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Primary tumors facilitate metastasis by directing bone marrow-
derived cells (BMDCs) to colonize the lungs before the arrival of
cancer cells. Here, we demonstrate that hypoxia-inducible factor 1
(HIF-1) is a critical regulator of breast cancer metastatic niche
formation through induction of multiple members of the lysyl
oxidase (LOX) family, including LOX, LOX-like 2, and LOX-like 4,
which catalyze collagen cross-linking in the lungs before BMDC
recruitment. Only a subset of LOX family members was expressed
in any individual breast cancer, but HIF-1 was required for ex-
pression in each case. Knockdown of HIF-1 or hypoxia-induced LOX
family members reduced collagen cross-linking, CD11b+ BMDC re-
cruitment, and metastasis formation in the lungs of mice after
orthotopic transplantation of human breast cancer cells. Meta-
static niche formation is an HIF-1–dependent event during breast
cancer progression.

extracellular matrix | lung metastasis

Intratumoral hypoxia is a common finding that is attributable to
inadequate O2 delivery to regions of rapidly growing cancers

that are distant from functional blood vessels (1). Reduced O2
availability leads to increased activity of hypoxia-inducible fac-
tors (HIFs), which consist of an O2-regulated HIF-1α or HIF-2α
subunit and the constitutively expressed HIF-1β subunit (2, 3).
HIF inhibition blocks tumor xenograft growth (2, 4).
Metastasis is responsible for 90% of deaths among patients

who have breast cancer and involves multiple steps, including
cancer cell invasion through ECM, intravasation, extravasation,
and colonization of distant organs (5). Recent studies have
reported that prior recruitment of bone marrow-derived cells
(BMDCs) to the metastatic site promotes subsequent coloniza-
tion by cancer cells (6). The primary tumor is responsible for
BMDC recruitment to the metastatic site. Breast tumors secrete
lysyl oxidase (LOX), which localizes at metastatic sites in the
lungs and remodels collagen, thereby facilitating BMDC re-
cruitment (7, 8). LOX oxidatively deaminates the ε-amino
groups of lysine residues, resulting in intramolecular and in-
termolecular cross-linking of collagen molecules (9). Cross-
linking stabilizes collagen by assembly into fibrils and fibers,
which enhance ECM tensile strength, leading to focal adhesion
formation and PI3K signaling (10). The LOX family is composed
of LOX and LOX-like (LOXL) proteins LOXL1–4. So far, only
LOX has been implicated in metastatic niche formation (7). In
this study, we demonstrate that HIF-1 regulates metastatic niche
formation by activating expression of LOX and LOXL proteins.
HIF-1 silencing suppresses metastatic niche formation and me-
tastasis regardless of which LOX family member is involved.

Results
Hypoxia-Induced LOX/LOXL Expression in Breast Cancer Cell Lines.
Two metastatic breast cancer cell lines, MDA-MB-231 (MDA-
231) and MDA-MB-435 (MDA-435), as well as a nonmetastatic
line, MCF-7, were cultured under standard, nonhypoxic tissue
culture conditions of 95% air/5% CO2 (vol/vol; 20% O2) and
under hypoxic culture conditions of 1% O2/5% CO2/94% N2

(vol/vol/vol; 1% O2). Each cell line exhibited a different pattern
of expression in response to hypoxia (Fig. 1A and Fig. S1 A–C).
In MDA-231, LOX and LOXL4 were induced by hypoxia,
whereas in MDA-435, LOXL2 was induced by hypoxia. LOX was
hypoxia-induced in MDA-231, as previously reported (8), but not
in MDA-435 (Fig. S1B). LOXL1 and LOXL3 expression was not
induced in either cell type (Fig. S1C). LOX/LOXL protein ex-
pression was not detectable in MCF-7 (Fig. S1B), which is con-
sistent with a critical prometastatic role for LOX family members
in breast cancer.

LOX/LOXL Expression in Patients with Breast Cancer. To gain clinical
insight into LOX, LOXL2, and LOXL4 gene expression in breast
cancer, we compared their expression in cancer vs. surrounding
normal tissue from the same patient. We observed expression of
different combinations of LOX members in the 11 human breast
cancers that were analyzed (Fig. 1B). LOX, LOXL2, and LOXL4
mRNA was overexpressed by at least twofold in 7 of 11, 8 of 11,
and 2 of 11 cases, respectively (Fig. 1B). Thus, multiple LOX
family members are up-regulated in different breast cancers.

