Table 1. Dimension Reduction Classifier Performance Summary.
Method | MCR | AUC | Spec | Sens | No. Components | Data set |
pls.lda (full) | 0.287 | 0.635 | 0.694 | 0.75 | 12 | Gaucher |
pls.rf (full) | 0.343 | 0.75 | 0.707 | 0.636 | 3 | |
pca.lda (full) | 0.231 | 0.992 | 0.779 | 0.794 | 17 | |
pls.lda (trimmed) | 0.115 | 0.823 | 0.859 | 0.918 | 7 | |
pls.rf (trimmed) | 0.171 | 0.919 | 0.852 | 0.821 | 7 | |
pca.lda (trimmed) | 0.046 | 0.992 | 0.918 | 0.995 | 6 | |
pls.lda.lung (full) | 0.196 | 0.889 | 0.778 | 0.837 | 5 | Lung cancer |
pls.rf.lung (full) | 0.225 | 0.85 | 0.764 | 0.794 | 6 | |
pca.lda.lung (full) | 0.2 | 0.897 | 0.756 | 0.85 | 9 | |
pls.lda (trimmed) | 0.199 | 0.881 | 0.79 | 0.819 | 5 | |
pls.rf (trimmed) | 0.232 | 0.841 | 0.751 | 0.794 | 6 | |
pca.lda (trimmed) | 0.217 | 0.88 | 0.741 | 0.83 | 17 | |
pls.lda.CRC (full) | 0.089 | 0.954 | 0.853 | 0.966 | 5 | Colorectal cancer |
pls.rf.CRC (full) | 0.113 | 0.951 | 0.88 | 0.896 | 8 | |
pca.lda.CRC (full) | 0.089 | 0.97 | 0.862 | 0.959 | 10 | |
pls.lda (trimmed) | 0.089 | 0.951 | 0.855 | 0.963 | 6 | |
pls.rf (trimmed) | 0.119 | 0.941 | 0.89 | 0.877 | 8 | |
pca.lda (trimmed) | 0.11 | 0.952 | 0.845 | 0.933 | 2 | |
pls.lda (full) | 0.26 | 0.478 | 0.7 | 0.784 | 8 | Ovarian cancer |
pls.rf (full) | 0.286 | 0.794 | 0.678 | 0.722 | 7 | |
pca.lda (full) | 0.315 | 0.777 | 0.627 | 0.757 | 17 | |
pls.lda (trimmed) | 0.159 | 0.914 | 0.807 | 0.811 | 3 | |
pls.rf (trimmed) | 0.191 | 0.897 | 0.818 | 0.81 | 9 | |
pca.lda (trimmed) | 0.157 | 0.931 | 0.787 | 0.892 | 5 |
The performance summary (MCR = Misclassification rate, AUC = Area under the curve, Sens = Sensitivity, Spec = Specificity, No. Components = the number of components used in the model) of each classifier for both the full dataset (“full”) and the trimmed dataset (“trimmed”) that underwent variable selection using a univariate moderated t-statistic. These are mean values based on 1000 bootstrap samples for each dataset except the OC data which used 200 bootstrap samples.