrast to
the predicted line in Figure 2(B), the one in Figure 2(E) closely passes through these valid
data points. In addition, the predicted line in Figure 2(E) is downward compared to the one
in Figure 2(B), suggesting the bias in the estimates of PK parameters obtained from the
conventional analysis was reduced. We can observe the same phenomena in comparison of
Figure 2(C) and (F).

A brief explanation of estimation procedure would be informative to understand how the
classified outliers are discounted disproportional to w1. At each MCMC iteration, the model
classifies each data point as valid or an outlier depending on how far the point is from
expected values for valid data given the uncertainty in the data. After the classification, the
PK parameter will be estimated using the main population classified as valid concentrations.
If a data point is on the boundary of valid, it will be classified as valid for some MCMC
iterations and as invalid for other iterations. The data point will be included in the estimation
of PK parameters only if it is classified as valid. For example, see the dark blue squares in
the right tail of x-axis in Figure 4. If the concentration is unexpectedly large (so very likely
an artifactual outlier), then this data point will be classified as an outlier at almost all
MCMC iterations and excluded at the corresponding estimation stage. The proportion of
MCMC iterations for which it is classified to the second component is the estimate of w2; in
this example, w2 ≈ 1, hence this data point will be almost entirely predicted by the normal-
gamma convolution, in no relationship with other data points and the PK parameters. As
such, the posterior mean of this point will be very close to the observed one if the second
component fits the outlier well. For light blue squares, the proportion of MCMC iterations
for its being valid would be 0 < w1 < 0.5. Thus, they will be sometimes included in the
estimation at 100w1% of MCMC iterations, during which their prediction is in connection
with other data points, and hence the posterior means would not be perfectly matched with
the observed ones.

5.2 Posterior predictive assessment
We performed a posterior predictive model check [49] which requires simulating replicated
data (yrep) from the posterior predictive distribution. Using the replicated data, we can
measure discrepancy between data and the proposed model for any aspect of the model by
comparing a discrepancy measure based on the replicated data T(yrep) to the one based on
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the observed data T(y). Common choices of discrepancy measure are sample quantiles, the
mean and the standard deviation [50]. A posterior predictive P–value is defined by the
probability that the T(yrep) is more extreme than the T(y) and can be computed by the
proportion of draws such that T(yrep) > T(y). A P–value close to 0 or 1 indicates lack of fit.

Since we also want to explore whether the proposed model could model extreme outliers
well, we choose the first three largest order statistics as well as the minimum, the three
quartiles (Q1, Q2, and Q3), the mean and the standard deviation as the discrepancy
measures. The posterior predictive distributions of T(yrep) are displayed in Figure 5 along
with T(y) represented by vertical lines and the corresponding posterior predictive P–values.
The model-generated results are similar to the observed one, supporting the model fits well.

5.3 Model comparison
We compared the proposed model with traditional models. Although a deviance information
criterion (DIC, [51]) is useful for comparing many Bayesian models, it has been proposed
that DIC may not be a good measure for assessing mixture models [44, 52]. Since the
deviance (−2 log likelihood) is the key element of many model comparison criteria such as
AIC, BIC and DIC, we examined the posterior mean of the deviance defined by E[−2 log
p(y|θ)]; a large reduction in the deviance would be good indication of model improvement.
The posterior mean deviance of normal additive and proportional error models were 1282
and 722, respectively, whereas the posterior mean deviance of our proposed model was 126.
This large reduction provides strong evidence in favor of our proposed model.

In addition, we performed the model comparison using posterior predictive loss approach
developed by Gelfand and Ghosh [53] in a decision theoretic setting, which can be
considered as a generalization of the work by Laud and Ibrahim [54]. For a replicated data

, the observed data yij and the assumed model M, we choose the model minimizing the
following loss function:

where  and . The first term measures goodness-of-fit for
the replicated data if the experiment is repeated tomorrow and the second term can be
considered as a penalty term for model complexity. Often k = 1, 10, 100, 000 are considered
and D(k) of our model was much smaller than the normal proportional error model for all k
(e.g. 2120 vs. 3494 for k=1, and 4199 vs. 5106 for k = 100,000).

The large reduction in the posterior mean deviance and the smaller D(k) along with the
goodness-of-fit plots and the posterior predictive checking, all suggest that the proposed
model greatly improves the fit and is preferable. Although a reduced model by fixing the
shape parameters to 1 had a slightly smaller deviance (97), we present a more general form
of the model with the shape parameters being free, since the major goal is to propose a
general model which could be also useful for other dataset having more information for the
outlier distributions.

