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Abstract: Confronting the efficacy of a regenerative therapeutic is the degenerative environment that is characterized by 

neuronal loss, physical plague and glial scar barriers and inflammation. But perhaps more fundamental from a regenera-

tive perspective, are changes in the biochemical milieu of steroid and peptide growth factors, cytokines and neurotrans-

mitter systems. Data from multiple levels of analysis indicate that gonadal steroid hormones and their metabolites can 

promote neural health whereas their decline or absence are associated with decline in neural health and increased risk of 

neurodegenerative disease including Alzheimer’s. Among the steroids in decline, is allopregnanolone (AP ), a neuroster-

oid metabolite of progesterone, which was found to be reduced in the serum [1,2] and plasma [3] and brain of aged vs. 

young subjects [4]. Further, Alzheimer disease (AD) victims showed an even further reduction in plasma and brain levels 

of AP  relative to age-matched neurologically normal controls [1,4,5]. Our earlier work has shown that AP  is a neuro-

genic agent for rodent hippocampal neural progenitors and for human neural progenitor cells derived from the cerebral 

cortex [6]. Our ongoing research seeks to determine the neurogenic potential of AP  in the triple transgenic mouse model 

of Alzheimer’s disease (3xTgAD) as AD related pathology progresses from imperceptible to mild to severe. Initial analy-

ses suggest that neurogenic potential changes with age in nontransgenic mice and that the neurogenic profile differs  

between non-transgenic and 3xTgAD mice. Comparative analyses indicate that AP  modifies neurogenesis in both non-

transgenic and 3xTgAD mice. Preliminary data suggest that AP  may modify Alzheimer’s pathology progression. To-

gether the data indicate that AP  may maintain the regenerative ability of the brain and modify progression of AD related 

pathology. Challenges for efficacy of regenerative agents within a degenerative milieu are discussed. 

INTRODUCTION 

 The concept of regenerating the brain from neural stem 
cells is at once captivating and daunting. Regeneration dur-
ing or following neurodegenerative disease, such as Alz-
heimer’s, requires that neural stem/progenitor cell prolifera-
tion, migration, differentiation, integration into neural cir-
cuits and ultimately function occur in a brain that has typi-
cally undergone a protracted process of degeneration. Con-
fronting the efficacy of a regenerative therapeutic is the de-
generative environment that is characterized by neuronal 
loss, physical plague and glial scar barriers and inflamma-
tion. But perhaps more fundamental from a regenerative  
perspective, are changes in the biochemical milieu of steroid 
and peptide growth factors, cytokines and neurotransmitter 
systems. A regenerative therapeutic strategy must address 
the challenge of regenerating neural circuits in various states 
of degeneration. The following concept paper describes chal-
lenges to sustaining neurogenesis during aging and Alz-
heimer’s, the changing milieu of regenerative agents, in par-
ticular neurosteroids, and the degenerative environment 
likely to be encountered by regenerative therapeutics. 
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MAINTAINING REGENERATIVE POTENTIAL OF 

THE BRAIN 

 The adult brain has two stable regions of mitotic activity, 
the subventricular zone (SVZ) of the lateral ventricle and the 
dentate gyrus subgranular zone (SGZ) of the hippocampus. 
These two mitotic zones retain regenerative potential 
throughout the life span [7,8]. While the regenerative poten-
tial of the mammalian brain is sustained throughout the life 
span, the magnitude of the proliferative efficacy of neural 
progenitors declines with age [9-11]. The decline in neuro-
genic potential is evident as early as middle age and is one of 
the early changes in the aging hippocampus [9]. Early neu-
rogenic decline is most likely due to an early decline in the 
concentration of neurotrophic factors, such as the steroids 
and peptides growth factors or a concomitant decline in re-
ceptor density or effector signaling [11-14].  

 Concomitant to the decline in neurogenesis in the aged 
and AD brain is the diminution in growth factors regulating 
neurogenesis [15-18]. The decrease in neurogenic growth 
factors appears to be a prime contributor to the reduced neu-
rogenic potential of SGZ [11,12,19]. Recent studies demons- 
trated that the average concentration of several peptide 
growth factors, FGF-2, IGF-1, and VEGF, each showed a 
>50-60%% decline in the middle age vs. hippocampal levels 
in young rat hippocampi [11,12,20]. In addition, deprivation 
of growth hormone induced a decreased number of young 
healthy neurons and slower rate of neural stem/progenitor  
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cell proliferation. Combined, these factors led to an accele-
rated decay of local circuits likely because the major source 
of these growth factors are secreted from the stem/progenitor 
cells in a para- or autocrine fashion [21,22].  