HIF-Dependent Expression of LOX Family Members. LOX gene ex-
pression is regulated by HIF-1 in breast cancer cells (8). To test
whether HIFs mediate expression of other LOX family mem-
bers, we generated stable transfectants of MDA-231 and MDA-
435 with shRNA-mediated knockdown of HIF-1α (sh-1α), HIF-
2α (sh-2α), or double knockdown (DKD) of both HIF-1α and
HIF-2α as well as empty vector (EV) transfectants (Fig. S1 D and
E). Hypoxic induction of LOX and LOXL4 mRNA and protein
expression was suppressed when HIF-1α, HIF-2α, or both were
knocked down in MDA-231 (Fig. 1C and Fig. S1 F and G). In
MDA-435, hypoxic induction of LOXL2 was blocked only when
HIF-1α was knocked down (Fig. 1D).

LOXL4 Is an HIF Target Gene. LOX and LOXL2 were shown to be
direct targets of HIF-1 (8, 11). To examine whether LOXL4 is an
HIF-1 target, we searched for the HIF binding site consensus
sequence 5′-RCGTG-3′ (12). Two copies were present as an
inverted repeat within intron 1 (Fig. S2A). ChIP assays in MDA-
231 demonstrated hypoxia-inducible binding of HIF-1α, HIF-2α,
and HIF-1β to this DNA sequence (Fig. 2 A–C) but not at the
RPL13A gene (Fig. S2B), which is not HIF-regulated. To verify
that HIF-1 and HIF-2 were binding to a functional hypoxia re-
sponse element (HRE), a 60-bp sequence spanning the HIF
binding sites (HRE-WT; Fig. S2A) was inserted into reporter
plasmid pGL2-promoter, in which a basal SV40 promoter drives
firefly luciferase expression. A second construct was generated in

Author contributions: C.C.-L.W., D.M.G., and G.L.S. designed research; C.C.-L.W., D.M.G.,
H.Z., J.C., H.W., P.C., S.I.F., C.-M.W., U.-S.K., and I.O.-L.N. performed research; D.W. con-
tributed new reagents/analytic tools; C.C.-L.W., D.M.G., and G.L.S. analyzed data; and
C.C.-L.W. and G.L.S. wrote the paper.

The authors declare no conflict of interest.
1To whom correspondence should be addressed. E-mail: gsemenza@jhmi.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1113483108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1113483108 PNAS | September 27, 2011 | vol. 108 | no. 39 | 16369–16374

M
ED

IC
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental/pnas.201113483SI.pdf?targetid=nameddest=SF2
mailto:gsemenza@jhmi.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1113483108/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1113483108


which both HIF sites were mutated (HRE-Mut; Fig. S2A). In
MDA-231 cells transfected with pGL2-HRE-WT, luciferase ac-
tivity increased 2.5-fold on hypoxic exposure, whereas in cells
transfected with pGL-HRE-Mut, hypoxic induction of luciferase
was impaired (Fig. 2D). Thus, ChIP and transcription assays
demonstrate that LOXL4 is a direct HIF target gene.

HIF-Dependent LOX/LOXL Expression Leads to Collagen Remodeling.
To explore the effect of HIF on collagen cross-linking, we in-
cubated type I collagen with conditioned medium (CM) gener-
ated by hypoxic or nonhypoxic MDA-231 subclones and imaged
fibrillar collagen by reflection confocal microscopy (Fig. 3A). CM
from hypoxic MDA-231-EV cells stimulated prominent collagen
cross-linking (Fig. 3A). This hypoxia-induced effect was abol-
ished in DKD cells, demonstrating the importance of HIF-1α
and HIF-2α expression for collagen cross-linking (Fig. 3A).

