Skip to main content
. Author manuscript; available in PMC: 2012 Sep 1.
Published in final edited form as: Biometrics. 2010 Oct 29;67(3):876–885. doi: 10.1111/j.1541-0420.2010.01500.x

Table 4.

Analysis results for CPP data

Partial linear model Linear Model

a Methods AMSE ABIAS AVAR MEAN SE
SE^
CI

β^P SE(β^P) 95% CI β^V SE(β^V) 95% CI β^L SE(β^L) 95% CI
PCB See Figure 2 See Figure 2 See Figure 2
EDU1 2.79 1.04 (0.75, 4.83) 2.73 1.24 (0.30, 5.16) 2.72 1.04 (0.68, 4.76)
EDU2 10.44 1.66 (7.19, 13.69) 9.39 2.02 (5.43, 13.35) 10.47 1.66 (7.22, 13.72)
SES 1.39 0.20 (1.00, 1.78) 1.31 0.24 (0.84, 1.78) 1.40 0.20 (1.01, 1.79)
RACE −7.97 0.75 (−9.44, −6.50) −7.73 0.89 (−9.47, −5.99) −7.82 0.75 (−9.29, −6.35)
SEX −0.81 0.69 (−2.16, 0.54) −0.75 0.84 (−2.40, 0.90) −0.79 0.69 (−2.14, 0.56)

Note 4: The result of linear model is obtained using the Zhou et al. (2002) method, and in the case of linear model, g(PCB) = α1 + α2PCB; β^P and β^V correspond to the estimates obtained by the P and V methods respectively; SE(β^P) and SE(β^V) are the estimated standard errors of corresponding estimators.