5.4 Inferences
The posterior means and standard deviations of PK parameters and the mixing weights
obtained from the Bayesian hierarchical nonlinear mixture model are presented in Table 1.
The Cl is greater and V is smaller then those estimated from the conventional population PK
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analysis. They are in a similar range of the published values [36, 35], supporting the
estimates of PK parameters obtained from our proposed PK model may be less biased. For
this comparison, the covariates were not included. The posterior means of the mixing
weights are 0.69, 0.29 and 0.02, respectively, which are reasonable estimates for this data.

Figure 6 shows the posterior distributions of the difference in logarithm of clearances
between intermediate metabolizers (IM) and normal metabolizers (NM), and that between
slow metabolizers (SM) and NM from Bayesian hierarchical nonlinear mixture model
(upper panel). The posterior means and 95% credible intervals are also presented, providing
little evidence that CYP2A6 phenotypes are associated with Cl and could alter the DEX
kinetics. The plots for a lognormal residual error model implemented in Bayesian
framework are also presented on the lower panel where the posterior distributions of the
difference are wider than the ones from our proposed model, suggesting a potential power
gain when an appropriate residual error model is used.

6 Simulation Studies
Simulation studies were conducted in a variety of scenarios to evaluate our proposed model.
Especially, we considered several outlier-generating mechanisms for the large outliers:
normal-gamma convolution, lognormal, and dose-dependent models. In addition, both
normal additive and proportional residual error models were considered for the main
population (valid concentrations) for each outlier-generating model. The simulated data
from the combination of the outliers and the main population models were fit to evaluate a
sensitivity of modeling assumption for our proposed model. They serve one correct model,
and five incorrect models. Among the five incorrect models, either the assumption for the
outliers or the main population is incorrect in three models, and both are incorrect in two
models which would serve as one of the worst scenarios. From each outlier-generating
model, a proportion of the large outliers was simulated in a range of 10 – 30%, which in our
experience are reasonably supported values for clinical data.

The true population values of Cl and V were 50 and 70, respectively, and lognormals with
about 20–30% of CV (σCL and σV equal to 0.2 or 0.3) were assumed for the random effects
PK parameters. The residual error standard deviation for the main population, σ, was 0.2 or
0.3. The proportion of the large values of outliers, w2, was 0.1, 0.2 or 0.3 whereas the
proportion of the small values of outliers, w3, was fixed to 0.05 since a proportion for the
small values of outliers in clinical data is not likely to be greater than 5%. The sampling
times were at 1, 2, 4, 12, 24, 48, and 72, and the rate of infusion, Ri, was chosen among 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100, a similar dose range as the DEX data. A one-
compartment infusion model was used as the structural model. Five subjects per each dose, a
total of 50 subjects for each replicated dataset and 500 replicate datasets were simulated.
The outlier-generating model specific parameters were defined as follows.

1. Normal-gamma convolution

2. Lognormal
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where lnN(p, q) stands for a lognormal distribution with the logarithm of the mean,
p, and the variance, q.

3. Dose dependent model

Tables 2 – 4 summarize the medians and the 2.5th and 97.5th percentiles in parentheses for
the estimates of parameters from our proposed model under three major conditions: (1)
moderate variability (σCl = σV = σ = 0.2) with small proportion of outliers (w2 = 0.1); (2)
moderate variability (σCl = σV = σ = 0.2) with moderate proportion of outliers (w2 = 0.2);
and large variability (σCl = σV = σ = 0.3) with large proportion of outliers (w2 = 0.3).

The estimates of PK parameters including the proportions of mixture components were close
to the true values for all scenarios, even for the incorrect models. The percents of correct
classification to the membership were also reported since we know the true membership to
the main or the outlier population, and all these estimates were reasonably high.

As expected, the results from the correct model were the best, and ones from incorrect
models for both the main and outliers populations were the worst. Although the model
misspecification for the main population results in more bias in general than the
misspecification of the outlier-generating mechanism, the maximum bias in the estimates of
Cl and V was at most 5% across all models in this simulation study. The most affected
parameters by the model misspecification were the variance components. For example, the
σCL and σV were overestimated since incorrect use of normal model would underestimate σ
when a normal proportional model is correct and the unexplained variability would get
absorbed to σCL and σV. Also the proportions of outliers were slightly overestimated since
some skewed valid observations following a normal proportional model were incorrectly
classified as outliers, which would have been classified as valid if the normal proportion
model were used instead. In conclusion, our simulation results support that our proposed
model can well accommodate the outliers even generated from incorrect models in a
reasonable range of proportions and variability of data.