 Our recent findings [6,23] and those of others [21] indi-
cate that the neurosteroid allopregnanolone (AP , 3 -
hydroxy-5 -pregnan-20-one) is a proliferative factor that 
could regulate the regenerative capacity of the brain. The 
synthesis of the neurosteroids, progesterone, and its metabo-
lite AP  in brain, first identified by Baulieu, is now well 
established [24-27]. A region-specific expression pattern of 
progesterone converting enzymes, P450scc, 5  reductase, 
and 3  hydroxysteroid dehydrogenase, in brain is evident in 
both hippocampus and cortex [26-29]. Remarkably, the en-
zymes 5 -reductase and 3 -hydroxysteroid dehydrogenase, 
required to convert progesterone to its 3  metabolites, are 
present and functional in pluripotential progenitors [30,31].  

 Interestingly, AP  is produced within multipotential cells 
that also decline with age and disease. In the aged and AD 
brain, both the pool of neural stem cells (NSCs) and their 
proliferative potential are markedly diminished [2,32]. In 
parallel, AP  content is diminished in the brains of AD pa-
tients compared with age-matched controls [5,33]. AP , with 
a steroidal chemical structure and low molecular weight

 
of 

318, is a reduced metabolite of progesterone. During fetal 
development, AP  is synthesized throughout the embryonic 
period, is present in multipotential progenitor cells [21,30] as 
well as in neurons [34,35] and reaches its highest concentra-
tion in late gestation [36]. AP  also can be generated de 
novo in the CNS [37,38] independent of maternal supply and 
of the hypothalamic-pituitary-adrenal axis. 

 Several strategies for maintaining regenerative capacity 
of the brain are reasonable viable therapeutic approaches. 
First is a drug based neurogenic factor replacement therapy 
and second is a cell based approach to replace diminished 
stores of neural progenitors. These strategies are discussed 
below.  

CHALLENGES OF REGENERATIVE THERAPEU-

TICS FOR ALZHEIMER’S DISEASE 

 While the therapeutic potential of neural stem cells is 
great, so too are the challenges. AD is a diffuse degenerative 
disease with pathology and neuronal death occuring in 
multiple brain regions. Four regions within the AD brain 
show evidence of aberrant entry into the cell cycle predictive 
of neuronal loss the hippocampus, subiculum, locus co-
eruleus and dorsal raphe nucleus [39]. In addition to these 
sites, is the late stage neuron loss of cholinergic neurons 
likely due to the loss of trophic survival factors retrogradely 
transported from the hippocampus to cholinergic neurons of 
the nucleus of Maynert [40,41]. Adding to the spatial com-
plexity of neuronal loss is the phenotypic diversity of neu-
rons targeted for demise. The spatial and phenotypic diver-
sity of degeneration in AD predicts that a multipotent neural 
stem or progenitor cell population will be required for a re-
generative therapeutic efficacy.  

 In addition to the diversity of local and phenotype of de-
generating systems is the topographical landscape of the de-
generating terrain. The degenerative milieu of AD is charac-
terized by an increased number of neuritic plaques and neu-

rofibrillary tangles in the cerebral cortex [42]. The former 
(neuritic plaques) are composed of tortuous neuritic proc-
esses surrounding a central amyloid (A ) core. The later is 
characterized by the abnormal hyperphosphorylation and 
accumulation of tau protein in neurons and, less commonly, 
in astrocytes. The neurofibrillary tangles, formed by abnor-
mal hyperphosphorylated tau, are frequently seen AD brain 
and accompanied by neuronal loss and gliosis [43]. Although 
the presence of increased numbers of neuritic plaques and 
neurofibrillary tangles in neocortex is necessary for a diag-
nosis of AD, they are also found in the hippocampus, which 
induce the dysfunction and loss of hippocampal neurons 
[44,45]. Inflammation also plays an important role in patho-
genesis of neurodegenerative disorders including AD [46, 
47]. In AD brains, compacted A  plaques are often associ-
ated with activated astrocytes and microglia and a variety of 
cytokines and other inflammatory proteins secreted by acti-
vated astrocytes or microglia, including Clq, C3, C9, C3d, 
and C4d, which are found in brains from human AD patients 
and mouse models of AD [48-50]. Thus, the regenerative 
stem cell population must survive and traverse a landscape 
riddled with degenerative debris and replete with a bio-
chemical cauldron of inflammatory, cellular stress and de-
fense molecular signaling (see Fig. 1). 

