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Abstract

Background: Current sequencing technology makes it practical to sequence many samples of a given organism,
raising new challenges for the processing and interpretation of large genomics data sets with associated metadata.
Traditional computational phylogenetic methods are ideal for studying the evolution of gene/protein families and
using those to infer the evolution of an organism, but are less than ideal for the study of the whole organism
mainly due to the presence of insertions/deletions/rearrangements. These methods provide the researcher with the
ability to group a set of samples into distinct genotypic groups based on sequence similarity, which can then be
associated with metadata, such as host information, pathogenicity, and time or location of occurrence. Genotyping
is critical to understanding, at a genomic level, the origin and spread of infectious diseases. Increasingly,
genotyping is coming into use for disease surveillance activities, as well as for microbial forensics. The classic
genotyping approach has been based on phylogenetic analysis, starting with a multiple sequence alignment.
Genotypes are then established by expert examination of phylogenetic trees. However, these traditional single-
processor methods are suboptimal for rapidly growing sequence datasets being generated by next-generation
DNA sequencing machines, because they increase in computational complexity quickly with the number of
sequences.

Results: Nephele is a suite of tools that uses the complete composition vector algorithm to represent each
sequence in the dataset as a vector derived from its constituent k-mers by passing the need for multiple sequence
alignment, and affinity propagation clustering to group the sequences into genotypes based on a distance
measure over the vectors. Our methods produce results that correlate well with expert-defined clades or
genotypes, at a fraction of the computational cost of traditional phylogenetic methods run on traditional hardware.
Nephele can use the open-source Hadoop implementation of MapReduce to parallelize execution using multiple
compute nodes. We were able to generate a neighbour-joined tree of over 10,000 16S samples in less than 2
hours.

Conclusions: We conclude that using Nephele can substantially decrease the processing time required for
generating genotype trees of tens to hundreds of organisms at genome scale sequence coverage.

Background
In the post-genomic era, as sequencing becomes ever
cheaper and more routine, biological sequence analysis
has provided many useful tools for the study and com-
bat of infectious disease. These tools, which can include
both experimental and computational methods, are
important for molecular epidemiological studies [1-3],
vaccine development [4-6], and microbial forensics
[7-9]. One such method is genotyping, the grouping of
samples based on their genetic sequence. This can be

done experimentally [10-12] or computationally, either
by identifying genetic signatures (nucleotide substrings
which are only found in a single group of sequences)
[13], or on the basis of genetic distance among the
sequences [14-16]. These methods allow a researcher to
split a group of sequences into distinct partitions for
further analysis. In a forensics context, genotyping a
sequence can yield clues on where the sequence comes
from. In surveillance, genotyping can be used to exam-
ine the evolutionary footprint of a pathogen, for exam-
ple, to identify areas where certain vaccines and other
countermeasures should be used.* Correspondence: mcolosimo@mitre.org

The MITRE Corporation, 202 Burlington Rd, Bedford MA 01730, USA

Colosimo et al. Source Code for Biology and Medicine 2011, 6:13
http://www.scfbm.org/content/6/1/13

© 2011 Colosimo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:mcolosimo@mitre.org
http://creativecommons.org/licenses/by/2.0


Sequence-based comparison involves three major
steps. The first is to choose a set of sequences to study,
based on some criteria, such as strain, time period or
geographic region. Ideally, this set can be easily
extracted from a well-populated reference database, con-
taining not only the sequence data for the samples of
interest, such as a particular serotype of Influenza, but
also sufficient metadata. For infectious diseases, types of
metadata include geospatial and temporal co-ordinates,
host information, and pathogenicity. Once the appropri-
ate dataset is chosen, the samples are compared and
clustered in sequence space. From here, the metadata
associated with the sequences is used to assess the evo-
lutionary landscape of the organism or pathogen [17].

Sequence Comparison Methods
Traditionally, the first step in performing sequence com-
parisons is to generate a multiple sequence alignment
(MSA) from the sequences of interest. This is most
often done using heuristics found in utilities such as
CLUSTAL W [18], MUSCLE [19], T-COFFEE [20], and
ProbCons [21]. The dynamic programming solution,
which can find the mathematically but not necessarily
biologically correct solution, quickly becomes impracti-
cal with the sample sizes used in any meaningful analy-
sis. A recent review [22] examined many of the issues in
producing these alignments, most notably the trade-offs
between alignment accuracy, time, and computational
expense. Many of the most accurate algorithms cannot
be used on a large number of sequences, or on very
lengthy sequences, and were only recommended for sets
of less than 100 sequences.
Because the alignment is dependent on each of the

