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Dorsolateral Prefrontal Cortex Drives Mesolimbic
Dopaminergic Regions to Initiate Motivated Behavior

Ian C. Ballard,* Vishnu P. Murty,">* R. McKell Carter,"? Jeffrey J. MacInnes, !> Scott A. Huettel,">

and R. Alison Adcock'*

ICenter for Cognitive Neuroscience, and Departments of 2Neurobiology, Psychology and Neuroscience, and “Psychiatry, Duke University, Durham, North
Carolina 27708

How does the brain translate information signaling potential rewards into motivation to get them? Motivation to obtain reward is thought
to depend on the midbrain [particularly the ventral tegmental area (VTA)], the nucleus accumbens (NAcc), and the dorsolateral prefron-
tal cortex (dIPFC), butitis not clear how the interactions among these regions relate to reward-motivated behavior. To study the influence
of motivation on these reward-responsive regions and on their interactions, we used dynamic causal modeling to analyze functional
magnetic resonance imaging (fMRI) data from humans performing a simple task designed to isolate reward anticipation. The use of fMRI
permitted the simultaneous measurement of multiple brain regions while human participants anticipated and prepared for opportuni-
ties to obtain reward, thus allowing characterization of how information about reward changes physiology underlying motivational drive.
Furthermore, we modeled the impact of external reward cues on causal relationships within this network, thus elaborating a link between
physiology, connectivity, and motivation. Specifically, our results indicated that dIPFC was the exclusive entry point of information about
reward in this network, and that anticipated reward availability caused VTA activation only via its effect on the dIPFC. Anticipated reward
thus increased dIPFC activation directly, whereas it influenced VTA and NAcc only indirectly, by enhancing intrinsically weak or inactive
pathways from the dIPFC. Our findings of a directional prefrontal influence on dopaminergic regions during reward anticipation suggest
a model in which the dIPFC integrates and transmits representations of reward to the mesolimbic and mesocortical dopamine systems,

thereby initiating motivated behavior.

Introduction

Motivation translates goals into action. The initiation and orga-
nization of motivated behavior is thought to depend on the me-
solimbic and mesocortical dopamine systems of the brain
(Salamone et al., 2007), that is, the projections from the ventral
tegmental area (VTA) to the nucleus accumbens (NAcc) and the
prefrontal cortex (PFC) (Berridge and Robinson, 1998; Wise,
2004). Dopamine in the NAcc and PFC is indeed critical to the
normal function of these regions (Goldman-Rakic, 1998; Durst-
ewitz et al., 2000; Hazy et al., 2006; Alcaro et al., 2007). However,
much remains unknown about how interactions among these
regions relate to motivated behavior. VTA neurons respond to
anticipated reward, but from where do they get information
about reward cues in the environment? What dynamic changes in
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network function, triggered by reward anticipation, occur during
motivation?

The VTA, NAcc, and PFC are each strongly implicated in
motivation to obtain reward: VTA neurons respond to reward
cues and increase their activity before goal-directed behavior
(Ljungberg et al., 1992; Schultz, 1998; Fiorillo et al., 2003). The
NAcc is essential for translating motivational drive into motor
behavior (for review, see Goto and Grace, 2005). The PFC, spe-
cifically the dorsolateral prefrontal cortex (dIPFC), is involved in
the representation and integration of goals and reward informa-
tion (Miller and Cohen, 2001; Wagner et al., 2001; Watanabe and
Sakagami, 2007).

Physiological relationships among the VTA, NAcc, and PFC are
similarly thought to be crucial for executing reward-motivated be-
havior. These include dopamine release in the NAcc following
VTA activation (Fields et al., 2007; Roitman et al., 2008) and
modulation of VTA responsivity by both the NAcc (Grace et al.,
2007) and PFC (Gariano and Groves, 1988; Svensson and Tung,
1989; Gao et al., 2007). Importantly, studies of the role of the PFC
in driving VTA activity have been in anesthetized rodent models,
thus imposing two important constraints on extant evidence.
First, because rodents lack an expanded prefrontal cortex, the
physiological role of dIPFC in modulating VTA remains un-
known (Frankle et al., 2006). Second, and more fundamentally,
characterization of physiological interactions in anesthetized an-
imals cannot address the relationship between physiology and
motivated behavior. Despite their well documented interactions,
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the dynamics of the network linking dIPFC, VTA, and NAcc has
yet to be investigated during motivated behavior. Specifically, it is
unclear where information signaling potential reward enters this
network and how it impacts the relationships between these reward-
responsive regions (but see Bromberg-Martin et al., 2010).

