

NIH Public Access

Author Manuscript

Int J Syst Evol Microbiol. Author manuscript; available in PMC 2011 September 28

Published in final edited form as: Int J Syst Evol Microbiol. 2007 August ; 57(Pt 8): 1677–1678. doi:10.1099/ijs.0.65248-0.

On the taxonomic status of the intracellular bacterium *Wolbachia pipientis*: should this species name include the intracellular bacteria of filarial nematodes?

Kenneth Pfarr¹, Jeremy Foster², Barton Slatko², Achim Hoerauf¹, and Jonathan A. Eisen³ ¹Institute for Medical, Microbiology, Immunology and Parasitology, University Clinic Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany

²Molecular Parasitology Division, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA

³UC Davis Genome Center, University of California, Davis, CA 95616, USA

The recent article by Lo *et al.* (2007) aiming to recognize the *Wolbachia* endobacteria of arthropods and filarial nematodes as *Wolbachia pipientis*, while admirable for attempting to codify the nomenclature in this field of research, may not address the stark differences of the endobacteria found in nematodes compared with the endobacteria found in arthropods.

Lo *et al.* (2007) propose that all endobacteria of arthropods and nematodes commonly called *Wolbachia* be formally declared as *Wolbachia pipientis*. Part of their reasoning is based on the difficulty of assigning the strains to monophyletic species due to the lack of an appropriate outgroup and the fact that to name arthropod strains after the species they infect would be unwieldy because of the huge number of arthropod species infected with these endobacteria (Lo *et al.*, 2007). This was the consensus reached at the 2004 international conference on *W. pipientis* (Heron Island, Australia, August 2004). However, in 2005, the genome of *Wolbachia* from the filarial nematode *Brugia malayi* (*w*Bm) was published (Foster *et al.*, 2005) and compared with the previously published genome of the *Wolbachia* in nematodes argues against including these endobacteria with those from arthropods as *W. pipientis*.

The *w*Bm genome is ~200 kb smaller than that of *w*Mel, resulting in fewer predicted proteins (Foster *et al.*, 2005). In addition to the difficulty in making phylogenetic trees without an appropriate outgroup, there is a high degree of recombination in arthropod strains, characteristic of horizontally transmitted bacteria, requiring multilocus strain typing for reliable identification (Baldo *et al.*, 2006). However, while *w*Mel has the genes necessary for recombination, prophage sequences that could facilitate recombination and promote exchange of genes or gene fragments and a high proportion of repetitive DNA elements (14.2 %) (Wu *et al.*, 2004), *w*Bm has no active system for DNA recombination and no prophages and a much smaller proportion of repetitive elements (5.4 %). As a result, *w*Bm shows no or little recombination (Jiggins, 2002). Despite the difficulties in making phylogenetic trees for *Wolbachia*, all trees consistently group the varied nematode *Wolbachia* together into supergroups C, D and F (Casiraghi *et al.*, 2005), with the phylogeny

Correspondence: Kenneth M. Pfarr (pfarr@parasit.meb.uni-bonn.de).

The names used in this manuscript are used within the context of general discussion as covered by Rule 28a of the 1990 revision of the *Bacteriological Code* and are not being formally proposed. As such, they do not meet any of the criteria required for valid publication of a name.

In addition to molecular evidence for nematode Wolbachia being different from the endobacteria in arthropods, evidence can be found by looking at the biology of these organisms. The first is that all adult worms in species infected with Wolbachia have the endobacteria. Besides a block in embryonic and larval development, adult worms die when the endobacteria are depleted with antibiotics (Taylor et al., 2005), i.e. they are mutualists rather than parasites. In contrast, not all members of an arthropod population are infected with Wolbachia, and the majority of these infections can be cured with antibiotics without adverse effects on the host. Second, horizontal transfer of Wolbachia in arthropods has been described in nature (Turelli & Hoffmann, 1991; Vavre et al., 1999), and stable infections of the endobacteria from one species to another have been performed in the lab using microinjection or natural mechanisms (Heath et al., 1999; Riegler et al., 2004). In contrast, microinjection of Wolbachia from the nematode Litomosoides sigmodontis into the Wolbachiafree nematode Acanthocheilonema viteae resulted in apparent replication of the endobacteria, but none were detected in the larvae released from these injected worms (Hartmann et al., 2003). Unfortunately, the endobacteria were not localized in the worms to see where they had established themselves – in cells or only in the body cavity. Attempts to infect Caenorhabditis elegans or insect cell lines with nematode Wolbachia that are then able to replicate have been unsuccessful (B. Slatko, unpublished results). This probably reflects the fact that the Wolbachia in nematodes are mutualists, and their hosts have become dependent on their endosymbionts for embryonic and larval development as well as adult survival (Pfarr & Hoerauf, 2006).

Furthermore, the significant phylogenetic distance of the hosts should also be considered. Arthropods and nematodes are in different animal phyla and are estimated to be separated by nearly a billion years of evolution (Wang *et al.*, 1999).