sequences from which it is calculated, the alignment
must be recomputed whenever a new sequence is
added. This becomes problematic for surveillance appli-
cations, where new sequences will be added constantly.
While this problem has been mitigated to some extent
using with algorithms such as Near-Alignment Space
Termination (NAST) [23], this still adds a level of com-
plexity if the dataset is continually growing, as is the
case with Influenza and other infectious diseases.
Another issue is that different heuristics will yield differ-
ent alignments – they are only designed to find an
acceptable answer, not the optimal alignment. While
methods have been developed to find a “consensus
alignment” [24] from a set of alignments, this requires a
good deal of time and computing power.
The composition vector (CV) [25] method has been

used to describe DNA/RNA and protein sequences as
vectors, using the distance between these vectors as the
genetic distance. This method involves using a sliding
window to represent each sequence as a vector, where
each element of the vector is calculated based on the

actual and expected frequency of the k-mer (DNA/pro-
tein subsequence of length k) observed in that window.
The vector representation allows the distance between
two sequences to be calculated with any standard dis-
tance metric. The CV method was shown to produce
trees which matched established taxonomies, as inferred
from the 16S RNA segment by more conventional align-
ment-based methods [26]. The CV method was later
expanded into the complete composition vector (CCV)
method [27], which uses sliding windows over a range
of lengths to describe the sequence. Since these methods
do not require alignments to be calculated, distances
calculated between sequences remain constant, rather
than being dependent on the set of sequences being
examined, making these methods ideal for the handling
of rapidly growing datasets. No molecular models need
be used to calculate distances – distances are calculated
using any distance metric that can be used to calculate
the distance between vectors.
The next step in sequence analysis is the clustering of

the sequences. Traditionally, this is done by inferring a
phylogenetic tree. Tools for this purpose include PHY-
LIP [28], PAUP* [29], or POY [30]. This work was initi-
ally performed using distance-based methods, such as
the UPGMA or neighbour-joining algorithms [31], or
cladistic methods such as Maximum Parsimony. As
computational power increased, methods that inferred
trees based on models of evolution were used. These
include the Maximum Likelihood technique, as well as
Bayesian Inference. While these methods produce phylo-
genetic trees, which provide a useful visualization, any
further analysis and grouping must be performed manu-
ally. As the number of sequences to compare increases,
this becomes more and more difficult. In fact, there has
been much recent research into new methods to visua-
lize phylogenetic trees with large numbers of leaves
[32,33]. In addition, the phylogenetic tree view proves
difficult to integrate with the metadata. For example, a
recent paper discussing the spread of H5N1 Avian Influ-
enza used Google Earth to draw a phylogenetic tree on
top of the globe [34]. While this visualization works well
for a small number of samples, it is ineffective for larger
datasets, due to the “busyness” of the visualization.

Computational Genotyping
An alternative to the pure phylogenetic approach is
computational genotyping. This involves partitioning the
set of sequences into discrete groups, based on some
criteria. This can be based on differences between
known subtypes, such as tandem repeats or single
nucleotide polymorphisms, or by genetic distance. In the
case of genotyping based on distance, this becomes a
clustering problem. In 2007, Frey and Dueck published
a paper on a new clustering algorithm known as affinity
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propagation clustering [35]. In contrast to other cluster-
ing algorithms, such as k-means and Expectation Maxi-
mization (EM), the affinity propagation algorithm does
not require the user to explicitly select a given number
of exemplars at the start of clustering. Instead, affinity
propagation simultaneously considers all points as
potential exemplars, using an initial preference to deter-
mine the sensitivity, and therefore the number of clus-
ters. This eliminates the need for large numbers of runs
to determine the ideal number of clusters and any
dependence on initial conditions seen in other partition
clustering algorithms. Furthermore, this algorithm
allows the user to set the preference for each data point.
This is useful for a scenario where a partial set of repre-
sentative samples are known, but there may be other
exemplars along with these in a data set. The affinity
propagation has been tested on geospatial, text, and
gene expression data and showed improvements in both
speed and accuracy over other clustering algorithms.
The main advantage of an automated computational

genotyping method is that it gives the researcher the
ability to combine a measure of sequence similarity
(cluster membership) with the metadata. It is this meta-
data that yields the most information about a sample. A
phylogenetic tree will tell what samples are close in
sequence space, but any further inference is made using
the metadata. By separating the sequences into discrete
groups, the researcher is given much more flexibility to
visualize the data and associated metadata.