To investigate how this network supporting motivated behavior
responds to information about potential rewards, we used func-
tional magnetic resonance imaging (fMRI) to measure activations in
the dIPFC, VTA, and NAcc during a rewarded reaction time task.
This task allowed us to isolate activations associated with motivation,
which occurred after the presentation of reward-informative cues
and before the execution of goal-directed behavior. Using dynamic
causal modeling (DCM), an analysis technique optimized to model
causal relationships in fMRI data (Friston et al., 2003 ), we identified
where reward information enters and how it modulates this
dopamine-dependent system.

Materials and Methods

Subjects and behavioral task. The data analyzed in this study were origi-
nally collected to examine the anticipation of either gaining or losing
monetary rewards for either oneself or a charity, as described in detail in
a previous report (Carter et al., 2009). Twenty young adults completed
the original study. Four subjects were excluded due to poor data acqui-
sition (i.e., signal drop out, poor coverage), one was excluded due to a
Beck Depression Inventory score indicating depression, and three were
excluded due to insufficient activation in at least one of the regions of
interest (see below, Dynamic causal modeling), leaving 12 subjects in the
data reported here (age, 23.9 years; SD, 3.8 years; six males).

To experimentally manipulate subjects’ motivational state, we used a
modified monetary incentive delay task (Knutson et al., 2001; Carter et
al,, 2009). The current analyses used only the data acquired while partic-
ipants were anticipating monetary gains for themselves, resulting in 20
trials per condition. During these trials, initial cues marked the start of
the trial and indicated whether individuals could earn either $4 (cue,
figure on a red background) or $0 (cue, figure on a yellow background)
for a fast reaction time to an upcoming target. After a variable delay
(4-4.5s), a response target (target, a white square) appeared, indicating
that participants were to press a button using their right index finger as
quickly as possible. Participants earned the amount indicated by the cue
if they responded in time or earned nothing otherwise. Using informa-
tion about response times on previous trials in the same condition, an
adaptive algorithm set reaction time thresholds so that subjects won
~65% of the time.

fMRI data acquisition. A 3T GE Signa MRI scanner was used to acquire
blood oxygen level-dependent (BOLD) contrast images. Each of the two
runs comprised 416 volumes (TR, 1 s; TE, 27 ms; flip angle, 77° voxel
size, 3.75 X 3.75 X 3.75 mm) of 17 axial slices positioned to provide
coverage of the midbrain, while also including striatum, and dIPFC (for
image of coverage, see Carter et al., 2009). This restricted volume, which
sacrificed superior parietal cortex, permitted a TR of 1 s for increased
sensitivity in regions of interest where susceptibility artifact can be prob-
lematic. The GE Signa EPI sequence automatically passes images through
a Fermi filter with a transition width of 10 mm and radius of one-half the
matrix size, which results in an effective smoothing kernel of 4.8 mm 2 At
the beginning of the scanning session, we collected localizer images to
identify the participant’s head position within the scanner. Additionally,
we acquired inversion recovery spoiled gradient recalled (IR-SPGR)
high-resolution whole-volume T1-weighted images (voxel size, 1 X 1 X
1 mm) and 17 IR-SPGR images, coplanar with the BOLD contrast im-
ages, for use with registration, normalization, and anatomical specifica-
tion of regions of interest (see below).

fMRI preprocessing. Images were skull stripped using the BET tool of
FSL (Smith, 2002). Preprocessing was performed using SPM8 software
(http://www.fil.ion.ucl.ac.uk/spm). Images from separate runs from
each subject were concatenated, and then realigned using a fourth-degree
B spline, with the mean image as a reference. Images were then smoothed
using a 4 mm Gaussian kernel, yielding a cumulative effective smoothing
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kernel of 6.25 mm FWHM. This 4 mm kernel was previously tested
against 2, 6, and 8 mm kernels, for subcortical and medial temporal
regions of interest, and gave both maximum Z scores and more limited
spatial extent of activations, appropriate to the anatomy of these regions.
For within-subject analysis, images were coregistered in two steps: first,
IR-SPGR whole-volume T1-weighted images were coregistered to the 17
slice IR-SPGR images using a normalized mutual information function.
Functional data were then coregistered to the resliced T1 images. For
between-subject analyses, high-resolution structural images were nor-
malized to MNI space and normalization parameters were applied to
coregistered functional images.