7 Summary and Discussion
In a motivating PK dataset with a large non-ignorable proportion of artifactual outliers, we
present strong evidence that conventional PK/PD models are unsatisfactory. Model checking
revealed that the commonly used residual error models in conventional population PK
analysis cannot handle this large proportion of outliers and lead to biased estimates.

We proposed a novel population PK model to accommodate the artifactual outliers using a
mixture distribution as the residual error model within a Bayesian framework. A normal-
gamma convolution mixture model was successfully applied to the motivating PK data. A
residual analysis would be helpful to choose starting candidates for the specific components
in the mixture error model. Our model checking supported the ability of our model to
accommodate the large proportion of artifactual outliers well compared to conventional
population PK analysis. We also conducted simulation studies with a reasonable range of
proportions of the outliers. The results showed that our proposed model can accommodate
the outliers well, with small to large proportion of outliers, findings which are relevant to
most observational PK studies.
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The proposed modeling approach would be most useful when we suspect systemic outliers
for either known or unknown reason. However, we would not recommend using this
approach as a panacea for handling outliers when conventional error models could perform
reasonably well.

Although outlying individuals were not evidenced in the motivating data, there might be
outlying individuals in the other similar ongoing studies. For such cases, our future work
would be to develop an extended PK model to accommodate both the artifactual outlying
observations and outlying individuals.
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Figure 1.
The observed dexmedetomidine (DEX) plasma concentrations versus the predicted ones
(empty circles: population fitted values based on the fixed-effects estimates and the random
effects being equal to their mean value 0; filled circles: the conditional expectation of DEX
concentrations given the estimates of random effects) obtained from the conventional
population PK analysis implemented by NONMEM using the normal proportional residual
error model (left panel) and lognormal residual error model (right panel).
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Figure 2.
Dexmedetomidine (DEX) plasma concentration-time profiles for 3 subjects. The red empty
circles represent the observed DEX concentrations. Upper panel: The blue solid lines
represent the predicted concentrations from individual PK data fits by NONMEM and the
green dots are simulated values from the estimated model. Lower panel: The solid circles,
squares and triangles represent the posterior means of the individual predicted
concentrations obtained from Bayesian hierarchical nonlinear mixture model. The circles
represent data points classified as valid whereas the squares and triangles are classified as
artifactual outliers (the second and third component, respectively). Each point is filled with
color in proportion to the w1, the probability of being a valid concentration. The blue solid
lines represent the predicted concentrations from the model given the posterior means of
individual PK parameters. The 95% credible intervals are represented by thin gray vertical
lines.
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Figure 3.
A distribution of residuals obtained from the conventional population PK analysis with the
normal proportional residual error model is overlaid by a normal density curve (blue dashed
line). A three-component mixture density curve is represented by black solid line on the

right panel, which is defined by , where Q = 3, d1 = N(0, τ1), d2 = N(0, τ2) *
Ga(a, b), d3 = N(0, τ3) * NGa(c, d), w1 = 0.66, w2 = 0.24, w3 = 0.10, τ1 = τ2 = 0.09, τ3 = 9, a
= c = 1, and b = d = 0.2. These three components are separately presented by blue (d1), red
(d2) and green (d3) dashed lines, respectively, on the left panel.
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Figure 4.
The observed dexmedetomidine plasma concentrations versus the posterior means of the
predicted ones from Bayesian hierarchical nonlinear mixture model for the whole range (left
panel), and for the zoomed-in range of 0 – 4.5 ng/mL (right panel). The circles represent
data points classified as valid whereas the squares and triangles are classified as artifactual
outliers (the second and third component, respectively). Each point is filled with color in
proportion to the w1, the probability of being a valid concentration.
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Figure 5.
The posterior predictive distributions of T(yrep) along with T(y) represented by vertical lines
and the corresponding posterior predictive P–values. The discrepancy measures T(y) are the
first three largest order statistics (y(1), y(2), y(3)), the minimum (min(y)), the mean (mean(y)),
the standard deviation (sd(y)), and the three quartiles (Q1(y), Q2(y), Q3(y)).

Choi et al. Page 20

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
The posterior distributions of the difference in log clearances (log Cl) between intermediate
metabolizers (IM) and normal metabolizers (NM), and that between slow metabolizers (SM)
and NM from Bayesian hierarchical nonlinear mixture model (upper panel) and from
lognormal residual error model implemented in Bayesian framework (lower panel). The
posterior means and 95% credible intervals (CI) are also presented.
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Table 1

The estimates of model parameters.