Because LOX and LOXL4 were induced by hypoxia in MDA-
231, whereas LOXL2 was induced by hypoxia in MDA-435, we
generated stable transfectants expressing shRNA against LOX
(shLOX) or LOXL4 (shLOXL4) in MDA-231 (Fig. S3 A and B)
and against LOXL2 (shLOXL2) in MDA-435 (Fig. S3C) and
nontargeted control (NTC) subclones. Type I collagen incubated
with CM from knockdown subclones exhibited reduced cross-
linking, with respect to both fiber size and number, compared
with CM from NTC cells (Fig. 3 B and C and Fig. S4 A–C). Thus,
expression of HIFs and multiple LOX family members is im-
portant for collagen fiber formation.

HIF-Dependent LOX/LOXL Expression Preconditions ECM for Bone
Marrow Cell Invasion. Invasion of BMDCs at the metastatic site
is required for metastatic niche formation. To study the effect of
cancer cells on BMDC invasion, we coated transwell filters in
migration chambers with matrigel (tumor-derived ECM), in-
cubated the matrigel with CM, and seeded bone marrow cells
(BMCs) on top (Fig. S4D). Matrigel that was treated with CM
from hypoxic MDA-231-EV cells stimulated increased BMC
invasion compared with CM from nonhypoxic cells, and the ef-
fect of hypoxia was lost when HIF-1α or HIF-2α expression was
knocked down (Fig. 3D). BMC invasion was also enhanced when
matrigel was pretreated with CM from hypoxic MDA-435 cells,
and this effect was abrogated in sh-1α and DKD cells but not in
sh-2α cells (Fig. 3E). This result is consistent with our finding
that HIF-1α (but not HIF-2α) regulates LOXL2 expression in
MDA-435 and suggests that LOXL2 plays a critical role in col-
lagen remodeling and metastatic niche formation in MDA-435.
CM from MDA-231-shLOX and -shLOXL4 cells did not induce
BMC invasion compared with MDA-231-NTC cells, under hyp-
oxic conditions (Fig. 3F). Fewer BMCs invaded through matrigel
pretreated with CM of hypoxic MDA-435-shLOXL2 cells com-
pared with hypoxic MDA-435-NTC cells (Fig. 3G). Thus, the
HIF → LOX/LOXL pathway in breast cancer cells is important
for ECM remodeling that facilitates BMC invasion.

HIF Is Required for Breast Cancer Cells to Precondition Lungs for
BMDC Recruitment. To determine whether HIF-1α or HIF-2α is
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Fig. 1. LOX/LOXL expression in breast cancer cell lines and in patients who
have breast cancer. (A) MDA-231 and MDA-435 were cultured in 20% or 1%
O2 for 24 h. LOX/LOXL mRNA levels were analyzed by real-time RT-qPCR
relative to 18S rRNA, and ratios were normalized to results obtained at 20%
O2. ***P < 0.001 vs. 20% O2, Student t test (mean ± SEM; n = 3). (B) LOX/
LOXL mRNA levels were analyzed by RT-qPCR (relative to 18S rRNA) in breast
cancer tissue and surrounding normal tissue. The fold-increased expression
of each target mRNA in cancer compared to normal tissue was determined
by the threshold cycle (CT) method, in which ΔCT = CT, target − CT, 18S and
ΔΔCT = ΔCT, cancer − CT, normal. (C) LOX and LOXL4 mRNA were analyzed in
MDA-231 subclones. (D) LOXL2 mRNA and protein levels were analyzed in
MDA-435 subclones. ###P < 0.001 vs. 20% O2-EV; **P < 0.01, ***P < 0.001 vs.
1% O2-EV; one-way ANOVA with Bonferroni correction (mean ± SEM; n = 3).
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required for metastatic niche formation, we orthotopically im-
planted MDA-231 subclones into the mammary fat pad (MFP) of
SCID mice. The lungs were harvested 3 wk later, and Picrosirius
Red-stained sections were analyzed under polarized light to
identify cross-linked collagen fibrils. Cross-linking was decreased
in the lungs of mice implanted with sh-1α, sh-2α, or DKD cells
compared with EV cells (Fig. 4A), indicating that HIF-1α and
HIF-2α expression in MDA-231 regulates collagen remodeling in
the lungs of tumor-bearing mice. We then analyzed BMDC re-

cruitment to the lungs by flow cytometry. MDA-231-sh-1α, -sh-
2α, and -DKD tumors recruited fewer CD11b+CD45+ cells
(denoted CD11b+ BMDCs) to the lungs compared with EV
tumors (Fig. 4B). Immunohistochemical analysis of the lungs of
EV and DKD tumor-bearing mice confirmed the results of flow
cytometry analysis (Fig. 4C). We also orthotopically implanted
MDA-435 subclones and harvested the lungs 45 d after injection.
Knockdown of HIF-1α but not HIF-2α reduced tumor growth,
collagen remodeling, CD11b+ BMDC recruitment, and metas-
tasis (Fig. 4 D–G). Thus, HIF-1 activity in breast cancer cells is
critical for metastatic niche formation.