The first (within-subject) level statistical models were analyzed using a
general linear model (GLM). Regressors included 2 task-related regres-
sors of interest, 13 task-related regressors of no interest, 6 motion regres-
sors of no interest, and 3 session effects as covariates of no interest. The
task-related effects were modeled with 15 columns in the design matrix
that represented the anticipation and outcome possibilities for self, char-
ity, and control. Both cue and outcome periods were modeled with 1 s
boxcars at cue and outcome onset. This allowed for isolation of neural
activity related to processing of the cue and preparation to execute mo-
tivated behavior. Task-related regressors of interest modeled the cue/
anticipation periods for $4 and $0 gain trials. Task-related regressors of
no interest included the outcome regressors for $4 and $0 self trails, as
well as both cue and outcome regressors for charity, and control trials.
The [ estimates were then calculated using a general linear model with a
canonical hemodynamic response basis function. Contrast images for
$4-$0 cue regressors were computed for each subject and entered into a
between-subject random-effects analysis. Statistical thresholds were set
to p < 0.01, false discovery rate (FDR) corrected, with a cluster extent of
six voxels for the group-level GLM analyses (Genovese et al., 2002). For
construction of DCMs, an additional first-level analysis was run that
included a column with the combined anticipation periods for $4 and $0
gain trials.

Dynamic causal modeling. Al DCM analyses were conducted in DCM8
as implemented by SPM8. Dynamic causal modeling uses generative
models of brain responses to infer the hidden activity of brain regions
during different experimental contexts (Friston et al., 2003). A DCM is
composed of a system of nodes that interact via unidirectional connec-
tions. Experimental manipulations are treated as perturbations in the
system, which operate either by directly influencing the activity of one or
more nodes (driving inputs), or by influencing the strength of connec-
tion between nodes (modulatory input). The latter effect of exogenous
input represents how the coupling between two regions varies in re-
sponse to experimental manipulations.

DCM represents the hidden neuronal population dynamics in each
region with a state variable x. For inputs u, the state equation for DCM is:

dx - .
s A+ EujB(” x + Cu.

j=1

Matrix A represents the strengths of context-independent or intrinsic
connections, matrix B represents the modulation of context-dependent
pathways, and matrix C represents the driving input to the network. The
state equation is transformed into a predicted BOLD signal by a biophys-
ical forward model of hemodynamic responses (Friston et al., 2000;
Stephan et al., 2007). Model parameters are estimated using variational
Bayes under the Laplace approximation, with the objective of maximiz-
ing the negative free energy as an approximation to the log model evi-
dence, a measure of the balance between model fit and model complexity.

Selection of volumes of interest. Volumes of interest (VOIs) were de-
fined by taking the intersection of anatomical boundaries and significant
functional activations. For the NAcc and VTA, anatomical boundaries
were hand drawn using AFNI software on high-resolution anatomical
images in individual space (afni.nimh.nih.gov/afni). The NAcc was
drawn according to the procedure outlined by Breiter et al. (1997). The
ventral tegmental area was drawn in the saggital section and was identi-
fied with the following boundaries: the superior boundary was the most
superior horizontal section containing the superior colliculus. The infe-
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rior boundary was the most inferior horizontal section containing the red
nucleus. The lateral boundaries were drawn in the sagittal plane as verti-
cal lines connecting the center of the colliculus and the peak of curvature
of the interpeduncular fassa. The anterior boundary was clearly visible as
CSF, and the posterior boundary was a horizontal line bisecting the red
nucleus in the axial plane. For the dIPFC, anatomical boundaries were
defined on the MNI template (fmri.wfubmc.edu/cms) as the intersection
of the left BA 46 and medial frontal gyrus, and back-transformed into
individual space.

