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ABSTRACTI
5S rRNA genes are linked to the histone genes in the 13 populations of the

crustacean Artemia that we have studied. In all cases, two types of repeat units are
found. Southern blot analysis of all populations shows that they can be grouped into
three classes: a) American bisexuals; b) Eurasian bisexuals, and c) parthenogenetic
organisms (all from Eurasia). Restriction analysis of a bisexual population from San
Francisco Bay shows that the two repeat units are of 9.0 and 8.5 kb (with minor
heterogeneities of restriction sites). In parthenogenetic organisms, the two repeat
units are of approximately 12 kb. Sequencing data from the region of the 5S rRNA
from the San Francisco Bay population, shows that in both types of units, the single
5S rRNA gene (315 bp in length), is located 430 bp downstream the 3' regulatory se-
quences of the H2A gene, the last gene in the histone cluster. We have isolated three
clones that contain 5S rRNA sequences. Two of them (one from an American bisexual
and the other from a parthenogenetic population) contain histone and 5S rRNA
genes, both with the same transcriptional polarity. The third clone, lacking histone
genes, is likely to be an orphon derived from the parthenogenetic population.

INTRODUUCfON
The structure of the 5S rRNA genes has been studied in a wide variety of

eukaryotic organisms. 5S rRNA genes are, in general, organized in tandem arrays
constituting a repeated gene family. The intergenic regions range from 2 kb in the
Syrian hamster (1) to 375 bp in Drosophila melanogaster (2). The exceptions to this
rule are lower eukaryotes, like yeasts and the slime mold Dictyostelium discoideum
(3) and the copepod Calanus (4), where th- 5S rRNA genes are linked to the large
rRNA genes, or scattered throughout the genome, as in Neurospora crassa (5).

Our first characterization of a 5S rRNA gene in the crustacean A rtemia showed
that a single copy of this sequence was found in the middle of a 5.5 kb-long region
(6). Subsequent studies by Bagshaw and coworkers and our group (7-10) have

demonstrated that 5S rRNA genes and histone genes are linked, although no

conclusions were obtained on whether this linkage was a peculiarity of the San
Francisco Bay population and not present in other Artemia strains, or if it was a

particular case for A rtemia and not found in other systems.
In this paper, we demonstrate the linkage of 5S rRNA and histone genes by
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sequencing the 5S rRNA gene region of two clones from different populations. We

also demonstrate that these genes are formed in two different organizations, and that

both characteristics are common to all the populations of Artemia we have studied.

Crustaceans is a group of organisms that are very poorly studied at the genomic
level. Our results could help to fill this gap in a gene family very well suited for

evolutionary studies.

MATERIALS AND METsHODS
Organisms and DNA.

Artemia cysts were purchased from San Francisco Bay Brand, Inc. Batch 1808

was a population from San Francisco Bay; other batch without number was

purchased in 1982 to the same supplier and contained a parthenogenetic population
of Chinese origin. Cysts from the other different populations were a kind gift of Dr. F.

Amat (Instituto de Acuicultura del CSIC, Castell6n, Spain). High molecular weight DNA

was purified as described by Cruces et al. (11), with minor modifications.
Plasmids and probes

cDm500 (12) contains a whole histone repeat from D. melanogaster and was

provided by Dr. D. Hogness, from Stanford University. pArt5H-a (referred to as pMD59
by Dfaz-Guerra et al. (6)) was obtained by cloning PstI-digested Artemia DNA into the

corresponding site of pBR322. pArt5H-b and pArt5-b were isolated from the
genotheque described by Gallego et al. (13). Recombinant phages were selected by
hybridization with the RsaI fragment (positions 25 to 75) of the 5S rRNA (obtained

from pArt5H-a). The inserts of the positive phages were subcloned into the Sall site

of pUC9.
DNA sequencing

To sequence pArt5H-a, the plasmid was digested with HindIII to obtain the 3' end
of the histone cluster; the 362 bp HindIII fragment (positions 1 to 362 in Fig. 5) was
subcloned in pUC18 and sequenced as described by Chen and Seeburg (14), obtaining
the whole sequence of the fragment from both universal primers. To sequence the 5S
rRNA gene and surrounding regions, pArt5H-a was digested with HindIll plus HinclI
(positions 362 to 1066 in Fig. 5, respectively). This fragment was subcloned in pUC9
and sequenced by the chemical method (15) from both ends and from the BstEII site
(position 851 in Fig. 5) in both directions. We have not an overlapping fragment
between the HindlIl and the HindIII/HincII fragments in pArt5H-a. We consider,
however, that the similarity of this region with that of pArt5H-b makes very
unlikely the presence of a small HindIII fragment between them.