LOXL2 and LOXL4 Are Required for Metastatic Niche Formation by
MDA-435 and MDA-231. To assess the functional role of individual
LOX members, we injected MDA-435-NTC and -shLOXL2 cells
into the MFP of mice and monitored BMDC recruitment and
lung metastasis. There was no significant difference in primary
tumor growth between NTC and shLOXL2 subclones (Fig. 5A).
However, less cross-linked collagen (Fig. 5B and Fig. S5A) and
fewer CD11b+ BMDCs (Fig. 5C and Fig. S5 B and C) were
found in the lungs of mice carrying shLOXL2 tumors relative to
NTC tumors. Histological analysis and qPCR demonstrated de-
creased metastatic burden in the lungs of mice injected with
shLOXL2 cells (Fig. 5D and Fig. S5D). However, no difference
in BMDC recruitment or lung metastasis was observed in mice
carrying NTC vs. shLOX tumors (Fig. S5 E–G). Thus, only de-
pletion of the hypoxia-induced LOX family member (LOXL2)
impaired metastatic niche formation and metastasis of MDA-
435 cells.
We also implanted MDA-231-NTC and -shLOXL4 cells into

the MFP. Although the growth rates of NTC and shLOXL4
primary tumors were similar (Fig. 5E), lungs of mice bearing
shLOXL4 tumors displayed a marked reduction in cross-linked
collagen (Fig. 5F and Fig. S6A), CD11b+ BMDCs (Fig. 5G and
Fig. S6B), and lung metastases (Fig. 5H and Fig. S6C) compared
with the lungs of NTC tumor-bearing mice. The effects on col-
lagen crosslinking were observed at both premetastatic (Fig.
S6A) and metastatic (Fig. S6D) sites in the lungs. Knockdown of
LOXL4 with a different shRNA or knockdown of LOX re-
capitulated the results (Fig. S6 E and F), demonstrating that both
LOX and LOXL4 are required for metastatic niche formation by
MDA-231 cells.
To image metastases in vivo, we implanted luciferase-expressing

MDA-231-NTC and -shLOXL4 cells. There was no difference in
the signals generated by primary tumors in the MFP (Fig. S7A).
However, the lungs of shLOXL4 tumor-bearing mice exhibited
a reduction in CD11b+ BMDC cells (Fig. S7B) and metastatic
breast cancer cells, as demonstrated by qPCR (Fig. S7C) and by
bioluminescent imaging (Fig. S7D). Sensitive bioluminescent im-
aging also allowed analysis of lymph node metastasis in these mice.
We found decreased luminescence of axillary lymph nodes from
shLOXL4, compared with NTC, tumor-bearing mice (Fig. S7E).

Kinetic Analysis of Metastatic Niche Formation. To delineate the
sequential events of metastatic niche formation, we injected
MDA-435 cells into the MFP. Mice were euthanized at 8, 16, or
24 d after injection, and lungs were harvested for analysis. Tu-
mor-free (naive) mice were included at each time point as neg-
ative controls. Increased collagen cross-linking in the lungs of
tumor-bearing mice was observed on day 8 (Fig. 5I and Fig. S7F),
but neither CD11b+ BMDCs nor cancer cells were detected (Fig.
S7G). On day 16, we detected increased CD11b+ BMDCs in the
lungs of tumor-bearing mice (Fig. 5J and Fig. S7H). qPCR and
histology studies confirmed the absence of cancer cells in the
lungs (Fig. 5J and Fig. S7I). On day 24, cancer cells were
detected in the lungs (Fig. 5K and Fig. S7J). This experiment
provides a precise timeline of the steps involved in metastatic
niche formation by MDA-435 cells, beginning with collagen
cross-linking followed by BMDC homing and, finally, cancer
metastasis (Fig. 5L).
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Discussion
In this study, we have demonstrated that HIFs are critical reg-
ulators of metastatic niche formation through cancer cell-specific
transcriptional activation of genes encoding multiple members of
the LOX family. Our study highlights three important points.
First, the HIF → LOX/LOXL pathway plays a critical role in
metastasis in orthotopic models of breast cancer. Traditionally,
metastasis is considered to be a late event in cancer progression.
In contrast, we demonstrated that initiation of the metastatic
process is an early event that is dependent on HIF-1, which is
consistent with the association between HIF-1α overexpression
and patient mortality that is observed even in patients with early-
stage node-negative breast cancers (13). Taken together with the
results of the present study, those data suggest that patients with
HIF-1α–overexpressing breast cancers may benefit from more
intensive therapy, including HIF inhibitors (2).
Second, we demonstrated the benefits of HIF suppression in