Bayesian mixture Conventional lognormal Conventional normal

posterior mean (s.d.) mean (s.e.) mean (s.e.)

Cl 49.1 (4.1) 32.5 (4.2) 29.0 (3.7)

V 100.3 (32.5) 190 (38.6) 199 (37.5)

0.22 (0.06) 0.43 (0.16) 0.73 (0.17)

0.29 (0.24) 0.62 (0.22) 0.87 (0.20)

σ2 0.10 (0.002) 0.63 (0.15) 0.35 (0.06)

w1 0.69 (0.05) – –

w2 0.29 (0.04) – –

w3 0.02 (0.02) – –

a 1.07 (0.07) – –

b 0.25 (0.03) – –

c 5.82 (2.56) – –

d 3.31 (1.11) – –

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2012 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Choi et al. Page 23

Ta
bl

e 
2

Th
e 

re
su

lts
 fo

r s
im

ul
at

io
n 

st
ud

ie
s (
σ C

l =
 σ

V 
= 
σ 

= 
0.

2 
an

d 
w

2 =
 0

.1
).

Pa
ra

m
et

er
s

G
am

m
a

L
og

no
rm

al
D

os
e 

de
pe

nd
en

t

N
or

m
al

N
or

m
al

 p
ro

p.
N

or
m

al
N

or
m

al
 p

ro
p.

N
or

m
al

N
or

m
al

 p
ro

p.

C
l (

50
)

49
.9

 (4
6.

8,
 5

3.
1)

50
 (4

6.
4,

 5
3.

6)
50

.2
 (4

6.
9,

 5
3.

9)
49

.4
 (4

5.
5,

 5
3.

3)
50

.1
 (4

5,
 5

3.
9)

48
.6

 (4
3.

4,
 5

2.
8)

V 
(7

0)
69

.2
 (6

1.
2,

 7
9.

7)
69

.2
 (6

1.
2,

 7
8.

7)
70

.5
 (6

1.
7,

 7
9.

5)
70

 (6
1.

9,
 7

8.
4)

70
 (6

1.
1,

 8
0.

3)
70

.5
 (6

1.
4,

 7
9.

5)

σ C
l (

0.
2)

0.
21

 (0
.1

7,
 0

.2
7)

0.
22

 (0
.1

7,
 0

.2
7)

0.
22

 (0
.1

7,
 0

.2
7)

0.
22

 (0
.1

7,
 0

.2
8)

0.
22

 (0
.1

7,
 0

.7
1)

0.
23

 (0
.1

8,
 0

.7
4)

σ V
 (0

.2
)

0.
25

 (0
.2

, 0
.3

6)
0.

26
 (0

.2
, 0

.3
6)

0.
25

 (0
.2

, 0
.3

8)
0.

26
 (0

.1
9,

 0
.3

7)
0.

26
 (0

.2
, 0

.4
1)

0.
26

 (0
.2

, 0
.4

)

σ 
(0

.2
)

0.
2 

(0
.1

8,
 0

.2
2)

0.
17

 (0
.1

3,
 0

.2
1)

0.
2 

(0
.1

8,
 0

.2
3)

0.
15

 (0
.1

2,
 0

.1
9)

0.
2 

(0
.1

8,
 0

.2
2)

0.
16

 (0
.1

2,
 0

.2
)

w
1 (

0.
85

)
0.

85
 (0

.8
3,

 0
.8

7)
0.

8 
(0

.7
4,

 0
.8

5)
0.

85
 (0

.8
1,

 0
.8

7)
0.

76
 (0

.6
5,

 0
.8

3)
0.

85
 (0

.8
1,

 0
.8

7)
0.

77
 (0

.6
7,

 0
.8

3)

w
2 (

0.
1)

0.
09

 (0
.0

8,
 0

.1
1)

0.
11

 (0
.0

8,
 0

.1
6)

0.
1 

(0
.0

9,
 0

.1
1)

0.
12

 (0
.1

, 0
.1

5)
0.

1 
(0

.0
9,

 0
.1

)
0.

11
 (0

.1
, 0

.1
3)

w
3 (

0.
05

)
0.

06
 (0

.0
5,

 0
.0

7)
0.

08
 (0

.0
5,

 0
.1

4)
0.

05
 (0

.0
3,

 0
.0

9)
0.

