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Abstract
A water soluble zinc(II) phthalocyanine symmetrically appended with eight thioglucose units was
synthesized from commercially available hexadecafluorophthalocyaninatozinc(II) by controlled
nucleophilic substitution of the peripheral fluoro groups. The photophysical properties and cancer
cell uptake studies of this nonhydrolyzable thioglycosylated phthalocyanine are reported. The new
compound has amphiphilic character, is chemically stable, and can potentially be used as a
photosensitizer in photodynamic therapy.
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Introduction
Free base phthalocyanines (Pcs) and their diamagnetic metallated complexes, e.g. Zn(II),
Al(III), Ga(III), can be efficient photosensitizers for photodynamic therapeutics (PDT)
because they can photosensitize the formation of singlet oxygen. Singlet oxygen is formed
upon energy transfer from the triplet excited state of the dye to ground state triplet
oxygen.1–4 Since red light penetrates deeper into tissues, Pcs can be more efficient PDT
agents than the well studied porphyrins because the electronic bands of Pcs in the red
spectral region are about two orders of magnitude stronger than the porphyrins. Pcs can be
extraordinary stable.5,6 Zinc metallophthalocyanines are of interest because of their high
triplet quantum yield and long triplet lifetimes.7 Long lived triplet states are advantageous
since this increases the probability of a diffusional encounter between the excited triplet
state of the photosensitizer and endogenous molecular oxygen. Significant research directed
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at improving the selectivity of the Pcs towards malignant tissues has resulted in limited
success because of poor solubility in physiological fluids.8

In general, amphiphilic porphyrinoid photosensitizers are taken up by cells and tissues better
than water soluble derivatives.9 Uptake and distribution are also a function of specific
targeting motifs appended to the dye, and degree of aggregation.6, 9 Appending ionic groups
on the Pc macrocycle such as sulfonic groups,10 quaternary amino or pyridinium
groups11, 12 makes them water soluble but the purification of these compounds can be a
problem. Neutral, polar Pcs can be prepared by attaching hydroxyl groups.13 Appending
carbohydrates to porphyrinoids is of great interest because: (1) these impart amphipathic
properties, and (2) many cancer cells over express carbohydrate receptors14 since they have
a greater metabolic rate.15 The increased levels of glucose uptake and glycolysis may
promote the uptake of glycosylated photosensitizers. There are examples of porphyrin-
carbohydrate conjugates,16–19 and of carbohydrate substituted Pcs.20–24 The Pc compounds
are generally prepared by cyclotetramerization of the glycosylated phthalonitrile, e.g. the
work of Ziegler and coworkers, including thioglycosylated Pc.24–30

In addition to the inherently stronger red absorption bands, several important considerations
distinguish the Pc from the porphyrins. Mono substitution of the four isoindoles results in a
mixture of four isomers.31 The nature and number of functional groups appended to any
position of the Pc macrocycle can have marked effect on the photophysical properties
because they are attached directly to the chromophore. There are also strong solvent and
aggregation effects on the electronic properties of Pcs.32 In contrast, the photophysical
properties are minimally affected in most glycol-porphyrin conjugates, which have the sugar
appended to the meso aryl moieties of tetraphenylporphyrin cores.33 The number and
position of functional groups on porphyrinoids has been discussed in terms of PDT effects.16

O-glycoside attached sugars can be hydrolysed off of conjugates enzymatically, by
lysosomal degradation,34, 35 and the decreased pH surrounding cancer cells and tissues due
to the Warburg effect.36 Therefore, non-hydrolysable attachments may be more effective as
therapeutics and for other applications.37, 38

Herein we report the facile, one pot, formation of a metallophthalocyanine appended with
non-hydrolysable thioglucose units (Fig. 1) that takes advantage of the different reactivities
of fluoro groups on the α and β positions. This work is the first example of base-promoted
substitution of phthalocyanines with thioglucose that takes advantage of the excellent
leaving group character of fluoride. This straightforward strategy allows commercially
available zinc perfluorophthalocyanine, ZnPcF16, to serve as a core platform to rapidly make
derivatives to assess the effectiveness of a broad array of biotargeting motifs for diverse
applications.

Though mixtures of compounds and/or isomers or atropisomers may have advantages in
terms of PDT, because each may partition or localize in different parts of a tissue or cell
resulting in oxidative damage at multiple sites, mixtures should be designed rather than
accidental. For Pcs, derivatives with 16 or eight substituents can be pure compounds without
isomers. The electronic absorption and luminescence properties of ZnPcF16 systematically
changes as the fluoro groups are replaced with thioglucose.39–41 We focus on the octa-
thioglycosylated compound since the remaining fluorine atoms can help protect the
chromophore from oxidation. The main objective of this work was to synthesize ZnPcGlc8
in reasonable yields, study the photophysical properties, and examine cancer cell uptake.