genetically different breast cancers. The combination of genetic
alterations in each breast cancer is unique, and cancer heteroge-
neity remains amajor obstacle to successful therapy.Our analysis of
cell lines and primary breast cancers revealed that different breast
cancers exhibited different patterns of LOX family expression.
Pharmacological inhibition of LOX by β-aminopropionitrile
(βAPN) has been reported to inhibit BMDC recruitment and in-
hibit metastasis in MDA-231 models (8, 14); however, βAPN does
not inhibit the activity of all LOX family members, specifically
LOXL2 (15). On the other hand, hypoxia is a common feature in
cancers (1), and suppression of HIF activity through genetic si-

lencing blocked metastatic niche formation in multiple breast
cancer lines, suggesting that HIFs represent a broader target than
currently available drugs or antibodies that each target only a subset
of LOX/LOXL proteins. Our results highlight the heterogeneous
nature of the response to hypoxia, with HIF-1 activating a unique
battery of target genes within each breast cancer.
Third, we identified LOXL4 as a direct HIF target gene in

breast cancer cells and delineated its role in metastasis. LOXL4,
the least well-characterized family member, is overexpressed in
head/neck and colorectal carcinomas (16, 17). The HIF →
LOXL4 pathway plays a significant role in collagen cross-linking,
metastatic niche formation, and metastasis in a subset of breast
cancers. LOXL4 also promotes lymph node metastasis, which
underscores the multiple cellular and molecular mechanisms by
which LOX/LOXL proteins promote breast cancer metastasis.
Inhibition of LOX in MDA-231 suppresses focal adhesion kinase
(FAK) signaling, resulting in reduced adhesive and migratory
ability of the cancer cells (8). LOX and LOXL2 alter the tumor
microenvironment by stiffening tissues through cross-linking
collagen (10, 18), leading to FAK and PI3K signaling that pro-
motes the invasive properties of cancer cells (10). The finding
that LOX family members promote breast cancer metastasis by
multiple mechanisms is consistent with data indicating that LOX/
LOXL inhibition has major effects on metastasis in mouse models.
Increased HIF-1α levels are associated with increased metas-

tasis and decreased survival in patients with breast cancer (2, 13).
Our results demonstrate that HIF activity is a critical determinant
of LOX family expression and prometastatic effects. Hypoxic
breast cancers secrete various LOXs, including LOX, LOXL2,
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Fig. 4. Inhibition of HIFs in MDA-231
suppresses BMDC homing to the lungs.
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tive photomicrographs of Picrosirius
Red-stained lungs under polarized light
are shown. (Scale bar = 50 μm.) (Right)
Cross-linked collagen fibers were coun-
ted and normalized to EV control. (B)
Flow cytometry analysis of CD45+CD11b+

cells in the lungs of tumor-bearing mice.
(C) (Left) Immunohistochemical staining
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DKD subclone. (Scale bar = 50 μm.)
(Right) CD11b+ cell clusters were coun-
ted at a magnification of 20× in 10
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*P < 0.05, **P < 0.01, ***P < 0.001 vs.
EV; one-way ANOVA, Bonferroni cor-
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and LOXL4, which cross-link collagen at sites of metastatic niche
formation to promote recruitment of BMDCs, which stimulate
lung colonization by breast cancer cells. Inhibition of HIF activity
is sufficient to block metastatic niche formation, providing
a mechanistic basis for including HIF inhibitors as components of
multidrug regimens for breast cancer.