12
 (0

.0
6,

 0
.2

3)
0.

05
 (0

.0
3,

 0
.0

9)
0.

12
 (0

.0
6,

 0
.2

2)

M
a  

(1
00

)
98

 (9
6,

 9
9.

1)
92

 (8
6.

3,
 9

5.
4)

96
.3

 (9
3.

3,
 9

8)
88

.6
 (7

7.
1,

 9
4.

9)
97

.1
 (9

2.
8,

 9
8.

9)
90

.1
 (7

8.
7,

 9
6)

a M
: P

er
ce

nt
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 m
em

be
rs

hi
p.

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2012 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Choi et al. Page 24

Ta
bl

e 
3

Th
e 

re
su

lts
 fo

r s
im

ul
at

io
n 

st
ud

ie
s (
σ C

l =
 σ

V 
= 
σ 

= 
0.

2 
an

d 
w

2 =
 0

.2
).

Pa
ra

m
et

er
s

G
am

m
a

L
og

no
rm

al
D

os
e 

de
pe

nd
en

t

N
or

m
al

N
or

m
al

 p
ro

p.
N

or
m

al
N

or
m

al
 p

ro
p.

N
or

m
al

N
or

m
al

 p
ro

p.

C
l (

50
)

49
.6

 (4
6.

6,
 5

3.
4)

50
.2

 (4
6.

4,
 5

4.
2)

50
.5

 (4
6.

9,
 5

4.
2)

50
 (4

6.
1,

 5
4.

2)
49

.6
 (4

1.
4,

 5
3.

7)
48

.3
 (3

9.
2,

 5
3.

1)

V 
(7

0)
68

.2
 (5

9.
8,

 7
9.

3)
67

.9
 (5

8.
1,

 7
8.

5)
70

 (6
0.

8,
 8

0.
5)

69
.5

 (6
0.

1,
 7

7.
8)

69
.6

 (6
0.

3,
 7

9.
6)

69
.8

 (5
9.

7,
 7

9)

σ C
l (

0.
2)

0.
21

 (0
.1

7,
 0

.2
7)

0.
22

 (0
.1

7,
 0

.2
7)

0.
22

 (0
.1

8,
 0

.2
8)

0.
22

 (0
.1

8,
 0

.3
1)

0.
23

 (0
.1

8,
 0

.8
9)

0.
24

 (0
.1

8,
 0

.9
1)

σ V
 (0

.2
)

0.
26

 (0
.2

1,
 0

.3
8)

0.
27

 (0
.2

1,
 0

.3
9)

0.
27

 (0
.2

1,
 0

.3
8)

0.
27

 (0
.2

, 0
.3

9)
0.

27
 (0

.2
1,

 0
.7

6)
0.

28
 (0

.2
, 0

.6
1)

σ 
(0

.2
)

0.
2 

(0
.1

8,
 0

.2
3)

0.
17

 (0
.1

3,
 0

.2
1)

0.
2 

(0
.1

8,
 0

.2
3)

0.
15

 (0
.1

1,
 0

.1
8)

0.
2 

(0
.1

8,
 0

.2
3)

0.
16

 (0
.1

2,
 0

.2
)

w
1 (

0.
75

)
0.

76
 (0

.7
3,

 0
.7

8)
0.

72
 (0

.6
5,

 0
.7

7)
0.

75
 (0

.7
1,

 0
.7

7)
0.

67
 (0

.5
9,

 0
.7

3)
0.

75
 (0

.7
, 0

.7
7)

0.
68

 (0
.5

9,
 0

.7
4)

w
2 (

0.
2)

0.
19

 (0
.1

7,
 0

.2
1)

0.
21

 (0
.1

7,
 0

.2
5)

0.
2 

(0
.1

8,
 0

.2
1)

0.
22

 (0
.2

, 0
.2

5)
0.

2 
(0

.1
8,

 0
.2

)
0.

21
 (0

.1
8,

 0
.2

3)

w
3 (

0.
05

)
0.

06
 (0

.0
5,

 0
.0

6)
0.

07
 (0

.0
5,

 0
.1

2)
0.

05
 (0

.0
3,

 0
.0

9)
0.

11
 (0

.0
6,

 0
.1

9)
0.

05
 (0

.0
3,

 0
.1

)
0.

11
 (0

.0
6,

 0
.2

)

M
a  

(1
00

)
96

.3
 (9

4.
3,

 9
8.

3)
90

.3
 (8

5.
7,

 9
3.

7)
95

.4
 (9

2.
6,

 9
7.