The objective of DCM is to formulate and compare different possible
mechanisms by which an established effect (local response) may have
arisen. How this effect is initially detected and established, before the
DCM analysis, depends on the particular question that is being asked. In
the context of a GLM analysis, as in our case, this is usually done by
requiring that there is a certain degree of activation in each region con-
sidered. Here, we operationalized this by requiring that, for each subject,
each region showed an activation at the level of p < 0.05, uncorrected,
with a cluster extent threshold of >3 voxels in subcortical/midbrain
structures and 5 voxels in cortical structures. This criterion eliminated
three subjects from the DCM analysis (two for NAcc; one for dIPFC). The
time series for both the VTA and the NAcc were extracted from the peak
voxel within each subject’s VOI, following the study by Adcock et al.
(2006). For the dIPFC, the VOI was an 8 mm sphere around each individu-
al’s peak activation. Mean coordinates ([x y z]) in MNI space for the three
VOIs were as follows: left NAcc, [—8 14 —1]; right NAcc, [12 14 —3]; left
VTA, [=2 —15 —13]; right VTA, [3 —17 —12]; dIPFC, [—44 38 19].

Construction of DCMs. To answer the questions of where information
about potential reward enters the system and how the system is modu-
lated by reward anticipation, the model space included all possible con-
figurations of driving input and several possible combinations of
context-sensitive connections. Driving inputs represent cue information
about all reward types (high and low), while modulatory inputs repre-
sented only high reward cues. All models assume reciprocal intrinsic
connections between all regions due to the evidence from rodent litera-
ture of either monosynaptic pathways or direct functional relationships
between the VTA, NAcc, and PFC (see Introduction). To reduce the
number of models, we used a simplifying assumption that the bidirec-
tional VTA-NAcc connections are modulated by the reward context.
This is a reasonable assumption given the strong evidence that these two
regions are critical for supporting a motivational state (for review, see
Haber and Knutson, 2010). The context sensitivity of all connections to
and from the dIPFC was systematically varied, resulting in 16 models. In
addition, we crossed these models with all 7 possible combinations of
driving input configurations. In total, 112 models per subject were fitted
using a variational Bayes scheme, and posterior means [MAP (maximum
aposteriori)] and posterior variances were estimated for each connection
of each model.

Bayesian model selection. Bayesian model selection (BMS), in combi-
nation with family level inference and Bayesian model averaging, was used to
determine the most likely model structure given our data (Stephan et al.,
2009, 2010; Penny et al.,, 2010). In a first comparison step, the model
evidence, which balances model fit and complexity, was computed for
each model using the negative free-energy approximation to the log-
model evidence. Models were compared at the group level using a novel
random-effects BMS procedure (Stephan et al., 2009). The models were
assessed using the exceedance probability, the probability that a given
model explains the data better than all other models. In a second level of
comparison, we used family-level inference using Gibbs sampling on
seven families (Penny et al., 2010), with all models in each family sharing
a different driving input configuration. Models in the winning family
were then subjected to the random-effects BMS procedure. Finally, we
analyzed the winning family using Bayesian model averaging, a proce-
dure that provides a measure of the most likely parameter values for an
entire family of models across subjects (Stephan et al., 2009, 2010). Pa-
rameter significance is assessed by the fraction of samples in the posterior
density that are greater from zero (posterior densities are sampled with
10,000 points), and parameters were considered significant at a posterior
probability threshold of 95%.
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Results

Behavioral data

To assess subjects’ motivational state, we examined reaction
times to target stimuli. An algorithm calibrated response time
thresholds separately within each condition so that participants
were successful ~65% of the time [$4: mean (M), 64%; SD, 7%;
$0: M, 63%; SD, 6%], to ensure equivalent reinforcement rates
across conditions. For all included participants, reaction times to
the target in $4 gain trials (M, 201 ms; SD, 42 ms) were faster than
in $0 gain trials (M, 226 ms; SD, 61 ms; p < 0.001), signifying that
participants were more motivated to perform in the $4 condition.
Behavioral data for the loss and charity trials not included in this
analysis can be found in the study by Carter et al. (2009).

