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Abstract
This Letter describes the synthesis and SAR, developed through an iterative analogue library
approach, of an mGluR4 positive allosteric modulator lead based on a pyrazolo[3,4-d]pyrimidine
scaffold. Despite tremendous therapeutic potential, Compound 7, VU0080421, and related
congeners represent only a handful of mGluR4 positive allosteric modulators ever described.

Glutamate is the major excitatory neurotransmitter in the central nervous system, exerting its
effects through both ionotropic and metabotropic glutamate receptors. The metabotropic
glutamate receptors (mGluRs) are members of the GPCR family C, characterized by a large
extracellular amino-terminal agonist binding domain. To date, eight mGluRs have been
cloned, sequenced and assigned to three groups (Group I: mGluR1 and mGluR5; Group II:
mGluR2 and mGluR3; Group III: mGluRs 4,6,7,8) based on their sequence homology,
pharmacology and coupling to effector mechanisms.1 The Group III mGluRs are the least
explored and characterized of the mGluRs, but despite this fact, mGluR4 has garnered a
great deal of attention as a therapeutic target for multiple indications.2

The reason for the slower pace of development within Group III mGluRs concerns the
availability of ligands.2,3 Most pharmacological studies employ prototypical Group III
agonists such as L-(+)-2-amino-4-phosphonobutryic acid, L-AP4, 1 or functionalized
carboxyphenylglycines 2, which have limited CNS penetration (Fig. 1).4 A major
breakthrough in the field occurred when Maj and co-workers reported on the discovery of
(−)-PHCCC 3, the first mGluR4 positive allosteric modulator (PAM), derived from the
mGluR1 negative allosteric modulator (NAM) (−)-CPCCOEt 4.5 (−)-PHCCC possesses an
EC50 of 4.1 µM, with a 5.5-fold leftward shift of the glutamate response curve and
selectivity versus mGluRs 2, 3, 5, 6, 7, 8.5,6 However, (−)-PHCCC is a partial antagonist
(30%) of mGluR1.
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SAR for (−)-PHCCC is very ‘flat’, with virtually any chemical modifications resulting in a
complete loss of mGluR4 PAM activity (Fig. 2), a finding common with several series of
mGluR PAMs.7–10 Despite this, (−)-PHCCC has been a very important proof of concept
(POC) compound demonstrating a therapeutic role for selective mGluR4 activation in
Parkinson’s disease,6,11 anxiety,12 depression,13 neuroprotection14 and oncology.15

In all of these pioneering POC experiments, PHCCC was either administered through
intracerebroventricular injection (icv) or by employing toxic 50% DMSO vehicles which
disrupt the blood-brain barrier, as PHCCC possesses poor physiochemical properties and
limited brain penetration.6,11–15 In order to advance this field, new mGluR4 PAMs are
required with improved efficacy, physiochemical properties and novel molecular
architectures. In this Letter, we describe the discovery and SAR of a novel mGluR4 PAM,
based on a pyrazolo[3,4-b]pyrimidine scaffold, derived from an HTS campaign.

Our mGluR4 PAM HTS identified three pyrazolo[3,4-d]pyrimidines that afforded a
concentration-dependent potentiation of an EC20 of glutamate in mGluR4/Gqi5 CHO cells
(Fig. 3).7 When HTS stocks were evaluated with full concentration-response curves, 7, 1-
(2,4-diphenyl)-4-(3-methylpiperdin-1-yl)-1H-pyrazolo[3,4-d]pyrimidine, was a stand-out
compound with an EC50 for potentiation of 4.6 µM while having no effect on mGluR4 in the
absence of glutamate (Fig. 4).16

Additionally, 7 was superior to PHCCC in terms of fold-shift of the glutamate
concentration-response curve. As shown in Figure 5, PHCCC induces a 5.5-fold leftward
shift of the glutamate response curve with an elevation in the glutamate max, whereas 7
elicits a 27.2(±8.5)-fold shift with no increase in the glutamate max. Compound 7 was
selective versus mGluR5, but was a full antagonist of mGluR1 (IC50 = 2.6 µM). This
finding was surprising since PHCCC was derived from a series of mGluR1 antagonists (the
(−)-CPCCOEt 4 series), it was not surprising that 3 was a 30% partial antagonist of
mGluR1, but 7 is structurally unrelated. It is possible that PHCCC and 7 share a common
allosteric binding site on mGluR4 that is also conserved in mGluR1, but in the absence of
radioligands for mGluR4, this issue will have to be addressed at a later time.