MapReduce
MapReduce [36] is the software framework developed by
Google™ to support parallel distributed execution of
their data intensive applications. MapReduce is designed
for fault-tolerant computations with extremely large
datasets. MapReduce is divided into two major phases
called map and reduce, separated by an internal shuffle
phase of the intermediate results. Hadoop is an open-
source version of MapReduce implemented in Java and
sponsored by Amazon™, Yahoo™, and other major
vendors. Recently, MapReduce has been used for
sequence and phylogenetic applications. For example,
CloudBurst uses Hadoop for parallel short read-mapping
for use in a variety of biological analyses including SNP
discovery, genotyping, and personal genomics [37]. The
Genome Analysis Toolkit uses the MapReduce paradigm
for shared memory platforms [38]. MrsRF (MapReduce
Speeds up RF) is a multi-core, multi-machine algorithm
that generates t × t Robinson-Foulds distance matrix
between t trees [39] using Phoenix [40], a MapReduce
implementation for shared memory multi-core platform,
and OpenMPI [41]. These uses indicate that MapReduce
is a promising tool to help solve the computational chal-
lenges with large datasets.

Nephele
In this paper, we describe a scalable complete genotyping
system that brings together the complete composition
vector and affinity propagation algorithms to produce
genotypes from Influenza A sequences. The system has
been tested on a variety of Influenza A and Actinomycetes
genome data. In addition to providing discrete clusters
representing genotypes, we use methods that produce
trees that closely match the topologies of trees inferred
using traditional phylogenetic methods, in order to pro-
vide scientists with a more familiar visualization.

Implementation
Datasets
The Influenza dataset used to develop our methods was
that of Holmes et al. [42]. The clades and reassortment
events found in these samples were discussed in detail, pro-
viding eight sets of sequences (one for each gene studied in
the paper) for verification of our methods. This dataset
consists of 155 samples, taken from New York State during
the 1999-2000, 2001-2002, 2002-2003, and 2003-2004 flu
seasons. The complete coding sequences are available, as
well as the date and county of collection for these strains.
We also used HA segments from H1N1 (1141) and H3N2
(2201) parsed from GenBank’s viral division (gbvrl). For
testing our implementation, we used 10,270 16S samples
from GreenGenes (core_set_aligned.fasta retired on 07 Feb-
ruary 2007; http://greengenes.lbl.gov/).
To test our methods, two additional datasets were

identified. A set of 94 sequences representing WHO
expert-defined genotypes (http://www.who.int/csr/dis-
ease/avian_influenza/guidelines/nomenclature/) was
used to validate our methods, and another dataset repre-
senting an 2007 Influenza outbreak in Europe was cho-
sen to demonstrate the utility of the computational
genotyping approach for microbial forensic analysis
(Additional File 1).
We also used 27 full length genomes of Actinomy-

cetes bacteria from the Broad Institute along with their
computed concatenated protein sequences, downloaded
from the Tuberculosis Database (TBDB) [43].

Complete Composition Vector
The method used is based on that of Wu et al. [44].
Each sequence, S, of a given length L, can be broken
into L – k + 1 overlapping substrings of length k. For
each substring a, the probability of occurrence is calcu-
lated as

p(α) =
f (α)

L − k + 1
,

where f(a) is the frequency of substring a in S. Next,
the expected probability, q is calculated using a Markov
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model described by Brendel, Beckmann, and Trifonov,
which takes into account the probabilities of length-(k-
1) and length(k-2) strings [45].

q(α) =
p(α1α2 . . . αk−1)p(α2α3 . . . αk)

p(α2α3 . . . αk−1)

This is designed to highlight the role of selective
mutation, and it was found that phylogenetic trees pro-
duced without subtracting the background via the Mar-
kov model were not consistent with traditional
approaches [25].
The composition value, π, for substring a is defined

as:

π(α) =
{

p(α)/q(α) − 1
0

q �= 0
q = 0.