GLM analyses

To identify neural substrates of motivation to obtain reward, we
used a GLM analysis of the period beginning with the presenta-
tion of the cue (either $4 vs $0); hereafter, we refer to this period
of anticipation of the opportunity to obtain reward as “reward
motivation.” GLM analyses of the contrast $4 > $0 during this
period revealed that reward motivation was associated with sig-
nificant activations (p < 0.01, FDR-corrected, 6 voxel cluster
extent threshold) in all of the regions of interest used for the
DCM analysis: bilaterally in the VTA, NAcc, dIPFC. Additional
significant activations were observed bilaterally in the midbrain
(surrounding the VTA), dorsal striatum, ventral striatum (sur-
rounding the NAcc), posterior parietal cortex, inferior parietal
lobule, insula, ventrolateral prefrontal cortex, cerebellum, and
ventral visual stream as well as the in the left hippocampus.

DCM analysis

We used DCM with BMS and model space partitioning to exam-
ine a network consisting of VTA, NAcc, and dIPFC during reward
motivation. Our DCMs estimate the strength of driving inputs,
whereby information signaling an upcoming opportunity to ob-
tain reward directly influences neural activity in a region; intrin-
sic connectivity, whereby regions influence each other in the
absence of reward information; and modulatory inputs, whereby
information signaling the opportunity for future reward changes
the strength of coupling between regions (Friston et al., 2003).
We used BMS to compare the relative evidence of alternate
DCMs that varied both the location of driving inputs into the
system as well as the pattern of modulatory inputs, as specified
below. We then applied the recently developed approach of
model space partitioning, which allowed us to compare families
of DCMs that varied with respect to driving input, factoring out
all other differences in the models (Penny et al., 2010).

Using random-effects BMS, we compared 112 models that
differed both in where information signaling potential reward
entered the network and how this information influenced con-
nectivity (Fig. 1). We tested a subset of the full model space that
included all possible combinations of driving inputs, full intrinsic
connectivity, and varied all combinations of possible modulatory
connections between all regions except the connections between
the VTA and NAcc (for details, see Materials and Methods). The
exceedance probabilities (the probability that a model explains
the data better than all others considered) of the top eight models
together summed to 81% (Fig. 2). These top eight models all
shared the feature of driving input to the dIPFC.

We next used model space partitioning to compare families of
models defined by their driving input configuration. This analy-
sis determined the most likely target of driving input, regardless
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Model Space
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Figure1.
sensitivity of the connections represented by blue arrows were constructed. The black arrows
represent connections that were allowed to be context sensitive in all models. These 16 models
were crossed with all seven possible combinations of driving inputs (red). Driving inputs repre-
sent cue information about all reward types (high and low), while modulatory inputs repre-
sented only high reward cues.

The full tested model space. Sixteen models that systematically varied the context
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Figure 2.  Bayesian model selection results for the full model space. The Bayesian model
selection indicates the most likely model for the full model space. The top eight models account
for 81% of the exceedance probability (the exceedance probabilities for all 112 models sum to
1). All eight of the best models have the driving input solely at the dIPFC. Context-sensitive
connections for the top eight models are shown above in the inset.

of modulatory connectivity. We grouped our 112 models into 7
families of 16 models, each with the same driving input configu-
ration, and compared these families using Bayesian family level
inference. This analysis yielded very strong evidence (exceedance
probability of 0.93) that the family of models with the driving
input solely to the dIPFC provided a better fit to the data (i.e., had
higher evidence) than the six other families considered, including
those where there were driving inputs to both the dIPFC and
other regions (Fig. 3). Because exceedance probabilities across
families sum to 1, the relative probabilities of families is more
informative than the absolute probability (Penny et al., 2010). In
the present study, the ratio of the exceedance probability of the
best to second best family was 21. The equivalent ratio for the
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Figure3.  Exceedance probabilities for each family of models sharing a driving input config-

uration. The ratio of exceedance probabilities of the first to second best model is 21, indicating
with very high certainty that reward information enters the modeled network solely at the
dIPFC.

expected posterior probability, the expected likelihood of obtain-
ing a model in a particular family from any randomly selected
subject, was 3.3. Thus, the exceedance probability of 0.93 ob-
served here represents very strong evidence that reward informa-
tion was best modeled as entering the system at the dIPFC.