With a bona fide novel mGluR4 PAM lead in hand, we employed an iterative analogue
library synthesis approach to rapidly evaluate SAR for 7. Despite HTS stocks of 7
confirming structure and purity, re-synthesis of 7 (VU0080241) resulted in a compound with
slightly lower potency and a less robust fold shift (EC50 ~ 5 uM, fold shift 11.8±3.3, Table
1); however, VU0080241 still represents an improvement over PHCCC. In light of the ‘flat’
SAR observed by ourselves and others in the field with PHCCC,5–7 we initially synthesized
multidimensional diversity libraries to determine the scope and breadth of the SAR.
However, classical synthetic approaches to pyrazolo[3,4-d]pyrimidines yields were typically
moderate (<50%) with prolonged reaction times at high temperatures (multiple steps
requiring >48 h at reflux).17 As recently reported, we have developed a rapid, high yielding
and general microwave-assisted approach to access diverse pyrazolo[3,4-d]pyrimidines, and
this expedited protocol was employed to produce analogues of VU0080421 (Scheme 1).18

The synthesis began by reacting 2-(ethoxymethylene)malononitrile 8 with seven
arylhydrazines under microwave irradiation to deliver 5-amino-1-aryl-1H-pyrazole-4-
carbonitriles 9. The nitrile analogues 9 were then hydrolyzed with H2SO4 to produce the
corresponding 5-amino-1-aryl-1H-pyrazole-4-carboxamides 10. A microwave-assisted
condensation employing carboxamides 10 in neat formamide smoothly afforded the
corresponding analogous 1-aryl-1H-pyrazolo[3,4-d]pyrimidines 11. MAOS conditions
(POCl3, DMF, 120 °C, 45 min, mw) were used for the conversion to the chloro congeners,
which were then subjected to a microwave-assisted SNAr reaction to provide the final
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analogues 12 based on HTS lead 7, VU0080421.19 In short order, over 126 analogues 12 (7
arylhydrazines × 18 amines) were prepared and evaluated as mGluR4 PAMs (Fig. 6).

As in the case of PHCCC, analogues 12 of VU0080241 were uniformly inactive on mGluR4
with only the parent HTS lead 7, the re-synthesized VU0080421 and four other analogues
(12a–12d) showing any activity as mGluR4 PAMs. SAR for this series was ‘flat’ with only
a 3.9% active rate. With one exception (12c, containing a 2-chlorophenyl group), the 2,4-
dimethylphenyl moiety (6, 7, 12a, 12b, 12d) was required for activity, and little diversity
was tolerated with respect to the nature of the NR1R2 moiety. As shown in Table 1,
analogues 12 lost efficacy, EC50s ≥ 10 µM, but provided robust leftward shifts of the
glutamate response curve 2.4- to 9.9-fold. One explanation for the ‘flat’ SAR is that the
allosteric binding sites which VU0080421 and (−)-PHCCC occupy are very shallow, similar
to the second, non-MPEP, allosteric binding site on mGluR5 that CPPHA occupies.8,9 In
addition, in vitro DMPK studies identified stability issues with VU0080241. Importantly,
VU0080241 was found to be unstable in fortified liver microsome preparations, with only
9% of the parent compound remaining after 90 minutes.