 Last but not least, is the disturbing finding from multiple 
laboratories indicating that ectopic entry into the cell cycle is 
an early marker of AD and predicts the cells that will meet 
an untimely death. Cell cycle gene expression in neural pro-
genitor cells is an obligatory requirement for neurogenesis 
and ultimately regeneration. However, neurons within the 
cortex and hippocampus can aberrantly reenter the cell cycle 
[51-53] and ectopically express cell cycle proteins [54,55]. 
Most disturbing of all, Herrup and colleagues found that cell 
cycle events precede neuronal death in the cortex and CA3 
regions at all stages of AD, from MCI to late stage AD and 
within AD mouse models [52,53]. Expression of the ectopic 
cell cycle proteins ultimately predicts the demise of these 
neurons [52,53]. Further support for the aberrant entry into 
the cell cycle and cell death in AD are findings indicating 
that mutants of APP known to cause familial AD also lead to 
apoptosis and DNA synthesis [56-59]. These findings are 
especially challenging for therapeutics targeting regenerative 
potential of endogenous neural stem / progenitor populations 
as an unintended side effect may be to promote ectopic entry 
of neurons into the cell cycle and thereby exacerbate neuron 
demise. 

AP  AS A REGENERATIVE FACTOR TO PROMOTE 

FUNCTIONAL NEUROGENESIS AND DIMINISH 

ALZHEIMER’S PATHOLOGY 

 Recently, we demonstrated that AP  promoted in vitro 
proliferation of human and rat neural progenitors and mouse 
hippocampal neurogenesis in vivo in a dose dependent and 
steroid specific manner [6]. The proliferative effect of AP  
we observed in rat hippocampal neural progenitor cells and 
human cerebral cortical neural progenitor cells in vitro [6], 
was also observed in rodent cerebellar granule cells which 
also undergo proliferation during development [60]. AP  
induced neural progenitor proliferation ranged from 20-30 % 
in the rodent neural progenitor cells to 37-49% in the human 
neural stem cells [6]. The efficacy of AP  as a neurogenic
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Fig. (1). Neurodegenerating hippocampal neuron and circuit in the presence of  amyloid and distribution of beta amyloid-induced 

hotspots for intracellular calcium rise. Cultured hippocampal neurons were exposed to beta amyloid (A , 4 μm) and neuron imaged over 

12 hours. (DIC images in the right). Fluorescent calcium imaging indicates an intense rise in intracellular calcium that the cell body that is 

sustained over the course of 90 minutes and proceeds the loss of plasma membrane integrity as manifested by cell body ballooning apparent 

at bottom left of cell body. In DIC images in the right column, degeneration is morphologically apparent 13:30 with the ballooning of the cell 

body. At 20:00 hr intracellular calcium has declined and the neurodegeneration of both the cell body and neurites is apparent. These observa-

tions suggest that the prolonged intracellular rise in calcium induced by A  is an event coupled to degeneration and is likely to be the cause of 

degeneration in A -exposed neurons.  

factor was comparable to that induced by bFGF + heparin 
[6]. Our analyses demonstrating that AP  increased BrdU 
incorporation are consistent with gene array and real time 
RT-PCR data. AP  increased expression of genes that pro-
mote transition through the cell cycle and proliferation, such 
as cyclins and CDKs including CDC2, cyclin B and PCNA. 
Correspondingly, AP  down regulated the expression of 

genes involved in inhibition and degradation of CDKs and 
cyclins, such as CDK4 and CDK6 inhibitor P16, P18, cullin 
3 and ubiquitin-activating enzyme E1(Ube1x), enzymes that 
are required for ubiquitination of mitotic cyclins and pro-
mote exit from the cell cycle. Consistent with AP -induced 
cell cycle gene expression and BrdU incorporation, AP  
increased total cell number. AP -induced neurogenesis was 
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a dose dependent process with concentrations within the low 
to mid 10

9-7 
range promoting proliferation while concentra-

tions in excess of 10
6
 significantly inhibiting neurogenesis. 