The models with driving inputs to the dIPFC were then com-
pared with one another using BMS within the winning family. As
anticipated, no single superior model within this group was
determined. Notably, the top four models within the winning
family, summing to 69% of the exceedance probability, all had
modulatory connections from dIPFC to VTA, indicating that the
influence of the dIPFC on the VTA was also important for deter-
mining model fit.

To determine how reward information entering the dIPFC
affects network dynamics across subjects, we used Bayesian model
averaging to compute the weighted average of modulatory changes
in connectivity for the winning family of models (Stephan et al.,
2009) (Fig. 4, Table 1). Parameter estimates were considered sig-
nificant at a posterior probability threshold of 95% that the pos-
terior mean is different from zero. At baseline, intrinsic
connection strengths were strongest from the VTA to NAcc and
NAcc to VTA. This connection was not significantly modulated
by reward motivation even though all of the models tested al-
lowed for the expression of context-dependent modulation of
these connections. However, we emphasize that all intrinsic con-
nections were included in all models, so the finding of strong
intrinsic connectivity is independent of our constraints on the
model space. This lack of significant modulation is unexpected
given the role of these regions in supporting motivation.

Reward motivation induced significant increases in connec-
tion strength only in the connections from the dIPFC to the NAcc
and to the VTA. This is not an artifact of the fact that driving
input entered the dIPFC; in fact, it has been suggested that, when
adriving input to a region and a modulatory input to its efferents
are correlated (as they are here), the constraints on the prior
variances of the driving and modulatory connections result in an
underestimation of the strength of the modulatory effect (SPM
listserv, 022036). The modulatory effect of reward motivation in
these two connections from dIPFC was very strong: The connec-
tion from the dIPFC to the VTA increased from zero and the
modulatory effect from the dIPFC to the NAcc is 290% of the
intrinsic connection strength. Thus, reward motivation engaged
previously weak or inactive pathways from the dIPFC to the VTA
and NAcc, without significantly altering connectivity throughout
the rest of the system.
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Discussion

We investigated the impact of reward mo-
tivation on the dynamics of mesolimbic
and mesocortical dopaminergic regions in
a network comprising VTA, NAcc, and
dIPEC. Importantly, our task structure
permitted us to isolate neural activity con-
current with onset of information signal-
ing potential reward and distinct from
processing related to reward outcomes,
allowing the observation of motivation
preceding the execution of goal-directed
behavior. Our results indicate that, during
a simple rewarded reaction time task, in-
formation about expected reward entered
this network solely at the dIPFC. This re-
ward information increased the modula-
tion by the dIPFC of the VTA and the
NAcg, structures that are known to influ-
ence the physiology and plasticity of net-
works supporting motivated behavior,
attention, and memory throughout the
brain. Together, these findings suggest that,
in response to goal-relevant information,
the PFC harnesses these modulatory pathways to generate physio-
logical states that correspond to expectancy and motivation.

To characterize the network of brain regions involved in mo-
tivation, we used DCM. Importantly, DCM does not assume that
temporal precedence is necessary for causality. Because the lag
between neural activity and BOLD activation can theoretically
vary across brain regions, due to vascular factors, DCM is partic-
ularly appropriate for detecting network interactions in BOLD
data. In addition, DCM allows for inference about causal inter-
actions between regions that depend on the experimental con-
text. These inferences can be tested across a theoretically
unlimited model space, here allowing us to test among all possi-
ble driving input configurations.

Our DCM analysis of the VTA-NAcc—dIPFC network during
reward motivation indicated that the driving input was exclu-
sively to the dIPFC. This means that, in this behavioral context
and within the modeled network, information signaling poten-
tially available reward entered the dopamine system at the dIPFC
and not at the other regions in the model. Furthermore, driving
input unique to the dIPFC appeared to be the feature of the mod-
els that was most important for determining model fit. Our find-
ings demonstrate that reward cues directly increased dIPFC
activation, and only influenced activation in the VTA or NAcc
indirectly, via connections from the dIPFC.