Despite the disappointing SAR and microsomal instability, VU0080421 (7) represents a
significant advance in the mGluR4 PAM field. VU0080421 (7) possesses a large 11.8- to
27.2-fold shift, the largest we have observed for an mGluR PAM, and it does not contain the
oxime or amide NH moieties that are speculated to contribute to the observed lack of brain
penetration for PHCCC in vehicles other than DMSO. Moreover, VU0080421 represents a
novel chemotype for a PAM of mGluRs and is one of only a handful of reported PAMs of
mGluR4. Further refinements to VU0080241 and related series of mGluR4 PAMs are in
progress and will be reported in due course.
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19. Experimental for the Synthesis of VU0080241, 7: 2,4-Dimethylhydrazine hydrochloride was
partitioned between 2M sodium hydroxide solution and dichloromethane. The organic layer was
separated, dried and reduced under vacuum to give the free hydrazine (1.90 g, 14 mmol). The free
hydrazine and ethoxymethylenemalononitrile 8 (1.70 g, 14 mmol) in ethanol were irradiated at
105°C for 10 min by microwave. The crude product was recrystallized from ethanol to yield a
yellow solid product 9 (2.30g, 77%). 1H NMR (CDCl3, 400 MHz) δ (ppm) 7.59 (s, 1 H), 7.17 (s, 1
H), 7.13 (s, 1 H) 7.12 (s, 1 H), 4.47 (s, 2 H), 2.38 (s, 3 H), 2.07 (s, 3 H); 13C NMR (CDCl3, 100
MHz) δ (ppm) 150.51, 140.93, 140.59, 136.20, 132.27, 132.20, 127.85, 127.28, 114.34, 74.35,
21.13, 17.13; LCMS, single peak, 2.57 min, m/e, 213.95 (M+1); Compound 9 (4.6g, 21.7mmol)
was then treated with concentrated H2SO4 (30ml) at 0°C. The reaction mixture was stirred at room
temperature for 1 hour then quenched with ice. The solution was neutralized with aqueous
NH4OH and filtered to provide yellow solid product (4.77g, 95%); A suspension of 5-amino-1-
(2,4-dimethylphenyl)-1H-pyrazole-4-carboxamide 10 (2.30 g, 10 mmol) in formamide was
irradiated at 200°C for 20min by microwave. The cooled solution was diluted with water. The
product was filtered, washed with water and dried over in vacuo to afford a gray solid 1-(3,5-
dimethylphenyl)-1H-pyrazolo[ 3,4-d]pyrimidin-4-ol 11 (2.18g, 91%). 1H NMR (DMSO, 400
MHz) δ (ppm) 8.27 (s, 1 H), 8.03 (s, 1 H), 7.23 (d, J = 7.6 Hz, 2 H), 7.23 (d, J = 7.6 Hz, 1 H), 2.35
(s, 3 H), 1.99 (s, 3 H); 13C NMR (CDCl3, 100 MHz) δ (ppm) 157.75, 153.10, 148.85, 139.28,
135.85, 135.02, 134.39, 131.73, 127.91, 127.40, 106.42, 21.07, 17.74; LCMS, single peak, 2.36
min, m/e, 242.96 (M+1); A suspension of 1-(2,4-dimethylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-
ol 11 (2.36 g, 9.82 mmol) and POCl3 (3ml) in dichloroethane (7 mL) was irradiated at 120 °C for
45 min by microwave. The solvent was removed in vacuo to yield gray solid product. To a
solution of 4-chloro-1-(3,5-dimethylphenyl)-1H-pyrazolo[3,4-d]pyrimidine (2.32 g, 9 mmol) and
3-methylpiperidine (3.76 g, 27 mmol) in DMF (24 mL) was added triethylamine (3.16 mL, 27
mmol) at room temperature. The reaction mixture was irradiated in microwave at 90 °C for 15min.
The cooled solution was treated with water to provide yellow solid VU 0080241 (7), 1-(2,4-
dimethylphenyl)-4-(3-methylpiperidin-1-yl)-1H-pyrazolo[ 3,4-d]pyrimidine (2.67 g, 84%). 1H
NMR (CDCl3, 400 MHz) δ (ppm) 8.35 (s, 1 H), 8.12 (s, 1 H), 7.24 (d, J = 8.0 Hz, 1 H), 7.17 (s, 1