To sequence pArt5H-b, the plasmid was digested with BstEIl and HpaI (see Fig. 4).
The BstEII fragment (positions 1 to 945 in Fig. 5) was sequenced by the dideoxy
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Table 1
Restriction fragments hybridizing to histone or 5S rRNA probes

in genomic Artemia DNA

Hybridizing fragments

Enzyme(s) Histones 5S RNA

XhoI >25; 8.5 >25; 8,5.
PstI 8.5; 5.5 8.5; 5.5
XhoI+PstI 5.5; 4.5; 4.0 5.5; 4.5
BgIl 6.0; 5.1; 3.4; 3.0 5.1; 3.0
XbaI 9.0; 4.9; 3.6 9.0; 4.9
BglI+XbaI 5.1; 4.1; 3.0; 1.1; 0.9 4.1; 3.0
BamHI 9.0 9.0
Sall >25; 9.0 >25; 9.0
BamHI+SaIl 8.5; 6.5; 2.5 8.5; 2.5
PvuII >25; 4.8; 4.2 >25; 4.2
BstEII 6.6; 5.9; 2.4; 1.5; 0.9 2.4; 0.9
PvuII+BstEII 5.9; 4.8; 2.4; 1.5; 0.9; 0.75 2.4; 0.9
HindIII 7.9; 6.5; (5.9); (2.7); 2.1; 0.45 7.9; (2.7); 2.1
HindIII+XhoI 6.5; (5.9); 4.5; 3.4; (2.7); 2.1; 0.45 4.5; (2.7); 2.1
EcoRI >25; (9.0); 7.8 >25; ( 9.0); 7.8
BglII >25; 9.0 >25; 9.0
EcoRI+BamHI 9.0; (5.5); (3.5) 9.0; (3.5)
BglII+Xbal 9.0; (7.9); 3.6; 2.5; 1.2 9.0; (7.9); 2.5

The size of the fragments is expressed in kb.

technique (14). The BstEII-HpaI fragment was sequenced from the BstEII site by the

dideoxy technique, and also from the EcoRI sites (positions 1074 and 1109 in Fig. 5) in
both directions by the chemical method. pArtS-b was sequenced by the chemical

method from the BstEII site (position 308 in Fig. 5). In every case, more than one gel
was read from each region.

Alignment of the sequences was done using the Nucaln program of Lipman and
Wilbur (16).
Other methods

All conventional methods of DNA manipulation were done according to the

original protocols or as described in the Manual of Maniatis et al. (17).
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RESULTS
Organization of 5S rRNA-histone genes

Histone and 5S rRNA genes in Artemia are repeated families, with 100 copies
per haploid genome (8). Restriction analysis indicates that these genes are arranged
in tandem, as happens in other eukaryotic organisms. We have carried out this type

of analysis with Southern blots by using ten restriction endonucleases and mixtures
of them, and hybridizing with histone or 5S rRNA probes (Table 1). Representative
digests are shown in Fig. 1. The results have two common characteristics: 1) all of the
fragments detected by the 5S rRNA probe are also detected by the histone probe. 2) In

some digestions, besides discrete fragments, there are high molecular weight
fragments (larger than the 23 kb marker of the I DNA digested with HindIII).

The 5S rRNA probe does not contain any sites for the restriction endonucleases

used (shown in Table 1); it must, therefore, detect single fragments. The fact that in

every digestion tested there are two fragments is indicative of two types of

organization for the 5S rRNA genes. As mentioned before, all 5S rRNA-positive
fragments are also detected by the histone probe, although this probe detects

fragments not shown with the 5S rRNA probe.

These data, together with the restriction analysis of the plasmid pArt5H-a (the
5.5 kb PstI fragment of one American bisexual repeat, see below), and several more

different double digestions not shown (using as probes fragments derived from

pArt5H-a), have allowed us to construct the physical maps shown in Fig. 2. These

maps show that histone and 5S rRNA genes are linked and that there are two types of

repeat units, of 9.0 and 8.5 kb, in the population of San Francisco Bay. The maps also
explain the presence of non-defined high molecular weight fragments that
disappear in double digestions. In the example of Fig. 1, the XhoI digest shows a

fragment of 8.5 kb and high molecular weight fragments. In the PstI-XhoI double

digest both type of fragments are cut, giving rise to two (with the 5S rRNA probe) or

ihree (with the histone probe) fragments. As shown in Fig. 2, type I repeats have no
XhoI sites, whereas type II repeats have one site, giving a unit length fragment of