4)
89

.1
 (8

0.
1,

 9
3.

7)
97

 (9
1.

6,
 9

8.
6)

91
.1

 (8
2,

 9
6.

3)

a M
: P

er
ce

nt
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 m
em

be
rs

hi
p.

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2012 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Choi et al. Page 25

Ta
bl

e 
4

Th
e 

re
su

lts
 fo

r s
im

ul
at

io
n 

st
ud

ie
s (
σ C

l =
 σ

V 
= 
σ 

= 
0.

3 
an

d 
w

2 =
 0

.3
).

Pa
ra

m
et

er
s

G
am

m
a

L
og

no
rm

al
D

os
e 

de
pe

nd
en

t

N
or

m
al

N
or

m
al

 p
ro

p.
N

or
m

al
N

or
m

al
 p

ro
p.

N
or

m
al

N
or

m
al

 p
ro

p.

C
l (

50
)

49
.4

 (4
4.

5,
 5

5.
4)

51
 (4

4.
8,

 5
8.

2)
50

.9
 (4

5.
3,

 5
7.

2)
52

.2
 (4

5.
9,

 5
9.

5)
50

.1
 (4

1.
9,

 5
6.

7)
49

 (3
7.

7,
 5

6.
2)

V 
(7

0)
67

.9
 (5

0.
4,

 8
9)

66
.4

 (4
9.

4,
 8

5.
5)

70
.1

 (5
0.

8,
 9

1.
1)

69
.9

 (5
1.

9,
 8

6.
5)

70
.1

 (3
6.

9,
 9

1.
8)

68
.7

 (3
7.

1,
 8

8.
2)

σ C
l (

0.
3)

0.
3 

(0
.2

3,
 0

.4
1)

0.
32

 (0
.2

3,
 0

.6
1)

0.
31

 (0
.2

3,
 0

.4
4)

0.
32

 (0
.2

4,
 0

.4
2)

0.
34

 (0
.2

4,
 1

.0
1)

0.
36

 (0
.2

5,
 1

.0
2)

σ V
 (0

.3
)

0.
37

 (0
.2

6,
 0

.5
9)

0.
4 

(0
.2

6,
 0

.7
1)

0.
36

 (0
.2

7,
 0

.7
3)

0.
38

 (0
.2

5,
 0

.7
2)

0.
37

 (0
.2

6,
 1

.0
7)

0.
4 

(0
.2

6,
 1

.0
7)

σ 
(0

.3
)

0.
31

 (0
.2

7,
 0

.3
5)

0.
23

 (0
.1

6,
 0

.3
2)

0.
31

 (0
.2

6,
 0

.3
5)

0.
18

 (0
.1

3,
 0

.2
4)

0.
3 

(0
.2

6,
 0

.3
5)

0.
21

 (0
.1

5,
 0

.2
8)

w
1 (

0.
65

)
0.

66
 (0

.6
2,

 0
.7

)
0.

62
 (0

.5
4,

 0
.7

)
0.

64
 (0

.5
6,

 0
.6

9)
0.

55
 (0

.4
8,

 0
.6

1)
0.

65
 (0

.5
6,

 0
.6

8)
0.

57
 (0

.4
8,

 0
.6

4)

w
2 (

0.
3)

0.
28

 (0
.2

5,
 0

.3
2)

0.
3 

(0
.2

4,
 0

.3
6)

0.
3 

(0
.2

7,
 0

.3
3)

0.
35

 (0
.3

, 0
.3

9)
0.

3 
(0

.2
7,

 0
.3

1)
0.

32
 (0

.2
8,

 0
.3

5)

w
3 (

0.
05

)
0.

06
 (0

.0
4,

 0
.0

8)
0.

07
 (0

.0
4,

 0
.1

3)
0.

06
 (0

.0
3,

 0
.1

5)
0.

11
 (0

.0
5,

 0
.1

7)
0.

05
 (0

.0
2,

 0
.1

4)
0.

11
 (0

.0
5,

 0
.2

)

M
a  

(1
00

)
92

.6
 (8

9.
1,

 9
5.

1)
85

.1
 (7

9,
 8

9.
1)

91
.1

 (8
1.

5,
 9

4)
84

.3
 (7

6.
8,

 8
9.

7)
95

.1
 (8

5.
4,

 9
7.

1)
88

.4
 (7

9.
3,

 9
4.

3)

a M
: P

er
ce

nt
 o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 m
em

be
rs

hi
p.

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2012 October 1.