Results and Discussion
Figure 1 shows the synthetic route for the octathioglycosylated substituted ZnPcGlc8.
ZnPcF16 was treated under argon with 8.5 equivalents of thioglucose in presence of K2CO3
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as a base and dry THF as the solvent at 40–50 °C. After 48 hours another four equivalents of
thioglucose was added and the reaction continued for another 24 hours.42 The type of
solvent and the base used for this reaction play an important role. Complex reaction
mixtures and/or decomposition resulted when solvents such as diglyme or DMF were used
with bases such as diethylamine, triethylamine, pyridine, Na/MeOH, or tetrabutylammonium
hydroxide. The deprotection was done using a mixture of dichloromethane and methanol as
solvent and sodium methoxide; using a slight excess relative to the equivalents of acetate
moieties. Similar procedures using 4.5 equivalents of the thioglucose starting material yields
the four isomers of the tetraglycosylated Pc wherein each isoindole has one thioglusoce unit.
The water soluble Pc (1b) was purified by precipitation with water/methanol mixture. The
reactivity of the ZnPcF16 progresses from a single substituent on one β position on each
isoindole, to substitution of each β position, to substitution of the α positions. The
diminished reactivity with succeeding additions is due to both thermodynamic effects from
the exchange of a F atom for a S atom on the macrocycle, and kinetic effects from steric
hindrance.

The compounds were characterized by 1H, 13C, 19F NMR, UV-visible spectra and MALDI-
TOF. In the 1H NMR of compound 1a, the acetyl peaks appear at 1.90–2.34 ppm, and
resonances of the other protons of the carbohydrate units appear as two multiplets at 3.7–4.2
ppm and 5.2–5.5 ppm. The 1H NMR of compound 1b in DMSO-d6 is well resolved and
confirms the deprotection of the carbohydrate units. The resonances of the anomeric protons
appear as doublets between 5.2–5.6 ppm. The 13C NMR displays the typical chemical shifts
for Pcs but multiple resonances are observed near 125–132 ppm for the α position carbons
that remain coupled to the F atoms. The 19F NMR of the compound shows a singlet around
−109 ppm and disappearance of the peak at around −85 ppm indicating that the β-F atoms
are substituted by the thioglucose (Supplementary Materials).

The UV-visible spectra of compound 1b in different solvents are shown in Fig. 2. Notably,
the spectrum in DMSO shows defined peaks and no apparent aggregation, but the marked
decrease and broadening of the Q-band at 727 nm in both less polar solvents and phosphate
buffered saline (PBS) indicates significant aggregation of this compound.25 Similarly, there
is a gradual decrease and broadening of this Q band with increasing amounts of water in the
DMSO solution. The nearly 60 nm blue shift of both the Q bands and somewhat smaller
blue shift in the B bands in the optical spectra in these solvents indicates the ZnPcGlc8
aggregates are generally in a cofacial arrangement (H-aggregates).22,43 This aggregation
behavior has been observed with other glycosylated Pcs.1,13

The detailed photophysical data of ZnPcGlc8 was measured in dry DMSO, PBS, and 1:1
mixture solvent of DMSO:H2O and is summarized in Table 1. The UV-visible spectra of
ZnPcGlc8 are significantly different than the starting ZnPcF16 compound. The Q-band at
727 nm of ZnPcGlc8 is red shifted by ~55 nm compared to the 672 nm Q-band for ZnPcF16
and other ZnPc compounds (Supplementary materials). The systematic red-shift with
successive exchange of the F for the S attached to the macrocycle arises from the decrease in
the optical band gap as reported earlier.41

The organization and size of organic nanoparticles (aggregates) depends on a variety of
factors including concentration, solvent, mixing, and the architecture of the component
molecules.44 In PBS, dynamic light scattering (DLS) measurements shows two different
sized aggregate populations with diameters of 40±6 nm and 265±25 nm after shaking in 0.1
mM 1b. After sonication of this solution for about 15 minutes, the organic nanoparticles
reorganize to yield only particles that were 65±8 nm in diameter. The nanoparticle size and
organization affects the photophysical properties and cell uptake.
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An intense fluorescence emission for ZnPcGlc8 was observed at 740 nm in dry DMSO with
a 13 nm Stokes shift, which is consistent with other ZnPc derivatives.45–49 Because of self-
quenching in aggregates, the fluorescence is very weak in PBS, ethanol and a 2% solution of
DMSO in water used for the cell studies. The fluorescence decreases as water is added to a
DMSO solution such that it is almost completely quenched in 1:1 DMSO: water and
corresponds to the aggregation observed in the UV-visible spectra. Similar fluorescence
quenching due to aggregation was observed in toluene, ethanol, and ethyl acetate. The
solvent dependence of the photophysics of 1b impacts the observation of this compound in
breast cancer cells by fluorescence microscopy (see below).