8.5-kb.
The maps shown in Fig. 2 are for the most abundant repeats. We have observed

restriction site polymorphisms, mainly in type I repeats, as those depicted for BgIII,
HindIll and EcoRI (these polymorphic fragments are shown between brackets in
Table 1). The relative intensities of the two bands of the PstI digest shown in Fig. 1
indicate that type I is the most abundant, about 60% of the total.
Heterogeneity of 5S rRNA-histone genes in different Artemia populations

We have already shown that different Artemia populations have differences in
the organization of some genes. Satellite I is present only in American populations
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Fig. 1. Southern analysis of 5S rRNA and histone genes from Artemia from San
Francisco Bay. DNA (five m g) was digested with the different restriction
endonucleases and hybridized with histones or 5S rRNA probes as indicated.
Numbers refer to size of the detected fragments in kb. P, PstI; Xh, XhoI; BgI, BglI.

(18, 19). rRNA genes, also, can be found in two types of repeats, one found in

American populations and the other found in parthenogenetic animals from Eurasia

(13, 20).
To examine whether this kind of heterogeneity is also observed in the 5S

rRNA-histone genes, we did Southern blot analysis of 13 different populations of

Artemia, from different origins and with different types of reproduction. Fig. 3
shows examples of these experiments. Parthenogenetic populations (first three

lanes) apparently give only one BgIl fragment of approximately 12 kb when
hybridized with the 5S rRNA probe. The same results have been obtained with the

other parthenogenetic populations used: Delta del Ebro, Calpe and Ayamonte (all from
Spain), and Alcochete (Portugal). Although this result could be interpreted as being
only one type of repeat in parthenogenetic Artemia, the digests shown in part B of
the Figure (Delta del Ebro) indicate that the 5S rRNA probe detects two types of repeat
units in these organisms (as there is no target for EcoRI, XbaI and PvuII in the

probe). Moreover, the similar intensity of the fragments rules out the possibility of

one being a minor polymorphism.
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Fig. 2. Restriction maps of the two main types of 5S rRNA-histone genes present in
A rtemia from San Francisco Bay. Open boxes represent the regions that hybridize
with the histone probe; filled boxes represent the 5S rRNA coding sequence. The
dashed restriction sites in the type I repeat represent minor polymorphisms.
Restriction endonucleases are: B, BamHI; BgII, BglII; Bs, BstEII; E, EcoRI; H, HindIII;
Pv, PvuII; S, Sall; X, XbaI. Other symbols are as in Fig. 1.

Lanes four and five correspond to bisexual populations from Spain. In this case,

the 5S rRNA probe again detects two BglI fragments, of 4.4 and 4.0 kb (besides a

partially digested one of approximately 6.7 kb). We also tested American bisexual

populations, different from the one from San Francisco Bay used in the experiment

shown in Table 1 and Fig. 1. Besides the two shown in Fig. 3, Artemia from Yucatain

(Mexico) gave also the same results, that is two fragments are of 5.1 and 3.0 kb, in

agreement with the maps shown in Fig. 2.

Although not applicable to the parthenogenetic populations, we have ruled out

that the presence of two types of repeat units could be due to sexual dimorphism;

experiments done with male and female individuals gave the same results (data not

shown).
As our main interest was to demonstrate that 5S rRNA and histone genes were

linked, and also due to the complexity of the work involved, we have not tried to

construct a physical map for the parthenogenetic or bisexual populations from

Eurasia (although pArt5H-b contains a 9.0 kb Sall fragment from a parthenogenetic

population, see below). We have not found restriction endonucleases that cut only

once in the Euroasiatic bisexual organisms, so we cannot establish their repeat unit