In addition to the regions modeled in our analysis, previous re-
search has identified other candidate regions, such as the medial
prefrontal cortex, orbitofrontal cortex, and habenula (Staudinger et
al., 2009; Bromberg-Martin et al., 2010) that could plausibly initiate
motivated behavior. The question of how these regions interact with
this network, especially the dIPFC, is an important avenue of future
research. However, it is important to note that, if any of these regions
were driving the modeled network via efferents to the VTA or NAcc,
one would expect to see this influence expressed in our data as a
driving input to the VTA or NAcc. Thus, our finding of a unique
driving input to the dIPFC indicates that, in this behavioral context,
information signaling potential reward entered the modeled net-
work neither via subcortical relays nor other prefrontal cortical in-
puts to the VTA, but rather via the dIPFC.
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Modulatory Effects
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Connectivity determined by Bayesian model averaging of models in the winning family, which all shared driving
inputs solely to the dIPFC (Occam’s window, 11.8 models; SD, 5.3). All solid connections are significant at a posterior probability
threshold of 95% that the posterior mean is larger than zero. The dotted connections are not significant. Driving inputs represent
cue information about all reward types (high and low), while modulatory inputs represented only high reward cues. Left, The
intrinsic (baseline) connectivity for each connection. Right, Modulation of connectivity during reward motivation. Modulation of
the blue connections was varied in the model space. Connection strengths are indicated on each arrow (in hertz). Only the
connections from dIPFC to VTA and NAcc are significantly modulated by reward motivation.

Table 1. Means and SDs of all the parameter estimates for the averaged model

Intrinsic connections Modulatory connections

Mean SD Mean SD
VTA—NAcc 0.26* 0.07 0.07 0.07
VTA—dIPFC 0.18% 0.07 0.03 0.06
NAcc— VTA 0.22* 0.07 0.08 0.07
NAcc—dIPFC 0.16* 0.06 0.04 0.06
dIPFC—VTA 0.01 0.07 0.20* 0.07
dIPFC— NAcc 0.07% 0.07 0.21* 0.07

Driving input 0.09% 0.02

The starred values indicate significant parameters.

In addition to demonstrating PFC modulation of VTA in
awake animals during motivated behavior, the current findings
are, to our knowledge, the first demonstration of a prefrontal
influence on the VTA in humans or other nonhuman primates.
Bayesian model averaging revealed strong modulation of the
VTA by the dIPFC specifically during reward motivation; this
VTA-dIPFC pathway was not engaged intrinsically. Moreover,
there was a nearly threefold increase in connectivity strength
from the dIPFC to the NAcc during reward motivation. Con-
versely, intrinsic VTA-NAcc connectivity was significant, but
was not modulated by reward. This result could indicate that
connectivity between the VT A and NAcc is always strong regard-
less of the level of motivation. However, based on prior research
showing that reward information has an effect on VT'A modula-
tion of NAcc (Bakshi and Kelley, 1991; Ikemoto and Panksepp,
1999; Parkinson et al., 2002), this interpretation is unlikely to be
correct. More plausible is that changes in VTA-NAcc connectiv-
ity existed, but because their effect size was small relative to that of
dIPFC connectivity, they did not contribute significantly to the
model evidence, further suggesting that dIPFC modulation was
highly influential for the function of this network.

The finding that there was no increase in the connection
strength from the VTA to the dIPFC may seem to conflict with
physiology literature demonstrating dopaminergic modulation
over the PFC (Williams and Goldman-Rakic, 1995; Durstewitz et
al., 2000; Gao and Goldman-Rakic, 2003; Paspalas and Goldman-
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Rakic, 2004; Seamans and Yang, 2004; Wang et al., 2004; Gao et al.,
2007). Although we found a modest intrinsic influence of the VTA
on the PFC, this influence did not change with motivational state.
However, we do not believe our findings to be contradictory to the
above literature, as the modulatory influences may contribute to
separate, but strongly interacting, behavioral processes. We believe
the modulatory role of the PFC over the VTA contributes to goal-
directed, instrumental components of behavior, and the modulatory
role of the VTA over the PFC may be especially important to other
behavioral processes, such as updating or task switching, which were
not manipulated in our paradigm. Thus, our findings, in the context
of the previous literature, suggest that paradigms that evoked moti-
vated executive behaviors would reveal bidirectional modulations
between the VTA and dIPFC.