The fluorescence quantum yield, ΦF was calculated to be 0.06 (Table 1). The low ΦF value
of the 1b compared to ZnPcF16 or ZnPc is due to both electronic and heavy atom effects
arising from replacing the F with S on the chromophore. The appended sugars may also
effect internal conversion. The fluorescence lifetime for the chromophore in DMSO was
measured to be 2.1 ns. These are consistent with other ZnPc derivatives.45–48

Photobleaching of the chromophore was measured by exposing a 5 μM solution of
compound in DMSO to sunlight with a power of about 60–95 W/m2. The photodegradation
was measured by taking UV-visible and emission spectra after different time intervals.
About 26 % of 1b decomposed after 5 minutes, and after 2 hours almost complete
photodegradation was observed. The photo-decomposition product(s) of the chromophore
were not explored.

Direct observation of 1O2 luminescence kinetics at 1270 nm after irradiation of ZnPcGlc8 at
532 nm in pH 7.4 D2O Tris buffer was done as previously described.49,50 The quantum yield
of 1O2 production (ΦΔ) was determined according to previously reported method52 in air-
saturated pH 7.4 D2O Tris buffer on a relative basis by steady-state photolysis. 5,10,15,20-
tetrakis(4-carboxyphenyl)porphyrin (TCPP) in pH 7.4 D2O Tris buffer and zinc(II)Pc
(ZnPc) in DMSO were used as references for excitation at 532 nm and 700 nm, respectively.
ΦΔ for TCPP in weakly alkaline solution is 0.53 and for ZnPc in DMSO is 0.67
(Supplementary materials). A phosphine, [2-
(dicyclohexylphosphino)ethyl]trimethylammonium chloride] in water, and 9,10-
dimethylanthracene (DMA) in DMSO were used as 1O2 traps. Measurement of phosphine
oxidation by 31P NMR, and DMA oxidation by 1H NMR allows the yield of 1O2 to be
calculated (Table 1). Since ΦΔ values are 0.42 ± 0.01 and 0.41 ± 0.01 with 532 nm and 700
nm excitation, respectively, sensitization comes from a common excited state.

The mechanism of cancer cell uptake of nonhydrolysable thioglycosylated porphyrinoids is
not well understood. Our hypothesis is that the glucose receptors on the cell surface bind the
chromophore, thereby increasing its concentration around the cell, but these are unable to
transport the large conjugate inside the cell. The amphipathic properties of the molecule
allow diffusion across the cell membrane. Additionally, nano-aggregates less than about 50
nm can be endocytosed into the cell.52 Fluorescence microscopy indicates that ZnPcGlc8 is
taken up by MDA-MB-231 breast cancer cells mostly as poorly fluorescent nano-aggregates
(Fig. 3) because initially small, diffuse spots are just visible. Four days after fixing, the cell
morphology remains, but the nanoparticles of ZnPcGlc8 have disaggregated; therefore the
fluorescence significantly increases. This indicated uptake of the dyes into these cells.

Non-hydrolysable thioglycosylated Pc from the commercially available ZnPcF16 core
platform can be made in high yields. The amphiphilic character of 1b, the cancer cell
targeting carbohydrate units, and the photonic properties enable potential therapeutic
applications. Other treatment modalities, e.g. photothermal with the Ni(II) complex,53 may
also be enabled by this molecular architecture. The chromophore was found to aggregate in
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water resulting in quenching of the fluorescent signal, but uptake and disaggregation in
breast cancer cells indicates this may be a viable strategy for new PDT agents.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Synthesis of ZnPcGlc8. (i) 8.5 eq. GlcAc4SAc, K2CO3 in THF at 40–50 °C for three days;
(ii) CH3ONa in CH2Cl2/CH3OH. The isolated yield of 1b = 72%. The α and β positions on
the phthalocyanine are indicated on the starting ZnPcF16.
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Figure 2.
UV-visible spectra of 2 μM ZnPcGlc8 in different solvents, from a 1 mM ZnPcGlc8 in
DMSO stock solution, indicating aggregation in most solvents.
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Figure 3.
MDA-MB-231 cells were incubated with 50 nM ZnPcGlc8 for 24 h, rinsed three times with
PBS buffer to remove unbound dye and fixed with 4% paraformaldehyde solution.
Fluorescence images were captured by exciting at 540–580 nm, magnification 20× under
identical conditions. (A) Just after preparation of the fixed cells slide, and (B) 4 day after
later. The contrast of each was enhanced by 40% for publication.
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