length. We have these data, however, for the other two types of populations:
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Fig. 3. Southern analysis of 5S rRNA-histone genes from different A rtemia
populations. For each digest, five mg of DNA were used. Blots were hybridized in all
cases with the 5S rRNA probe. In part A, DNAs were digested with BglI and in part B,
with EcoRI plus XbaI (E+X) or PvuII (Pv). Numbers refer to marker DNAs in kb. A,
DNAs from: lane 1, Sanlucar de Barrameda (Spain, parthenogenetic, diploid); lane 2,
Tianjin (China, parthenogenetic, tetraploid); lane 3, Saelices (Spain,
parthenogenetic, tetraploid); lane 4, San Fernando (Spain, bisexual); lane 5, Bonmati
(Spain, bisexual); lane 6, Great Salt Lake Utah (USA, bisexual); lane 7, Boca Chica
(Venezuela, bisexual). In part B, Delta del Ebro (Spain, parthenogenetic, tetraploid).
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Fig. 4. Restriction map of plasmids pArt5H-a, pArt5H-b and pArt5-b. Boxes are the
same as in Fig. 2. Arrow indicates the direction of transcription of the SS rRNA gene.
Symbols are the same as in Fig. 2 and 3, plus Hp, Hpal; Sm, Smal.
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American bisexuals have two repeat units, of 9.0 and 8.5 kb, whereas

parthenogenetic populations have two different repeat units (independently of

ploidy), but both with a similar length of approximately 12 kb.
Structure of 5S rRNA-histone genes

We have isolated three clones that hybridize with 5S rRNA. One of them,

pArt5H-a, was obtained from an American bisexual, as mentioned before. The

Artemia DNA used to generate the other two clones, pArt5H-b and pArt5-b was

isolated from a commercial batch with a parthenogenetic population, most probably

from China (13). The restriction maps of the three plasmids are shown in Fig. 4.

The maps shown in Figures 2 and 4 outline the 5S rRNA-histone repeat unit:

there is only one 5S rRNA gene, of approximately 315 bp (see below) per repeat. The

histone gene cluster is of 3.2 kb and is located 430 bp 5' of the 5S rRNA gene.

The restriction map of pArt5H-a corresponds to that of the 5.5 kb PstI fragment

of the type I repeat shown in Fig. 2. The map obtained for pArt5H-b does not coincide

with those of Fig. 2 because it is of parthenogenetic origin. This is further confirmed

by the fact that its map agrees with the digestions shown in Fig. 3B: the 3.8 kb

fragment of PvuII and the 3.5 kb fragment of the EcoRI plus XbaI double digest are

present in pArt5H-b. Therefore, pArt5H-a is the 5.5 kb PstI fragment of the type I

repeat from American bisexuals; pArt5H-b is a 9.0 kb Sall fragment of one of the

repeat units from parthenogenetic populations.

Analysis of the sequences surrounding the 5S rRNA genes
We have sequenced 1068 bp in pArt5H-a and 1428 bp in pArt5H-b. In both cases,

the sequence goes from the 3' end of the histone cluster to beyond the 5S rRNA gene.

The 653 bp sequenced from pArtS-b include only the 5S rRNA gene (Fig. 5).

The sequences in Fig. 5 show that these intergenic spacers are made of small,

very related, regions, with a similarity between them from 79 to 95%. These regions
are shown schematically in Fig. 6. The organization of the sequence is similar in

pArt5H-a and pArt5H-b. We think that pArtS-b can be classified as an orphon derived

from a cluster like that represented by pArt5H-b, as defined by Childs et al (21): there

is no relationship of the sequences surrounding the 5S rRNA gene, and even more,

regions "g" and "e" are truncated. In the boundaries of the orphon there is an

Fig. 5. Sequence of the region that contains the 5S rRNA gene in plasmids pArt5H-a,
pArt5H-b and pArtS-b. Letters above the sequences indicate regions of similarity
between different plasmids. Superscripts denote that the regions are truncated.
Subscripts denote related parts of a given region. The 3' regulatory sequences for
H2A genes are boxed. 'Q' represent the hairpin structure located in the first
regulatory sequence. Arrows below the sequence indicate the different direct or
inverted repeats discussed in the text.
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inverted repeat (TTTGT/ACAAA), flanked by a short direct repeat, TTAA, suggesting a

transposition event.

Fig. 7 shows the sequences of the 3' end of the histone genes for pArt5H-a and
pArt5H-b. The region contains the coding sequence for the last 32 aminoacids