In immature rat cerebellar granular cells AP  induced ~ 20% 
increase in thymidine incorporation and a 20-30% increase 
of PSA-NCAM positive progenitor proliferation derived 
from rat brain [21,60]. Together, these data indicate that 
AP  can promote neurogenesis of neural progenitor cells 
derived from multiple sites and diverse phenotypes.  

 To determine whether our in vitro findings were recapitu-
lated in vivo, we used the triple transgenic Alzheimer’s dis-
ease (3xTgAD) mouse, developed by Dr. Frank LaFerla, as 
both a model of AD pathology and as an animal model for 
assessing therapeutic efficacy. The 3xTgAD mouse pos-
sesses mutations in three genes linked to AD and frontotem-
poral dementia [44,45,61-63]. This mouse model develops 
age and pathology dependent synaptic dysfunction, Aß 
plaque and neurofibrillary tangle pathologies as well as the 
accompanying astrocytic response (GFAP increased around 
plaque) [61,64-66]. There are several advantages to this 
model. First, the tight APP and tau linkage paired with the 
'knock in' PS1 approach yielded homozygous mice. Second, 
and more importantly, the 3xTg-AD mouse exhibits an age-
related neuropathological phenotype that includes both intra-
cellular an extracellular A  deposition and hyper-phos-
phorylated tau pathologies that develop in an age-dependent 
fashion with a regional pattern similar to AD. Specifically, 
A  accumulates first intracellularly and then extracellularly 
in cortical regions and in hippocampus while tau hyper-
phosphorylation develops after A  accumulation (between 
12-15 months) beginning in limbic structures and progress-
ing to cortical regions [61]. Confirming and characterizing 
the in vivo neurogenenic effects of AP  on this animal 
model will create the foundation upon which we will inves-
tigate the relationship between the AP -induced neurogene-
sis and associated behavior as well as regulation of AD pa-
thology.  

 Our preliminary in vivo analyses suggest that AP  can 
increase BrdU incorporation in 3xTgAD mouse SGZ [23,67] 
as well as the SVZ [23,67]. Our initial analyses were con-
ducted in 3 month old 3xTgAD mice prior to the appearance 
of pathology associated with AD in these mouse (see Figs. 2 
and 3). At later ages, AP  also significantly reduced the level 
of A  in the CA1 region in 6-month-old-male mice after a 
treatment for 3 months. Phospho-tau in the CA1 region in 9-
month-old males was reduced following acute treatment 
AP  treatment.  

 Mechanistically, AP  is a potent and stereoisomer spe-
cific allosteric modulator of the GABA chloride channel 
complex and in neural progenitor cells increases conductance 
through the channel which can be protective against seizure 
activity [6]. In neural progenitor cells, the high intracellular 
chloride content leads to an efflux of chloride through the 
GBRC, depolarization of the membrane and opening of L-
type voltage dependent Ca

++
 channels [6]. AP  transiently 

increased the intracellular calcium concentration in both rat 
and human neural progenitor cells. The AP -induced rise in 
intracellular calcium was blocked by GABAAR inhibitors, 
bicuculline and picrotoxin as well as the L-type calcium 
channel antagonist, nifedipine. In parallel to the antagonism 

of intracellular calcium concentration, nifedipine also 
blocked AP -induced cell proliferation [6,68].  

 Our preliminary findings suggest that AP  also reduces 
AD pathology burden. This finding is consistent with the 
findings of Mellon and colleagues who reported that AP  
induced significantly delayed progression of disease in a 
mouse model of Niemann-Pick C disease [69-71]. Niemann-
Pick C disease is an irreversible inherited neurodegenerative 
disorder involving a deficient intracellular cholesterol and/or 
ganglioside traffics [72,73]. Mutations in either the Nie-
mann-Pick C1 or Niemann-Pick C2 gene encodes dysfunc-
tional proteins which lead to abnormal binding and 
movement of cholesterol and lipids within cells and accumu-
lation of unesterified cholesterol within lysosomes and the 
Golgi apparatus [74-76]. In young animals, either single or 
multiple injections of AP  protected cerebellar Purkinje 
cells from degeneration and increased animal life span. Less 
improvement was observed at older ages of Niemann-Pick 
C1

–/–
 mouse that had disrupted neurosteroidogenesis [70]. 