The kth composition vector, Vk(S), is comprised of the
composition values for all possible substrings of length
k. For amino acid sequences, V is of length 20 k, and
for DNA/RNA, V is of length 4 k. This method has
been shown to produce trees which match known taxo-
nomies [26].
In 2004, Wu et al. extended the CV approach into the

complete composition vector (CCV) [27]. This method
combines the composition vector approach with the
idea of the complete information set, in order to supple-
ment any information loss from the background sub-
traction in the CV method [46]. The CCV is defined as
the sequence of composition vectors from 3 to M,
where M is a pre-determined constant.
For all experiments described in this paper, the com-

plete composition vectors were calculated with M = 9.
In addition, the revised relative entropy string selection
string scoring scheme described by Wu et al. [44] was
employed to reduce the dimensionality of the vectors.
This is calculated as

RE(α) =
∑n

i

∣∣π(a, i)
∣∣ ln

∣∣∣∣π(α, i)
�(α)

∣∣∣∣,
where Π represents the complete composition vector

calculated from the concatenation of all n sequences in
the dataset. In summary, this method evaluates the infor-
mation content associated with each possible substring,
and the most informative substrings are chosen for inclu-
sion in the analysis. The number of n-mers used for dis-
tance calculations was chosen based on the dataset: if the
absolute revised relative entropy was below 1.0, the sub-
string was not used for any further calculations.
Once the final set of n-mers is chosen, the vectors are

normalized by calculating the Z-score for each n-mer.
From these normalized vectors, the distance matrix is

then calculated. For each pair of samples, the distance
between the normalized complete composition vectors
Vi and Vj is calculated using cosine distance:

Dij =

vivj

|vi|
∣∣vj

∣∣ + 1

2
,

We also experimented with using the Euclidian dis-
tance, calculated as

Dij =

√∑n

k=1
(Vi(k) − Vj(k))2,

where n is the number of substrings kept after the
substring selection (Figure 1). The CCV and distance
calculation code was written in Java (1.5+), using cus-
tom classes to save space and memory. Experiments
were run on Apple dual quad-core Intel Mac Pro with 8
GB running OS × 10.6. Additional testing was done
under CentOS 5.5 and Ubuntu 9.4 Linux distributions.

Affinity Propagation Clustering
The input to the affinity propagation clustering algo-
rithm is a similarity matrix. For Euclidian and Manhat-
tan distances, the similarity is represented by the
negative of the distance, while for cosine distances, the
similarity is found by subtracting the distance matrix
from 1. To determine the optimal preference, the
mean silhouette value was used. This value is a mea-
sure of how similar a given sample is to others in the
same clusters, versus samples found in other clusters.
It ranges from 1 (sample is well-clustered) to -1 (the
sample is found in an incorrect cluster) and is calcu-
lated as:

s(i) =
bi − ai

max(ai, bi)
,

Where ai is the sample’s average distance to the other
samples in its cluster and bi is the minimum average
distance between the sample and the samples in each of
the other clusters. The developers of the algorithm
recommend using the minimum similarity between sam-
ples for a low number of clusters, and the median simi-
larity for a moderate number of clusters. The preference
resulting in the optimal partitioning, using the average
silhouette value as a measurement was chosen from a
set of four preferences spanning the minimum and med-
ian similarity. Affinity propagation was performed using
the MATLAB function available at the authors’ website
(http://www.psi.toronto.edu/affinitypropagation/), with
the default parameters or with our re-implementation
written in Java as part of Nephele.
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Parallelization with Hadoop
We also implemented most of our CCV code for
execution as a series of nine MapReduce jobs using
the open-source MapReduce implementation Hadoop
(http://hadoop.apache.org/). MapReduce is not ideal
for the generation of neighbour-joined trees or affinity
propagation. The MapReduce paradigm depends on
the maps not dependent on any other data than what
they are given. Both the neighbour-joined trees and
affinity propagation algorithms depend on shared
states, which breaks the MapReduce paradigm. How-
ever, Nephele provides a Message Passing Interface
(MPI) version of Panjo, a neighbour-joining algorithm,
that is able to handle very large trees [47]. Our version
accepts row packed matrices instead of column packed,
because it was easier to generate them as opposed to
column packed matrices using MapReduce. All experi-
ments were run on a Rocks (http://www.rocksclusters.
org/) cluster running CentOS 5.4 on Intel Core 2
Quad and Core 2 Duo processors with 8 and 4 GB of
memory, respectively, using Java 1.5 and Hadoop
0.20.1.