(pArt5H-a) or 27 aminoacids (pArt5H-b) of histone H2A. The sequences are identical

to the consensus (22) except for the Gly-98 (Ser in Artemia) and the last six

aminoacids, very variable among different species. The conserved region (of 23 bp),
found 40 bp after the termination codon, has 83% similarity with the consensus (the

four changes found do not affect the 16 bp internal hairpin structure of this region).
The purine-rich motif, RAAAGA, is found 8 bp after the conserved region, although
in pArt5H-a it has a G to T transversion. This motif is found again after 80 bp, the

distance needed for correct termination of transcription (23). In summary, all the
elements described for correct tennination and messenger stability are found (23-
25). The finding of H2A as the closest histone to 5S rRNA is in contrast with the data

of Andrews et al. (8), who suggested that the 5S rRNA gene was located between H2B

and HI, although based only in hybridization with heterologous probes.
Based on the similarity of the sequences surrounding the 5S rRNA coding

sequence, we think that the 5S rRNA gene contains, besides the 120 bp of coding

sequence, region "g" upstream and regions "h", "i" and "j" downstream, which give a

total of 315 bp. The 5S rRNA coding sequence in the three recombinants is very

similar; in pArt5H-a it is identical to the sequence described for 5S rRNA from the
San Francisco Bay population by Diels et al. (26) by RNA sequencing. pArt5H-b has a

T to C change in position 118 and pArt5-b has three changes: T to C (position 17), C to
A (position 54) and T to C (position 111).

Recently, it has been shown that transcription by RNA polymerase III is not

only dependent of the internal control regions but also of 5' promoter elements (27-
30). These regions seem to be located at approximately -30 and -60 bp from the

transcription initiation site, and have been identified by mutation and deletion
analysis. The region at -30 is a "TATA-like" motif, not very well defined (31). The -60

region is pyrimidine-rich, and has been studied in U6 snRNA genes from mouse (32)
and from X. tropicalis (33). Similar sequences are found in Artemia 5S rRNA gene in

pArt5H-a at position -41 to -56 (711 to 725 in Fig. 5) or at position -43 to -56 (804 to 817
in Fig. 5) in pArt5H-b.

The 3' regions "h" and "i" are T-rich sequences acting as termination signals for
RNA polymerase III transcription (34).

Fig. 6. Schematic representation of the sequences shown in Fig. 5. Letters and
symbols are the same as in Fig. 5. Small dashes above regions 'a', represent the
RAAAGA motif discussed in the text.
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Lys Leu Leu Gly Gly Val Thr Ile Ala Gln Gly Gly Val Leu Pro Asn Ile Gln
Ser 112

pArt 5H-a AAG CTT CTG TCG GGG GTC ACC ATT GCC CAA GGA GGC GTT TTG CCC AAT ATT CAA 54
pArt5H-b . T..... ... ... ... ... ... ... ... ..C ... . 40

Ala Val Leu Leu Pro Lys Lys Thr Glu Ser His His Lys Ala Lys Gly Lys
Lys Pro Ala 126

pArt 5H-a GCA GTC CTT CTA CCA AAG AAG ACT GAA AAA CCG GCA AAG GCT TAA 99
pArt5H-b ..C....G...... ... ... ... ... ... G........... ... 85

Ala

G C C C
pArt 5H-a ATGAATCTAATTTTTAGCTCCAGGCCCAACCCCCAAATTAACCAACAGCCCTTTTAAGGGCTACAAA 166
pArt5fl-b ..A.T. C-...G.AC.T..... T....................................... 150

AGA
pArt5H-a TTAATTGAATTGCTCTATAGCATGTGACCATCTGGAAAGGACAAAGCTATGAAATTTAGGATACTGA 233
pArt5H-b .......... GA.A.CG .G. GA. G. A. A.... 217

A
pArt 5H-a ATGT--GAAAAGGAAAA 248
pArt5H-b .C .AA. GGGCGTGGGGGG 242

Fig. 7. 3' region of the H2A sequence from plasmids pArt5H-a and pArt5H-b. The
underlined sequences are the consensus ones (21, 22). Points in the nucleotide
sequences represent identical bases. Dashes represent deleted bases to maximize
homology. Only aminoacid changes are shown. Numbers in the aminoacid sequence
correspond to the consensus sequence; numbers in the nucleotide sequences refer to
Fig. 5.

DISCUSSION

We have studied the genomic organization of the 5S rRNA-histone repeat in

different populations of Artemia. All populations studied have 5S rRNA and histone

genes linked in one unit, and in all cases there are two types of units in every

population. These two types are of 9.0 and 8.5 kb in American bisexuals, and of

approximately 12 kb in parthenogenetic populations from Eurasia. The clones

described by Andrews et al. (8) must be of the type we have called before type II from
American bisexuals, as these are the only ones that have EcoRI sites, and their

genotheque was made in ICharon4A phages (7). Further support for this hypothesis
comes from the diagram of the upper part of Fig. 6, that corresponds to the data of
these authors (9). The only common region with the clones described in this work is
the 5S rRNA gene alone, although with minor differences in the arrangement of the
regions "h", "i" and "j". Upstream of region "g" the sequence has no similarity with

our type I repeat. We do not know, however, if there is the same kind of organization
of type I repeats in the type II repeats closer to the histone genes.

pArt5H-b is of parthenogenetic origin. As the experiment shown in Fig. 3

demonstrate, these repeats are of approximately 12 kb; therefore, pArt5H-b must be a
9 kb Sall fragment of this type of repeats.