Langmade, Gale, and colleagues reported that the AP -
induced a delay in progression of pathology and enhanced 
survival of Niemann Pick C mice was through a pregnane X 
receptor receptor-mediated mechanism. The pregnane X 
receptor (PXR) is a nuclear receptor that binds to various 
ligands, regulating the breakdown of drugs in the human 
body. PXR is activated by a large number of endogenous and 
exogenous chemicals including steroids, antibiotics, antimy-
cotics, bile acids, and herbal antidepressants. One of the pri-
mary functions of PXR activation is the induction of 
CYP3A4, an important enzyme responsible for the 
metabolism of many drugs. Mechanistically, AP  activation 
of the PXR receptor, leading to an increase in the cyto-
chrome P450 enzyme CYP3A13, suggests a novel mecha-
nism of AP  neuroprotection that brings the benefits of 
"liver" detox to the brain. Therapeutically, activating “liver-
type” detoxification in brain may be a broad-spectrum stra-
tegy for promoting neurological health and defense against 
neurodegenerative insults. 

THERAPEUTIC POTENTIAL OF AP  HAS A RE-
GENERATIVE FACTOR 

 Unlike large molecular weight growth factors, such as 
FGF and neurotrophins, which do not readily pass the blood 
brain barrier and induce untoward side effects in humans 
[77], AP  with a steroidal chemical structure, 3 -hydroxy-
5 -pregnan-20-one, and low molecular weight of 318.49, 
easily penetrates the blood brain barrier. Our discovery that 
AP  is a proliferative agent for neural progenitor cells in 
vitro and in vivo suggests that AP  could act to promote 
proliferation in the AD brain. Further, the very preliminary 
finding that AP  could delay or diminish AD pathology bur-
den suggests that AP  could be a multifaceted regenerative 
therapeutic to both promote the mechanisms of cellular re-
generation while diminishing the degenerative barriers to 
regeneration.  

 A neurodegenerative disease that may serve as an initial 
proof of concept for neural stem cell mediated regeneration 
is Parkinson’s disease. Compared to AD, neurodegeneration 
in Parkinson's disease is more tractable, as degeneration of a 
specific type of neuron in a specific locale, dopaminergic
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Fig. (2). Age dependent AD pathology development in 3xTgAD mouse hippocampal CA1. 3xTgAD mouse were perfused and sampled at 

different ages as indicated. The mouse brain sections were immunostained with anti-Amyloid  antibody and observed with peroxidase-DAB. 

The results indicated an age-dependent development of A  pathology in CA1 of the mouse hippocampus. At 3 months, cellular A  IR is 

barely visible. At 6, 9 and 12 months, intracellular A  IR intensity increased with age. Extraneuronal A  IR was observed rarely in 9 month 

old 3xTgAD hippocampi but was consistently present in hippocampus of 12- month-old 3xTgAD mice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Beta amyloid and ptau expression in six month old 3xTgAD male mouse CA1 region of hippocampus. 3xTgAD mice were 

perfused with PBS and fixed in 4% PFA for 16 hours. Mouse brain hemispheres were embedded and were sectioned to 40 μm slices. A  IR 

was primarily localized neuronal cell bodies. Phosphotau was labeled with a phospho-tau specific antibody. Insert = high magnification.  
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neurons in the substantia nigra, occurs. The most successful 
clinical example for using progenitor cell or embryonic tis-
sue to combat neurodegenerative disease is the implantation 
of embryonic fetal mesencephalic tissue into a cavity of 
Parkinson's disease patient’s caudate nucleus. Results of 
these trials indicate different magnitudes of benefit that re-
mained apparent at 5 -10 years following cell implants [78-
82]. 

 Our therapeutic approach would be to forego cell im-
plants for promoting endogenous proliferation of neural pro-
genitor cells within the brain, which, although in low abun-
dance, could be induced to proliferate. Moreover, we advo-
cate a small molecule approach, rather than large molecular 
weight peptide growth factors which are unlikely to cross the 
blood brain barrier. Thus far, AP  appears to be a promising 
regenerative therapeutic candidate for promoting cellular 
regeneration in a neurodegenerative disease that requires 
regeneration in multiple sites and of multiple neural pheno-
types and for diminishing the degenerative pathology bur-
den. Our future work will pursue these issues. 
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