Building on the wealth of previous research outlining the in-
fluence of midbrain dopamine on target regions, the current
findings suggest a model in which the dIPFC integrates informa-
tion about potential reward and implements goal-directed
behavior by tuning mesolimbic dopamine projections. This in-
terpretation is consonant with evidence from the rodent litera-
ture showing that the PFC is the only cortical region that projects
to dopamine neurons in the VTA (Beckstead et al., 1979; Sesack
and Pickel, 1992; Sesack and Carr, 2002; Frankle et al., 2006). The
findings fill a critical gap in this literature: stimulation of the PFC
has been shown to regulate the firing patterns of dopamine neu-
rons in rodents (Gariano and Groves, 1988; Svensson and Tung,
1989; Gao et al., 2007), and multisite recordings demonstrate
phase-coherence between the PFC and the VTA that mediates
slow-oscillation burst firing (Gao et al., 2007), but there has been
no demonstration that these physiological relationships are
driven by motivation and goal-directed behavior. Furthermore,
the absence of an expanded frontal cortex in the rodent makes an
appropriate rodent correlate of primate dIPFC unclear. Although
there is evidence in primates for excitatory projections from the PFC
to midbrain dopamine neurons (Williams and Goldman-Rakic,
1998; Frankle et al., 2006), the functional significance of these rela-
tively sparse projections has been questioned. Our findings showing
a physiological relationship between prefrontal cortex and VTA in
humans thus fill a second critical gap in the extant literature on
human (and nonhuman primate) motivation.

Within the PFC, dIPFC is well situated to orchestrate motivated
behavior because of its role in planning and goal maintenance. Pri-
mate physiology studies have demonstrated that, while both the or-
bitofrontal cortex and the dIPFC encode reward information, only
dIPFC activity predicts which behaviors a monkey will execute (Wal-
lis and Miller, 2003). Furthermore, the dIPFC maintains goal-
relevant information during working memory (Levy and Goldman-
Rakic, 2000; Wager and Smith, 2003; Owen et al., 2005), updates this
information as goals dynamically change during task switching
(Dove et al., 2000; Kimberg et al., 2000; MacDonald et al., 2000;
Rushworth et al., 2002; Crone et al., 2006; Sakai, 2008; Savine et al.,
2010), and arbitrates between conflicting goals during decision mak-
ing (MacDonald et al., 2000; McClure et al., 2004, 2007; Ridderink-
hof et al., 2004; Boettiger et al., 2007; Hare et al., 2009). These
previous findings suggest a role for the dIPFC in implementing be-
havioral goals, but they do not characterize the nature and direction
of interactions between dIPFC and other regions supporting moti-
vated behavior. Computational and neuroimaging work has posited
a role for the dIPFC in modulating the striatum in the context of
instructed reward learning (Doll et al., 2009; Li et al., 2011). Our
results corroborate these recent findings and further implicate the
dIPFC in initiating motivated behavior, via the novel demonstration
of a directed influence on the VTA. Transcranial magnetic stimula-
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tion of the dIPFC changes the valuation of both cigarettes (Amiaz et
al., 2009) and food (Camus et al., 2009), and also induces dopamine
release in the striatum (Pogarell et al., 2006; Ko et al., 2008); however,
these results do not reveal how dIPFC activation affects network
activation or dynamics. The current findings directly demonstrate
dIPFC influence over not only the NAcc but also the VTA during
reward-motivated behavior, as postulated by prior work.

In summary, we found that motivation to obtain reward is in-
stantiated by a transfer of information from the dIPFC to the NAcc
and VTA; we saw no evidence of the reverse. These findings show
that the dIPFC can orchestrate the dynamics of this neuromodula-
tory network in a contextually appropriate manner. Furthermore, by
suggesting an anatomical source for information about expected
reward that activates dopaminergic regions, the findings also shed
light on the fundamental question of how dopamine neurons define
value. Finally, because of the widespread effects of VTA activation
and resultant dopamine release, this interaction represents a candi-
date mechanism whereby dorsolateral prefrontal cortex modulates
physiology and plasticity throughout the brain to support goal-
directed behavior.
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