Results and Discussion
Genotyping the New York Dataset: Results, Computation
Time and Choice of Distance Metric
The dataset used by Holmes and colleagues to study
reassortment events throughout New York State pro-
vided a dataset to use to build and refine the genotyping
methods. This set included 155 full genomes of H3N2
found in New York state between 1999 and 2004, col-
lected as part of the Influenza Genome Sequencing
Initiative [48], a worldwide sequencing initiative (this
project has also sampled from the southern hemisphere,
in Australia and New Zealand). Since the complete gen-
ome for each of the samples in this set was sequenced,
this provided genes, with differing rates of evolution to
test the pipeline.
Clustering was performed on the eight genes studied

in detail in the paper (HA, M1, NA, NP, NS1, PA, PB1,
PB2) as described in the Implementation section. Clus-
ter counts ranged from 5 (NP, PB2) to 15 (PB1), with
clusters ranging in size from 1 (representing an outlier
in the dataset) to 36. The results from the affinity pro-
pagation clustering matched the clade structure of the

Figure 1 Comparison of CCV and Maximum Likelihood Trees. Patristic Distance plots of trees produced by Maximum Likelihood (Y axes) vs.
those produced by CCV and cosine/Euclidian distance measures. (X axes).
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trees. The trees for all eight genes, colored by cluster
membership, can be seen in Additional File 2. All phylo-
genetic trees in this work were produced using Tree-
ViewJ [49]. The segmented nature of the Influenza
genome adds a level of complexity to the genotyping
problem. For each sample, the set of clusters for the
eight genes can be used to define a cluster “profile,”
which represents the genotype defined by the complete
genome for that sample. This profile represents the
composite genotype for that sample. For the 155 sam-
ples in the dataset, 32 genotypes were identified. From
these, the groups of samples identified by Holmes and
colleagues to be involved in reassortment events were
found as distinct genotypes.
One of the major advantages of the complete compo-

sition vector approach over traditional phylogenetic
methods is the speed of analysis. For the individual gene
segments in the test dataset (155 sequences), execution
times ranged from 1.50 minutes (M1) to 2.25 minutes
(NA) In contrast, alignment times using MUSCLE were
on the order of 5-10 minutes, and inference of maxi-
mum likelihood trees took roughly 20 minutes per gene
If the genes are concatenated together to create a full
genome sequence, the gains are even more impressive –
trees were produced in a few minutes with the CCV-
based approach, rather than hours for traditional align-
ment-based methods. This is consistent with initial
results from composition vector based approaches,
which focused on inferring trees for complete prokaryo-
tic genomes [26].
In order to determine the ideal distance metric to use

for clustering, the patristic distances (distances between
leaves along the branches) of the phylogenetic trees
inferred using the neighbour-joining algorithm on dis-
tances calculated using cosine and Euclidian distances
were compared (see Implementation section for details
of computation). Patristic distances (the distance
between two leaves along the branches of a tree) were
calculated using the TreeDistanceMatrix methods from
the Phylogenetic Analysis Java Library [50]. Patristic dis-
tances for each gene and distance measure were plotted
against each other. Figure 1 shows the patristic distance
(distance between leaves along a tree) plots for HA and
M1, which represent rapidly mutating and slowly mutat-
ing genes, respectively. It is clear that trees produced
using the neighbour-joining algorithm on cosine dis-
tance matrices produce trees that are the most similar
to the Maximum Likelihood trees, while the Euclidian
distance metric produces trees which have overly large
distances near the leaves of the tree, as shown in Figure
2. The cosine distance is shown to produce trees whose
patristic distance has a linear relationship with that of
the tree produced by maximum likelihood, while the
trees produced using Euclidean distance show a higher-

order relationship. These indicate that while the Eucli-
dian distance has been used as a distance metric for the
majority of previously published work involving compo-
sition/complete composition vectors [15,44], it appears
that cosine distance provides a better correlation with
trees produced by traditional phylogenetic methods.

Clustering on H5N1 Standard Nomenclature Dataset for
Validation
In 2001, the World Health Organization (WHO), along
with the World Organization for Animal Health (OIE)
and Food and Agriculture Organization of the United
Nations (FAO) released, in poster form, a standard
nomenclature system for the various lineages of Influ-
enza H5N1 found in over 50 countries throughout the
world This nomenclature is intended to replace the cur-
rent nomenclature used in publications, where samples
are often identified by the location of the earliest sample
with the closest genetic similarity (for example, “Fujian-
like” or “Quinghai lineage”). Alignments of 904 HA
sequences were created, and clades were chosen from
the tree based on a set of rules. These clades, developed
to define a new standard nomenclature, provided an
opportunity to blind test set our genotyping system.
In addition to the complete 904 sample dataset, the

authors provided a smaller, 109 sample representative
dataset. Of these, we were able to find 94 which were in
Genbank, and thus were available, with metadata, in our
database. We ran our genotyping pipeline on these
sequences, and found 18 clusters, as opposed to the 19
clades found in the nomenclature study. The phyloge-
netic tree, colored by cluster membership, is shown in
Figure 3. To compare the results of our genotyping
pipeline with the expert-defined genotypes, we used the
Adjusted Rand Index [48], which has an expected value
of zero, and a maximum value of 1. The Adjusted Rand
Index for this experiment was 0.833, indicating a strong
agreement between our results and the clades defined
by the WHO/FAO/OIE.
We also performed a detailed examination of the