Materials and Methods
Primary Tumor Samples. Human breast cancer tissue and surrounding normal
breast tissue were collected at the time of surgical resection at Queen Mary
Hospital, University of Hong Kong. Use of human tissues was approved by the
Institutional Review Board of the University of Hong Kong/Hospital Authority
Hong Kong West Cluster.

Cell Culture Studies. The following are described in SI Materials and Methods
and Table S1: construction of shRNA vectors, cell transfection, preparation of
lentiviruses, and establishment of stably transfected cell lines; isolation and
analysis of chromatin from cells; construction of pGL2 HRE luciferase
reporters and cotransfection assays; real-time qPCR assays; Western blot
assays; and in vitro collagen remodeling assays.

BMC Isolation and Invasion Assay. BMCs were harvested frommice by flushing
femurs and tibias with PBS and sedimented through Histopaque (Sigma).
Transwell inserts (Corning) were coated with matrigel (BD Biosciences) at
37 °C for 1 h. CM generated from MDA-231 or MDA-435 cells under 20% or
1% O2 for 48 h was placed on the matrigel-coated insert for 16 h. CM was
removed, and 1 × 106 freshly isolated BMCs or 3 × 105 naive breast cancer
cells were resuspended in serum-free DMEM (CellGro) and seeded into the
upper chamber. DMEM supplemented with 10% (vol/vol) FBS was placed in
the bottom chamber as a chemoattractant. Cells were allowed to invade for
20 h. For BMC invasion assay, cells that invaded through the membrane were
found in the lower chamber suspension. Invaded cells were counted by
means of a hemocytometer or Countess automated cell counter (Invitrogen).

Orthotopic Implantation Studies. All animal protocols were approved by The
Johns Hopkins University Animal Care and Use Committee. A total of 2 × 106

breast cancer cells resuspended in matrigel were injected into the second
left MFP of 5- to 7-wk-old SCID or nonobese diabetic-SCID mice. Tumor
growth was measured by calipers. Mice were euthanized, and the lungs

were perfused with PBS. The left lung was inflated with low-melting-point
agarose for fixation/paraffin embedding, and sections were subjected to
H&E staining and immunohistochemical analysis. The right lung was used for
DNA extraction and flow cytometry. Bioluminescent signals were detected
by means of an IVIS Spectrum optical imaging device (Xenogen). Mice were
injected i.p. with 100 mg/kg D-luciferin (Caliper Life Sciences) 5 min before
imaging of primary tumor. Mice were euthanized, and their lungs and
lymph nodes were excised for ex vivo imaging.

Lung Tissue Preparation, Genomic DNA Extraction, and Flow Cytometry
Analysis. Lungs were digested with lysis buffer and proteinase K at 55 °C
overnight, and genomic DNA was extracted with phenol-chloroform, pre-
cipitated with isopropanol, and washed with ethanol. Two hundred nano-
grams of genomic DNA was used for qPCR to quantify human HK2 and
mouse 18S rDNA sequences. To prepare lung cells for flow cytometry anal-
ysis, tissues were minced and digested with 1 mg/mL type 1 collagenase
(Sigma) at 37 °C for 30 min. Digested tissues were filtered through 70-μm cell
strainers. Cells were incubated with Fc Block (BD Pharmingen) and then with
peridinin chlorophyll protein-conjugated CD45 antibody (BD Pharmingen)
and allophycocyanin-conjugated CD11b antibody (eBiosciences), and they
were then subjected to flow cytometry analysis. Unstained control, CD45
single-stained, and CD11b single-stained cells were prepared in every ex-
periment for gating. Dead cells were gated out by side-scatter and forward-
scatter analysis.

Histochemistry. Lungs were fixed in 10% (vol/vol) formalin and washed with
ethanol before paraffin embedding. Sections were dewaxed with xylene,
and antigens were retrieved using citrate buffer. CD11b antibody (Novus
Biologicals) and a LSAB+ System HRP kit (DAKO) were used for staining.
Picrosirius Red (Sigma–Aldrich) was used for fibrillar collagen staining. Lung
sections were stained with H&E to visualize metastatic foci.
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