H), 7.13 (d, J = 8.0 Hz, 1 H), 4.66 (s, 2 H), 3.21 (t, J = 11.6, Hz, 1 H), 2.86 (t, J = 11.6, Hz, 1 H),
2.38 (s, 3 H), 2.17 (s, 3 H), 1.98-1.60 (m, 4 H), 1.35-1.24 (m, 1 H), 1.03 (d, J = 6.4 Hz, 3 H); 13C
NMR (CDCl3, 100 MHz) δ (ppm) 155.83, 155.20,153.82, 140.04, 135.09, 133.61, 133.00, 132.08,
127.50, 127.22, 113.81, 33.06, 31.26, 25.18, 21.21, 21.18, 19.12, 17.88; LCMS, single peak, 2.87
min, m/e, 322.12 (M+1)
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Figure 1.
Chemical structures of orthosteric mGluR4 agonists L-AP4 (1), functionalized
phenylglycines (2) and the mGluR4 PAM (−)-PHCCC (3) which was derived from the
mGluR1 NAM (−)-CPCCOEt (4).
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Figure 2.
Chemical modifications and the resulting ‘flat’ SAR for (−)-PHCCC.
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Figure 3.
Concentration-dependent potentiation of glutamate in mGluR4/Gqi5 CHO cells by
pyrazolo[3,4-d]pyrimidine compounds 5, 6 and 7 in the high throughput screening campaign
(HTS).
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Figure 4.
Compound 7, potentiates mGluR4 activation by glutamate. In the absence of glutamate, 7
does not activate mGluR4. In the presence of an EC20 concentration of glutamate, 7 caused
a concentration-dependent potentiation of mGluR4 with an EC50 for potentiation of 4.6 µM,
equivalent to PHCCC, EC50 ~ 4.1 µM.5,6 Data represents the average of at least three
independent determinations.
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Figure 5.
Both PHCCC (3) and 7 shift the glutamate agonist response curves to the left 5.5- and 27.2
(±8.5)-fold, respectively at 30 µM (EC50 shifts from 7.5 ± 1.6 µM to 317 ± 100 nM).
Interestingly, PHCCC increases maximal response whereas 7 affords no increase in the
glutamate max, akin to other mGluR5 PAMs reported from our labs.7
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Figure 6.
Monomers employed in the diversity library of pyrazolo[3,4-d]pyrimidines 12 (7
arylhydrazines × 18 amines) based on HTS lead 7, VU0080421. Monomers in boxes
indicate that they produced analogues 12 that potentiated an EC20 of glutamate in mGluR4/
Gqi5 CHO cells.
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Scheme 1.
Reagents and conditions: (a) ArNHNH2, EtOH, mw, 105 °C, 10 min, 54–77%; (b) i) H2SO4,
0°C, ii) H2NCHO, mw, 200 °C, 20 min, 48–91%; (c) i) POCl3, DMF, mw, 120 °C, 45 min,
ii) HNR1R2, DMF, PS-DIEA, mw, 90 °C, 20 min, 84–99%.18,19
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Table 1

Glutamate fold shifts by VU0080421 analogues 12.

Compound NR1R2 Ar Fold shifta

(−)-PHCCC, 3 5.5
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Compound NR1R2 Ar Fold shifta

7
VU0080241

27.2
11.8
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Compound NR1R2 Ar Fold shifta
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Compound NR1R2 Ar Fold shifta

12b 3.5
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Compound NR1R2 Ar Fold shifta

12c 2.7
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Compound NR1R2 Ar Fold shifta

12d 2.4
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a
Fold shifts represent the average of at least three independent experiments performed in quadruplicate at 30 µM.
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