trees produced by the CCV method with those from
the study. We found that members of Clade 2.3.1 were
found in two distinct groups on our tree, one of which
was quite distant from the rest of the samples in the
tree. Upon looking at the sequences, we found that
these were much shorter (~1000 bp) than the rest of
the sequences (~1600 bp), indicating that these
sequences were most likely HA1 sequences, rather
than the full HA coding sequence, even though they
were labelled full HA. This highlights a problem with
the quality of data that currently exists in the data-
bases. These inconsistencies in the data can signifi-
cantly distort the results of the various sequence
analysis methods.
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Bacterial Genomes
We investigated is our implementation can be used for
larger and more complex genomes. We acquired 27 full
length Actinomycetes genomes from the Tuberculosis
Database at the Broad Institute and ran them through
our pipeline. We were able to produce trees that had
the same topology as those generated by the Broad in
about 30 minutes compared to several hours for them
using traditional tools (Brian Weiner, personal commu-
nication, from unpublished data). In addition, we com-
pared the trees produced using the concatenation of the
predicted proteins of the same set of genomes and we
got similar results in both time to produce and the
topology of the trees. However, it should be noted that
the length of the branches are different.

MapReduce
During the development of the CCV code, we ran into
memory bottle necks that required extensive coding to
minimize. In addition, it was noted that several of the
steps could be parallelized. We examined Hadoop to
determine if we could utilize it for parallelizing our code
across commodity hardware in a fault-tolerant way. We
were able to code most of our algorithms using Hadoop.
The few that we did not code were the neighbour-join-
ing tree and the affinity propagation clustering algo-
rithms. We provide a modified version of Panjo [47], a
neighbour-joining algorithm, that uses the output of our
Hadoop cosine distance matrix, which is in row major
(packed) order. We also can output the matrix in the
Phylip square format. We were able to generate a

Figure 2 Comparison of Distance Metrics Used to Create Trees. Phylogenetic trees of the HA gene from the New York State dataset
constructed with (a) Euclidian and (b) cosine distances. Note the long leaf-leaf distances on tree (a).
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neighbour-joined tree for 10,270 16S samples in 106
minutes using our Rocks Cluster of 30 machines, which
we were not able to compute at all using our code on a
single machine.

Conclusions
We have described a fast and accurate method for com-
putational genotyping, using both human and avian
Influenza as a model organism, full length Actinomycetes
genomes, and 13 S samples. This method utilizes

techniques that are faster than traditional methods for
both sequence comparison and clustering. Our method
produces genotypes that closely match those produced
by expert analysis. In addition to providing discrete gen-
otypes with minimal human intervention, the complete
composition vector based method produces trees that
correlate highly with those produced by sequence align-
ment and maximum likelihood methods, giving scien-
tists a visualization of the data that they are familiar
with in a fraction of the time. Possible uses of these

Figure 3 Clustering of Influenza Dataset. Phylogenetic tree of the WHO Dataset, colored by cluster membership. The shorter HA1 sequences
are boxed in red.
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tools include displaying the genotypes and associated
metadata on a timeline or map, to show the geospatial
and temporal distribution of the pathogen population
(Figure 4). Finally, our MapReduce implementation

should handle tens of thousands of bacterial size gen-
omes and genomes of complex Eukaryote organisms (we
have tested this with several Fusarium sp. and got simi-
lar trees, data not shown), such as those being produced
from current and next generation sequencers, providing
a method to analyze these large datasets.

Availability
Project name: Nephele
Project home page: http://code.google.com/p/nephele/
Operating system: Linux, Mac OS X, Unix
Programming language: Java and C
License: Apache License 2.0

Additional material

Additional file 1: Representative Standard Nomenclature Dataset of
H5N1 Genotypes. A set of 94 sequences representing WHO expert-
defined genotypes (http://www.who.int/csr/disease/avian_influenza/
guidelines/nomenclature/).

Additional file 2: Clustering of Eight Genes from Influenza H3N2
Viruses (HA, M1, NA, NP, NS1, PA, PB1, PB2). This dataset consists of
155 samples, taken from New York State during the 1999-2000, 2001-
2002, 2002-2003, and 2003-2004 flu seasons.
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