Table 4.
Partial linear model | Linear Model | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
a | Methods | AMSE | ABIAS | AVAR | MEAN | SE | CI | |||
95% CI | 95% CI | 95% CI | ||||||||
PCB | See Figure 2 | See Figure 2 | See Figure 2 | |||||||
EDU1 | 2.79 | 1.04 | (0.75, 4.83) | 2.73 | 1.24 | (0.30, 5.16) | 2.72 | 1.04 | (0.68, 4.76) | |
EDU2 | 10.44 | 1.66 | (7.19, 13.69) | 9.39 | 2.02 | (5.43, 13.35) | 10.47 | 1.66 | (7.22, 13.72) | |
SES | 1.39 | 0.20 | (1.00, 1.78) | 1.31 | 0.24 | (0.84, 1.78) | 1.40 | 0.20 | (1.01, 1.79) | |
RACE | −7.97 | 0.75 | (−9.44, −6.50) | −7.73 | 0.89 | (−9.47, −5.99) | −7.82 | 0.75 | (−9.29, −6.35) | |
SEX | −0.81 | 0.69 | (−2.16, 0.54) | −0.75 | 0.84 | (−2.40, 0.90) | −0.79 | 0.69 | (−2.14, 0.56) |
Note 4: The result of linear model is obtained using the Zhou et al. (2002) method, and in the case of linear model, g(PCB) = α1 + α2PCB; and correspond to the estimates obtained by the P and V methods respectively; and are the estimated standard errors of corresponding estimators.