In summary, we have attempted to define several points that argue for a different species name for the *Wolbachia* in nematodes. Until the endobacteria in the genus *Wolbachia* are formally characterized, typed and named according to the *Bacteriological Code* (Lapage *et al.*, 1992), we believe that there is enough evidence to support naming, for purposes of discussion, the *Wolbachia* of supergroups C and D after a key host species in each supergroup, e.g. '*Wolbachia volvulus*' (*Onchocerca volvulus*) and '*Wolbachia malayi*' (*Brugia malayi*), respectively. The endobacteria of *Mansonella* spp., in *Wolbachia* supergroup F, which have both nematode and arthropod hosts, should remain *W. pipientis* until more study clarifies their phylogeny. By assigning different names to *Wolbachia* of the C and D supergroups, their unique biology and phylogeny will be better highlighted and the taxonomy of *Wolbachia* will be more in line with the biology of these fascinating bacteria.

References

- Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH. Multilocus sequence typing system for the endosymbiont *Wolbachia pipientis*. Appl Environ Microbiol. 2006; 72:7098–7110. [PubMed: 16936055]
- Casiraghi M, Favia G, Cancrini G, Bartoloni A, Bandi C. Molecular identification of *Wolbachia* from the filarial nematode *Mansonella ozzardi*. Parasitol Res. 2001; 87:417–420. [PubMed: 11403387]
- Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, Franceschi A, Bandi C. Mapping the presence of *Wolbachia pipientis* on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. Int J Parasitol. 2004; 34:191–203. [PubMed: 15037105]
- Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C. Phylogeny of *Wolbachia pipientis* based on *gltA*, *groEL* and *ftsZ* gene sequences: clustering of

Int J Syst Evol Microbiol. Author manuscript; available in PMC 2011 September 28.

arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the *Wolbachia* tree. Microbiology. 2005; 151:4015–4022. [PubMed: 16339946]

- Fenn K, Conlon C, Jones M, Quail MA, Holroyd NE, Parkhill J, Blaxter M. Phylogenetic relationships of the *Wolbachia* of nematodes and arthropods. PLoS Pathog. 2006; 2:e94. [PubMed: 17040125]
- Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, et al. The *Wolbachia* genome of *Brugia malayi*: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 2005; 3:e121. [PubMed: 15780005]
- Hartmann N, Stuckas H, Lucius R, Bleiß W, Theuring F, Kalinna BH. Transspecies transfer of Wolbachia: microinjection of Wolbachia from Litomosoides sigmodontis into Acanthocheilonema viteae. Parasitology. 2003; 126:503–511. [PubMed: 12866789]
- Heath BD, Butcher RD, Whitfield WG, Hubbard SF. Horizontal transfer of *Wolbachia* between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol. 1999; 9:313– 316. [PubMed: 10209097]
- Jiggins FM. The rate of recombination in *Wolbachia* bacteria. Mol Biol Evol. 2002; 19:1640–1643. [PubMed: 12200493]
- Lapage, SP.; Sneath, PHA.; Lessel, EF.; Skerman, VBD.; Seeliger, HPR.; Clark, WA. Bacteriological Code. Washington, DC: American Society for Microbiology; 1992. International Code of Nomenclature of Bacteria (1990 Revision).
- Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH, Bordenstein SR, Bandi C. Taxonomic status of the intracellular bacterium *Wolbachia pipientis*. Int J Syst Evol Microbiol. 2007; 57:654– 657. [PubMed: 17329802]
- Pfarr KM, Hoerauf AM. Antibiotics which target the *Wolbachia* endosymbionts of filarial parasites: a new strategy for control of filariasis and amelioration of pathology. Mini Rev Med Chem. 2006; 6:203–210. [PubMed: 16472187]
- Riegler M, Charlat S, Stauffer C, Mercot H. Wolbachia transfer from Rhagoletis cerasi to Drosophila simulans: investigating the outcomes of host–symbiont coevolution. Appl Environ Microbiol. 2004; 70:273–279. [PubMed: 14711652]
- Taylor MJ, Makunde WH, McGarry HF, Turner JD, Mand S, Hoerauf A. Macrofilaricidal activity after doxycycline treatment of *Wuchereria bancrofti*: a doubleblind, randomised placebocontrolled trial. Lancet. 2005; 365:2116–2121. [PubMed: 15964448]
- Turelli M, Hoffmann AA. Rapid spread of an inherited incompatibility factor in California *Drosophila*. Nature. 1991; 353:440–442. [PubMed: 1896086]
- Vavre F, Fleury F, Lepetit D, Fouillet P, Bouletreau M. Phylogenetic evidence for horizontal transmission of *Wolbachia* in host–parasitoid associations. Mol Biol Evol. 1999; 16:1711–1723. [PubMed: 10605113]
- Wang DY, Kumar S, Hedges SB. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci. 1999; 266:163–171. [PubMed: 10097391]
- Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, et al. Phylogenomics of the reproductive parasite *Wolbachia pipientis w*Mel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2004; 2:E69. [PubMed: 15024419]

NIH-PA Author Manuscript