6294



Nucleic Acids Research

A rtemia 5S rRNA-histone genes have very large spacers, in contrast with other

species, from mammals to lower eukaryotes. We do not know whether there are other

coding sequences in this region; hybridization experiments, however, demonstrate

that these spacers are specific for a given population. For instance, the 1.0 kb Bgll-

PstI fragment of pArt5H-a only hybridizes with American populations, and the 3 kb

PvuII-SaIl fragment of pArt5H-b hybridizes with populations from Eurasia, both

bisexuals and parthenogenetics (data not shown). This is in agreement with our

previous findings about the distribution of satellite I (18) and rRNA (Medina, R. et al.

in preparation), that suggest that the appearance of parthenogenesis in the old

world Artemia occurred later than the geographical isolation of Artemia between

the new and the old worlds.

Our sequencing results clearly demonstrate that the histone gene that is closer

to the 5S rRNA genes is H2A. This is in contrast to the data of Andrews et al. (8), that

reported that the 5S rRNA gene is between H2B and HI. The H2A gene studied, and

presumably the whole histone cluster, belongs to the histone genes expressed during

the S phase, and whose mRNAs are not polyadenylated (35). It is surprising, then,

that region "c" contains the canonical polyadenylation signal, AATAAA. In pArt5H-a,

there is only one signal, located 262 bp from the termination codon. In pArt5H-b

there are two "c" regions after H2A and another two after the 5S rRNA gene.

Although Alterman et al. (36) have found in mouse cell hybrids histone mRNAs that

contain the hairpin structure and are correctly polyadenylated, we do not think that

these signals are functional in these genes in Artemia, as its genome is very A-T rich

(18) and therefore the sequence AATAAA is likely to be found by chance in a non-

transcribed region.
The linkage between 5S rRNA and histone genes posses the problem of its

origin. We think that the 5S rRNA gene (315 bp) seems to have invaded the histone

repeat, as the same type of organization of small repeated regions is seen at both

sides of the 5S rRNA gene and in repeats coming from different Artemia populations.
This invasion could have take place by transposition; in pArt5H-a, the 5S rRNA gene

is bounded by the direct repeat AACAAA (positions 622 and 948 in Fig. 5); the same

repeat is found in the sequence of Bagshaw et al. (9). Parthenogenetic organisms
have a different repeat, AAATAAAC (positions 731 and 1033 in pArt5H-b, Fig. 5).

The linkage between 5S rRNA and other transcriptional units is well known in

prokaryotes and (as mentioned in the Introduction) in protists and fungi (3), where

the 5S rRNA gene is linked to the 18S-5.8S-28S unit. Pace et al. (37) have suggested
that the lack of linkage between the 5S rRNA gene and the large rRNAs genes would

be a primitive characteristic of all eukaryotes. If so, then, the linkage between the 5S

rRNA gene and other transcriptional units should be a later event in evolution.
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There is no reason a priori to restrict the transposition of 5S rRNA genes only to the

other rRNA genes. The mechanisms by which this process took place should fall in

what Dover (38) describes as molecular drive; it would be difficult to imagine this

transposition event before amplification of histone and 5S rRNA genes. Molecular

drive, on the other hand, could homogenize the 5S rRNA-histone repeats and make

disappear the isolated repeats.

Another important question is whether this linkage is particular to Artemia or

it is a more general phenomenon. Insects, another class of the phylum Arthropods do

not have the linkage (2). In the class Crustacea there is very little information.

Drouin et al. (4) have found that in the genus Calanus (subclass Copepoda) 5S rRNA

genes are again linked to the large rRNA repeats. We have preliminary evidence that

shows that in lobster and crayfish (subclass Malacostraca, order Decapoda), 5S rRNA

and histone genes are not linked (data not shown). Clearly, more work is needed with

other primitive crustaceans and other arthropods, like kelycerates, or even lower

species in the phylogenetic tree, like annelids, to analyze the distribution of this

unusual gene linkage.
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